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Abstract: We propose a novel framework to describe the time-evolution of dilute classical and
quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium.
Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We
subsequently define a global functional that is the sum of cell H-functionals. Each cell functional
recovers the corresponding Maxwell–Boltzmann, Fermi–Dirac, or Bose–Einstein distribution function,
depending on the classical or quantum nature of the gas. The time-evolution of the system is described
by the relationship dH/dt ≤ 0, and the equality condition occurs if the system is in the equilibrium
state. Via the variational method, proof of the previous relationship, which might be an extension
of the H-theorem for inhomogeneous systems, is presented for both classical and quantum gases.
Furthermore, the H-functionals are in agreement with the correspondence principle. We discuss how
the H-functionals can be identified with the system’s entropy and analyze the relaxation processes of
out-of-equilibrium systems.

Keywords: non-equilibrium thermodynamics; entropy; variational entropy

1. Introduction

The theoretical bases and the procedures that allow us to describe equilibrium systems
are well-established. These procedures can be applied to a wide range of natural systems,
including both the macroscopic phenomenological methods (thermodynamics) and the
microscopic description (statistical mechanics) (Out-of-equilibrium systems, of course,
are still a challenge). For instance, in the kinetic theory of gases, the behavior of a dilute
classical gas is described through the Boltzmann transport equation [1], and the time-
evolution of a system towards equilibrium is finely accounted for through the Boltzmann
H-theorem.

However, for quantum out-of-equilibrium systems, the construction of a kinetic frame-
work with the same level of success and universality as the classical version still presents
some fundamental challenges. For instance, to obtain a complete correspondence prin-
ciple between classical mechanics and quantum mechanics, the form of the quantum
analogues of both the Boltzmann H-theorem and the Boltzmann transport equation is
inadequate. In this context, Tolman was one of the earliest physicists to propose a quantum
H-theorem [2], using a probability transition relationship, the random phases hypothesis,
and an H-functional defined in terms of a spatially homogeneous distribution function.
Tolman also proposed a potential quantum analogue of the transport equation, in terms
of the occupation numbers, by applying time perturbation theory. Additional attempts,
under quantum operator formalism, have addressed the description of quantum trans-
port phenomena through the Hamiltonian of the system and the master equation (which
is, in these works, the analogue of the Boltzmann transport equation) [3–7]. However,
these approaches are not consistent with the classical-quantum correspondence principle.
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Similarly, some authors have proposed H-functionals and attempted to proof a quantum
H-theorem [8–16]. However, whether or not the homogeneous distribution function hy-
pothesis is assumed or if its framework fulfills the correspondence principle is unclear
or not discussed. Since the pioneering work of Tolman, at several stages, there has been
some discussion regarding the general validity of the quantum H-theorem, some possible
violations of the second law of thermodynamics, and the interpretation of the quantum
entropy [10,12–14,16–21].

Nonetheless, the framework to describe spatially non-homogeneous systems is still
under construction, although several approaches have been developed. For instance, the
celebrated Onsager formulation (linear thermodynamics) [22,23] has been successful in
describing irreversible chemical and physical phenomena. However, some descriptions,
such as those the internal behavior of gases [24] and the entropy measurement [25,26],
cannot be completely addressed with linear thermodynamics.

In addition, some aspects regarding the classical H-theorem and the Boltzmann
H-functional require revision to improve their mutual consistency. One example is the
modification of the H-theorem to include phenomena stemming from stochastic trajectories,
violations of the second law of thermodynamics, the relationship between Shannon’s mea-
sure of information and the Boltzmann’s entropy, and the calculation of thermodynamical
quantities and thermalization of specific systems [8,26–29].

To contribute to the construction of a consistent classical and quantum H-theorem,
within a formalism that describes out-of-equilibrium non-homogeneous systems, we pro-
pose a new theoretical framework. Specifically, for both classical and quantum systems,
we include non-homogeneous distribution functions in the H-functionals, and consider
non-homogeneous systems in the proofs of the resulting H-theorems. Our proposed H-
functionals satisfy the correspondence principle, but more importantly, these functionals
describe the time-evolution of spatially non-homogeneous systems towards equilibrium.

The organization of this article is as follows. In Section 2, we highlight, for our
purposes, the most fundamental assumptions required to proof the Boltzmann H-theorem,
we provide an alternative method to obtain the Maxwell–Boltzmann distribution using
the variational method, propose an alternative H-functional for classical systems, and
demonstrate the respective H-theorem. In Section 3, we review the Tolman proposal for
the quantum version of the H-theorem (quantum H-theorem) and how the Bose–Einstein
and Fermi–Dirac distributions are treated within this framework. Subsequently, we present
our proposal for a quantum H-functional and the proof of the corresponding quantum
H-theorem. In Section 4, we analyze the classical-quantum correspondence between the
quantum and classical H-functionals. In Section 5, we explore how relaxation processes
occur in a quantum ideal gas and, based on what we call variational entropy, propose a
time-evolution equation for the distribution function. Finally, we discuss some key ideas
resulting from our approach and close with a summary in Section 6.

2. Classical Scheme

The Boltzmann kinetic theory of gases represents a fundamental connection between
the microscopic nature of matter and the phenomenological macroscopic laws of classical
thermodynamics. The stochasticity introduced by the molecular chaos hypothesis in
the otherwise deterministic kinetics of the particles allows for the demonstration of the
celebrated Boltzmann H-theorem. In contrast, in this article, we propose an alternative
approach developed using a variational procedure applied to an H-functional. We start
this section by briefly accounting for the important elements of the standard derivation
of the Boltzmann transport equation and demonstrating the H-theorem, such as they are
presented in classical textbooks [1].

2.1. The Boltzmann Transport Equation

The first step in the Boltzmann kinetic theory of gases is defining the distribution
function, f (~r,~v, t), as the average number of molecules that, at time t, have position~r and
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velocity~v, and are contained in a µ-space volume element d3rd3v. Assuming a deterministic
Newtonian description of molecular motion, as well as the invariance of the µ-space volume
measure, one arrives at the Boltzmann rate equation:

f (~r +~vδt,~v + ~Fδt, t + δt) = f (~r,~v, t) +
(

∂ f
∂t

)
coll

δt. (1)

Here, the term (∂ f /∂t)coll describes the in and out fluxes from and towards the volume
element, due to the collisions. Subsequently, from the previous equation, the integro-
differential Boltzmann transport equation is obtained:(

∂

∂t
+~v1 · ∇~r +

~F
m
· ∇~v1

)
f1 =

∫
dΩ

∫
d3v2σ(Ω)|~v1 −~v2|( f̃2 f̃1 − f2 f1). (2)

In Equation (2), Ω is the solid angle, σ is the scattering cross section, ~F the external force
applied to the system, and f1 and f2 ( f̃1 and f̃2) are the distribution functions of particles 1
and 2, respectively, before (and after) the collision.

Particle dynamics and the effects of external forces are described by the left-hand side
of Equation (2). The right-hand side is derived by considering binary collisions between
particles and accepting the molecular chaos hypothesis, i.e., it is assumed that the positions
and velocities of the particles are not time-correlated.

2.2. A Summary of the H-Theorem and the Maxwell—Boltzmann Distribution

The evolution of a dilute gas towards thermodynamic equilibrium is frequently
addressed by first defining the H-functional [1,2]:

HB =
∫

f (~v, t) ln f (~v, t)d3v. (3)

Notice that fB(~v, t) is a spatially homogeneous distribution function. The functional HB,
originally introduced by Boltzmann in 1872, describes a dilute gas occupying a volume V, at
temperature T, with total energy E, and total number of free classical particles N. To clearly
distinguish the Boltzmann functional HB, we denote hereafter the Maxwell–Boltzmann
distribution function as fB.

The physically correct spontaneous time-evolution of an out of equilibrium dilute gas
is corroborated by the H-theorem. This theorem establishes that if (a) the homogeneous
function f (~v, t) satisfies the Boltzmann transport equation and (b) the molecular chaos
hypothesis is valid, then the system evolves in such a manner that dHB/dt ≤ 0, and if
dHB/dt = 0, then the system is in the equilibrium state. The H-theorem is straightforward
to prove using Equation (2) [1], and it assures the consistency between our microscopic
approach to describe the system’s spontaneous time-evolution and the phenomenological
observations established by the second law of classical thermodynamics; in fact, HB can be
associated with an entropy density.

On the other hand, considering a dilute gas in equilibrium with no applied external
forces, i.e., (∂ f /∂t) = 0 and f is independent of~r, we can directly prove that the equilibrium
distribution function obtained from Equation (2) is precisely the Maxwell–Boltzmann
distribution function. The proof of the above first requires identification of the sufficient
condition for f to render a null r.h.s. of Equation (2). Such an f , which we denote here as
f0, must satisfy

f0(~v′2) f0(~v′1)− f0(~v2) f0(~v1) = 0. (4)

Subsequently, the Maxwell–Boltzmann distribution function can be obtained by taking the
logarithm of Equation (4) and conserved mechanical quantities (see ([1], ch. 4.2)).

Before introducing our proposed H-functional, we must state that in defining HB,
Equation (3), it is assumed that the distribution function f is spatially homogeneous. This
assumption simplifies the demonstration of the H theorem. However, it also introduces
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a limited conception of the out-of-equilibrium condition of the gas. Given the relatively
simple nature of a dilute gas, one of the salient features of an out-of-equilibrium condition
is the existence of inhomogeneities in the system, which is not considered in the above.

2.3. Non-Homogeneous Classical H-Functional

As we saw in the previous section, the validity of the H-theorem relies significantly
on assuming that the distribution function is homogeneous and the molecular chaos
hypothesis is fulfilled. To extend the previous procedure to systems with non-homogeneous
distribution functions, which might allow for the study of systems in a more general out-
of-equilibrium condition, we introduce a modified H-functional. For the sake of clarity
and simplicity, we use primed functions and quantities to denote the classical case to
differentiate them from the quantum analogues.

Our proposed classical H-functional, denoted asH′, describes a dilute classical gas
occupying a volume V. In our theoretical treatment, we divide this volume into K cells,
which, without loss of generality, have identical volumes, δVM = V/K, M = 1, . . . , K.
Each cell of index M has the following local functions, properties, and variables: an H-
functional,H′M, a homogeneous distribution function, f ′M(~v, t), number of particles, N ′M,
temperature, T′M, and energy, E ′M. Taken as a whole, the system has an energy E, and a
global number of free classical particles N. We also assume that the system is perfectly
isolated, and that the number of particles in each cell is sufficiently large, so as to obtain
accurate averages. We start our analysis by proposing the following inhomogeneous
H-functional:

H′(t) =
K

∑
M=1

∫
δVM

f ′M(~v, t) ln f ′M(~v, t)d3v. (5)

The distribution functions, { f ′M(~v, t)}, depend implicitly on the position of the cells,
relative to the global system, and on the velocity ~v and time t. Notice that each f ′M can be
formally extended to the complete coordinate space by defining each f ′M to be zero outside
the M-th cell, in such a manner that the distribution function of the complete system is a
piece-wise sum of { f ′M(~v, t)}:

f ′(~r,~v, t) =
K

∑
M=1

f ′(~rM,~v, t) =
K

∑
M=1

f ′M(~v, t). (6)

Here,~rM is the center of the cell of index M, and f ′M(~v, t) 6= f ′N(~v, t) for M 6= N. This
extended definition allows us to omit the symbol δVM in all integrals performed over the
cell volume. In terms of f ′M(~v, t) and a local variable of energy, ε(~v), we have

H′M =
∫

f ′M(~v, t) ln f ′M(~v, t)d3v, (7)

N ′M =
∫

f ′M(~v, t)d3v, (8)

E ′M =
∫

f ′M(~v, t)ε(~v)d3v. (9)

Notice that assuming every f ′M to be homogeneous implies that we are accepting the
validity of the local equilibrium hypothesis. In addition, the set { f ′M(~v, t)} must satisfy the
following restrictions:

K

∑
M=1

∫
f ′M(~v, t)d3v = N (10)

and
K

∑
M=1

∫
f ′M(~v, t)ε(~v)d3v = E. (11)
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We now use the variational method to find the extremal ofH′, consistent with restric-
tions (7)–(11) together with the corresponding Lagrange multipliers {αM} and {βM}. This
yields

δH′
δ f ′J(~v

′)
=

K

∑
M=1

∫
δ

δ f ′J(~v
′)

[
f ′M(~v) ln f ′M(~v)

]
d3v−

K

∑
M=1

αM

∫
δ f ′M(~v)
δ f ′J(~v

′)
d3v

−
K

∑
M=1

βM

∫
ε(~v)

δ f ′M(~v)
δ f ′J(~v

′)
d3v

= ln f ′J(~v
′) + 1− αJ − β Jε(~v′) = 0. (12)

Solving the last line for f ′J(~v
′) renders

f ′J(~v
′) = C exp

(
αJ + β Jε(~v′)

)
(13)

where C is a constant. We notice that by applying the variational procedure on H‘, we
predict that when equilibrium is reached, the distribution function of each cell has the
form of the Maxwell–Boltzmann distribution function, which is consistent with the local
equilibrium assumption.

2.3.1. Properties ofH′ for Systems in Equilibrium

If the complete system is in equilibrium without external forces applied to the gas,
from classical thermodynamics of systems in equilibrium, we ascertain that the local
number of particles and the local energy do not depend on the cell number. In a statistical
sense, this is

N ′M = N ′ ≡ N̄ ′ (14)

and
E ′M = E ′ ≡ Ē ′. (15)

In Equations (14) and (15) the bar implies averaged properties over the complete system.
Moreover, the global distribution function is homogeneous, hence f ′M does not depend on
the cell number M (i.e., f ′M(~v, t) = f ′(~v, t), ∀M). Several properties arise directly from this,
e.g., from Equations (14) and (15) E = ∑M E ′M = KĒ ′, N = ∑MN ′M = KN̄ ′. Here we have
used Equations (8) and (9). Equation (5), in terms of Equation (3), can be rewritten as:

H′(t) =
∫ K

∑
M=1

[ f ′(~v, t) ln f ′(~v, t)]d3v = K
∫

f ′(~v, t) ln f ′(~v, t)d3v = KHB(t). (16)

To identifyH′ with the entropy, we need to show thatH′(t) is extensive, with respect
to K f ′(~v, t). This is shown by analyzing the following expression:∫ [

K f ′(~v, t)
]

ln
[
K f ′(~v, t)

]
d3v =

∫ [
(K ln K) f ′(~v, t) + K f ′(~v, t) ln f ′(~v, t)

]
d3v

= K
∫ {

f ′(~v, t)
[

ln K + ln f ′(~v, t)
]}

d3v. (17)

We observe that if the number of particles in the µ-space, f ′(~v, t), is much larger than the
number of cells, K, then the first term of Equation (17) is negligible, and consequently:∫ [

K f ′(~v, t)
]

ln
[
K f ′(~v, t)

]
d3v ≈ K

∫
f ′(~v, t) ln f ′(~v, t)d3v, (18)

i.e., H′M is extensive, and the sum ∑MH′M is the H-functional of the complete system,
which reduces to the Boltzmann H-functional. Therefore, H′ can be identified with the
entropy density of the system.
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Furthermore, in equilibrium, the Lagrange multipliers are position- and time-independent,
thus f ′M(~v) reduces to

f ′M(~v) = C exp(α + βε(~v)) ≡ f̄ ′(~v), M = 1, . . . , K. (19)

The constant C can be omitted, which is shown by defining the followingH′′ functional:

H′′(t) =
K

∑
M=1

∫ [
f ′M(~v, t) ln f ′M(~v, t)− f ′M(~v, t)

]
d3v. (20)

Since ∑K
M=1

∫
f ′M(~v, t)d3v = N (a constant), and because we are mainly interested in the

time-derivative of H′′, C can be conveniently omitted. In other words, H′ leads to the
Maxwell–Boltzmann distribution function of systems in equilibrium.

2.3.2. Proof of the H-Theorem for Non-Homogeneous Distributions

Throughout this section, we consider a classical gas with an initial condition close to
the equilibrium, which ensures that the local equilibrium hypothesis remains valid during
the time-evolution of the system. Also, we use the following definitions for the deviations
of concentration and energy, relative to the equilibrium values:

N ′M(t) =
∫

f ′M(~v, t)d3v = N̄ ′ + ∆′M(t) (21)

and
E ′M(t) =

∫
f ′M(~v, t)ε(~v)d3v = Ē ′ + δ′M(t). (22)

Here N̄ ′ = N/K and Ē ′ = E/K are the cell particle number and the cell energy in
equilibrium, respectively, which are given by

N̄ ′ =
∫

f̄ ′(~v)d3v and Ē ′ =
∫

f̄ ′(~v)ε(~v)d3v, (23)

where we have used f̄ ′(~v) as defined in Equation (19). In Equations (21) and (22), ∆′M
and δ′M are considered deviations relative to N̄ ′ and Ē ′, respectively. For systems that
are sufficiently close to equilibrium, it is reasonable to expect first that ∆′M(t) � N̄ ′ and
δ′M(t)� Ē ′, and second that ∆′M and δ′M are sufficiently large compared to the fluctuations
of N̄ ′ and Ē ′. Similarly, we can assume that every local distribution function can be written
as

f ′M(~v, t) = f̄ ′(~v)(1 + g′M(~v, t)), 1� |g′M(~v, t)|. (24)

With the previous considerations, in the following, we proof an alternative H-theorem,
considering the H-functional,H′, defined by Equation (5).

We commence by differentiating Equation (5) with respect to time:

dH′
dt

=
K

∑
M=1

∫ [
1 + ln f ′M(~v, t)

]
ḟ ′M(~v, t)d3v. (25)

(Starting here, we use the standard notation ḣ ≡ (dh/dt)). Substituting Equation (24) into
Equation (25) yields

dH′
dt

=
K

∑
M=1

∫
f̄ ′(~v)

[
1 + ln

{
f̄ ′(~v) + f̄ ′(~v)g′M(~v, t)

}]
ġ′M(~v, t)d3v. (26)

The logarithmic term of Equation (26) expanded up to the first-order term of its Taylor
series, around g′M(~v, t) = 0, is

ln[ f̄ ′(~v) + f̄ ′(~v)g′M(~v, t)] ≈ ln[ f̄ ′(~v)] + g′M(~v, t), (27)
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and substituting this into Equation (26) gives

dH′
dt

=
K

∑
M=1

∫
f̄ ′(~v)

[
1 + ln f̄ ′(~v) + g′M(~v, t)

]
ġ′M(~v, t)d3v. (28)

Substituting ln f̄ ′(~v) = exp(α + βε(~v)), see Equation (19) and subsequent text, and omit-
ting C we obtain

dH′
dt

=
K

∑
M=1

∫
f̄ (~v)[α + βε(~v)]ġM(~v, t)d3v +

K

∑
M=1

∫
f̄ (~v)gM(~v, t)ġM(~v, t)d3v. (29)

From the definitions ofN ′M and E ′M —Equations (21) and (22)—and f ′M(~v, t) —Equation (24)—
it is straightforward to show that∫

f̄ (~v)gM(~v, t)d3v = ∆M(t) ⇒
∫

f̄ (~v)ġM(~v, t)d3v = ∆̇M(t), (30)∫
f̄ (~v)gM(~v, t)ε(~v)d3v = δM(t) ⇒

∫
f̄ (~v)ġM(~v, t)ε(~v)d3v = δ̇M(t), (31)

and as a consequence of ∑K
M=1 ∆M(t) = ∑K

M=1 δM(t) = 0, we find

K

∑
M=1

∆̇M(t) =
K

∑
M=1

δ̇M(t) = 0. (32)

Therefore, due to Equations (30)–(32), Equation (29) simplifies to

dH′
dt

=
K

∑
M=1

∫
f̄ (~v)gM(~v, t)ġM(~v, t)d3v. (33)

To clearly determine the time-evolution of Equation (33), we split the summation over M
into two terms:

dH′
dt

=
L

∑
J

∫
f̄ ′(~v)g′I

+
(~v, t)ġ′I

+(~v, t)d3v +
P

∑
J

∫
f̄ ′(~v)g′J

−
(~v, t)ġ′J

−(~v, t)d3v (34)

where L + P = K. The above split is made based on the assumption that for any given
initial state of the system, at t0, some cells will have either a g′I(~v, t0) ≥ 0 or a g′J(~v, t0) < 0,
which we denote as ġ′I

+(~v, t) or ġ′J
−(~v, t), respectively.

If the system’s initial state is sufficiently close to equilibrium, it is physically appropri-
ate to assume that

∣∣g′M(~v, t0)
∣∣→ 0 as t→ ∞ in a monotonous manner, thus ġ′I

+(~v, t) ≤ 0
and ġ′J

−(~v, t) > 0, for t ≥ t0. Consequently, Equation (34) can be re-written as

dH′
dt

= −
[

L

∑
J

∫
f̄ (~v)|g+J (~v, t)||ġ+J (~v, t)|d3v +

P

∑
J

∫
f̄ (~v)|g−J (~v, t)||ġ−J (~v, t)|d3v

]
. (35)

Since every integrand in Equation (35) is positive, for all t and ~v, and
∣∣g′M(~v, t0)

∣∣ → 0 as
t→ ∞, it follows that

dH′
dt
≤ 0. QED. (36)

In summary, considering a gas occupying a volume V (which is divided into K small
cells), with a total energy E and N classical free particles, whose initial state is not in
equilibrium, but sufficiently close to equilibrium, then the functional

H′(t) =
K

∑
M=1

∫
f ′M(~v, t) ln f ′M(~v, t)d3v (37)
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where f ′M(~v, t) is the cell distribution function, which satisfies dH′/dt ≤ 0, and the equality
relation is attained at t→ ∞. In Equation (37), f ′M(~v, t) is the Maxwell–Boltzmann distri-
bution function, which in general is different for different cells—i.e., the complete system
can be non-homogeneous—and each f ′M(~v, t) is compatible with the cell properties, such
as number of particles, N ′M, energy, E ′M, temperature, TM, and Legendre multipliers αM
and βM.

3. Quantum Scheme

The classical H-theorem is still considered one pillar on which classical statistical
physics is founded. Unfortunately, despite multiple attempts [3,10,11,14–16], the generality
of the classical H-theorem has no equally robust quantum match. In this section, we propose
and analyze an alternative quantum H-functional using the variational method. We start
by briefly outlining a typical textbook demonstration of the quantum H-theorem [2], and
subsequently present the analysis of our proposed H-functional.

3.1. H-Theorem and the Fermi–Dirac and Bose–Einstein Distribution Functions

Consider a dilute gas of N non-interacting quantum particles (either bosons or
fermions), contained by a vessel of volume V, temperature T, and total energy E. Starting
from the Boltzmann definition of entropy, the quantum H functional is

HT = − ln G, (38)

where G describes the total number of accessible quantum states of the gas that satisfy the
above conditions [2]. The quantum H-theorem can be demonstrated as follows. G can be
divided into groups of neighboring states, gk, and certain occupation numbers, nk, can be
associated with each of these groups. Thus, the above functional takes the form

HT = ∑
i

ni ln ni − (ni ± gi) ln(gi ± ni)± gi ln gi, (39)

where the upper and lower signs are for bosons and fermions, respectively. Thus the time
derivative of Equation (39) is

dHT
dt

= ∑
κ

[ln nκ − ln(gκ ± nκ)]
dnκ

dt
. (40)

Assuming that the energy exchange between particles is produced by interparticle
collisions, and using perturbation theory, the rate of change in the number of particles in a
group κ is

dnκ

dt
= − ∑

λ,(µν)

Aκλ,µνnκnλ(gµ ± nµ)(gν ± nν)

+ ∑
λ,(µν)

Aµν,κλnµnν(gκ ± nκ)(gλ ± nλ). (41)

Here Aκλ,µνnκnλ(gµ ± nµ)(gν ± nν) is the expected number of collisions per unit time, in
which two particles will be moved from groups (κ, λ) to (µ, ν), and the tensor Aκλ,µν is
given by

Aκλ,µν =
4π2

h
|I1 ± I2|2

∆ε
. (42)

In Equation (42), ∆ε is the net energy change occurring during the collision and |I1− I2|2 =
|Vmn,kl |2, where Vmn,kl is the element of the transition matrix of a binary collision. It is
important to remark that in deriving Equation (41), the equal a priori probabilities and
the random a priori phase hypotheses were assumed valid. The random a priori phase
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hypothesis can be considered an analogue of the molecular chaos hypothesis [15], as it is
the mechanism by which stochasticity is introduced into the system.

Substituting Equation (41) into Equation (40), it is straightforward to prove that

dHT
dt
≤ 0. (43)

At equilibrium (at t→ ∞), dnκ/dt = 0, hence from Equation (41)

ln
nκ

gκ ± nκ
+ ln

nλ

gλ ± nλ
= ln

nµ

gµ ± nν
+ ln

nν

gν ± nν
. (44)

Considering that energy is conserved during the collision, the Bose–Einstein or Fermi–Dirac
distribution functions can be recovered from Equation (44):

nκ =
gκ

exp(α + βεκ)∓ 1
. (45)

In other words, at equilibrium dHT/dt = 0, the distribution function obtained from
Equation (39) is the expected distribution function.

3.2. Out-of-Equilibrium, Non-Homogeneous Quantum Systems

Consider a dilute gas enclosed by a perfectly isolated vessel of volume V, with total
energy E, and total number of quantum particles N, which can be free fermions or bosons.
For our purposes, the volume V is divided into K small cells, each of which has constant
volume δVM = V/K (M = 1, . . . , K), temperature TM, energy εM, number of particlesNM,
and distribution function, { fMn(t)}. Hereafter we use the following short-hand notation:

fMn(t) ≡ f (~rM, εn, t), (46)

where~rM is the radius vector pointing at the center of the M-th cell. fMn(t) represents the
number of particles contained in the M-th cell that occupies the energy level εn at time t.
Since the particles are considered to be free, the energy levels should not depend on the cell
properties, i.e., the energy spectrum, {εn}, is the same for all cells; thus, there is no need to
label εn with an index M.

We propose the following functional as an alternative H-functional for quantum
non-homogeneous dilute gases:

H(t) =
K

∑
M=1

∑
n

[
fMn(t) ln fMn(t)

±
(

1∓ fMn(t)) ln(1∓ fMn(t)
)]

δVM. (47)

Here, the upper and lower signs refer to fermions and bosons, respectively. In addition,
when needed, each cell has an associated local chemical potential, αM, and a local H-
functional, which is defined by

HM(t) = ∑
n

[
fMn(t) ln fMn(t)±

(
1∓ fMn(t)

)
ln
(

1∓ fMn(t)
)]

δVM. (48)

Therefore, NM and EM as functions of time are given by

NM(t) = ∑
n

fMn(t)δVM (49)

and
EM(t) = ∑

n
fMn(t)εnδVM, (50)
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which are, for the whole system, constrained by the micro-canonical restrictions

K

∑
M=1

[
∑
n

fMn(t)

]
δVM =

K

∑
M=1
NM(t)δVM = N, (51)

and
K

∑
M=1

[
∑
n

fMn(t)εn

]
δVM =

K

∑
M=1
EM(t)δVM = E. (52)

Applying the variational method toH, and using the Lagrange multipliers {αM} and
{βM}, we readily obtain (see also the discussion related to Equation (12)):

ln
(

1∓ fMn(t)
fMn(t)

)
= −αM(t)− βM(t)εn, (53)

and solving for fMn(t) yields

fMn(t) =
1

exp
(
− αM(t)− βM(t)εn

)
± 1

. (54)

Thus, in this zero-order approximation, the form of equilibrium distribution functions is
conserved.

3.2.1. Properties ofH for Systems in Equilibrium

If the system is in equilibrium, the temperature becomes homogeneous throughout
the complete system. Also, the local number of particles, the local energy, and the Lagrange
multipliers do not depend on the cell number, and they should be homogeneous. This is
represented by

NM(t→ ∞) ≡ N̄ = N/K, (55)

EM(t→ ∞) ≡ Ē = E/K, (56)

αM = ᾱ, ∀M, (57)

and
βM = β̄, ∀M. (58)

Substituting Equations (57) and (58) into Equation (54) yields the distribution function of
each cell in equilibrium:

f̄Mn = f̄n =
1

exp
(
− ᾱ− β̄εn

)
± 1

, ∀M. (59)

Using the above equation, we can recover the distribution function and the entropy of
a dilute quantum gas in equilibrium as follows. Setting ᾱ = µ/kT and β̄ = −1/kT,
and substituting them into Equation (59), it renders the Fermi–Dirac and Bose–Einstein
distribution functions:

f̄n =
1

exp
( εn−µ

kT
)
± 1

, (60)

and substituting Equation (59) into the negative of Equation (47), the entropy of a quantum
ideal gas is

S =
K

∑
M=1

∑
n

[(
1

exp
(
− ᾱ− β̄εn

)
± 1

)
ln

(
1

exp
(
− ᾱ− β̄εn

)
± 1

)]

± ln

[
K

∏
M=1

∏
n

(
1∓ 1

exp
(
− ᾱ− β̄εn

)
± 1

)]
δVM. (61)
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This quantity is what we refer to as “variational entropy,” and this name reflects the fact
that it was obtained via the variational method.

3.2.2. Proof of the Quantum H-Theorem for Non-Homogeneous Systems

For quantum systems, we also accept the validity of the local equilibrium hypothesis
for every cell in the system. This allows us to define non-homogeneous systems, wherein
thermodynamic quantities are well-defined on a per-cell basis. In terms of the equilibrium
properties, we have

NM(t) = ∑
n

fMn(t) = N̄ + ∆M(t) (62)

and
EM(t) = ∑

n
εn fMn(t) = Ē + δM(t). (63)

In Equations (62) and (63) N̄ and Ē are the cell particle number and the cell energy in
equilibrium, which are given by Equations (55) and (56), and ∆M and δM are deviations
from N̄ and Ē , respectively, with ∆M(t)� N̄ and δM(t)� Ē .

In the present context, |∆M| and |δM| are sufficiently large to not be fluctuations of the
system, and sufficiently small so that the local equilibrium hypothesis is valid for t > 0
(we set t0 = 0, and t0 is the initial time at which the system is prepared). Therefore, the
distribution functions can be rewritten as

fMn(t) = f̄n(1 + gMn(t)), 1� |gMn(t)|, (64)

from which it follows, by substituting Equation (64) into Equations (62) and (63), that ∆M
and δM satisfy

∆M(t) = ∑
n

f̄ngnM (65)

and
δM(t) = ∑

n
f̄ngnMεn. (66)

An additional consideration is necessary for treating Fermi gases. Since, for these
systems, fMn(t) ≤ 1, we have

1− f̄n − f̄ngnM ≥ 0 ⇒ 1
f̄n
≥ 1 + gnM. (67)

f̄n = 1 is certainly satisfied if the system temperature is zero. In this state, all energy levels
below and including the Fermi energy are occupied, thus the system will necessarily be
homogeneous, and consequently, gnM = 0. In this article, we will omit this scenario and
will only discuss Fermi gases with non-zero temperatures.

To proof the quantum H-theorem, we start by taking the time-derivative of
Equation (47):

dH(t)
dt

= ∑
n

K

∑
M=1

ḟnM(t) ln
[

fnM(t)
1∓ fnM(t)

]
δVM. (68)

Subsequently, we substitute Equation (64) into the above equation to obtain

dH(t)
dt

= ∑
n

K

∑
M=1

f̄n ln
[

f̄n(1 + gnM)

1∓ f̄n(1 + gnM)

]
ġnMδVM

= ∑
n

K

∑
M=1

f̄n
{

ln[ f̄n + f̄ngnM]ġnM − ln[1∓ f̄n ∓ f̄ngnM]ġnM
}

δVM. (69)
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The logarithmic terms, corresponding to Fermi and Bose gases, are approximated through
a Taylor series around f̄ngnM = 0 as

ln[1∓ f̄n ∓ f̄ngnM] ≈ ln[1∓ f̄n]∓
f̄n

1∓ f̄n
gnM (70)

and
ln[ f̄n + f̄ngnM] ≈ ln[ f̄n] + gnM, (71)

respectively. Equation (70) is valid because, for non-extremely degenerated Fermi gases,
1− f̄n � f̄n|gnM| and Equation (71) is fulfilled because, for Boson gases, 1 + f̄n � f̄n|gnM|
when f̄n � f̄n|gnM|.

Combining Equations (69)–(71),

dH
dt

= ∑
n

K

∑
M=1

f̄n
{
(ln f̄n + gnM)ġnM

}
δVMδεn

−∑
n

K

∑
M=1

f̄n

{(
ln[1∓ f̄n]∓

[
f̄n

1∓ f̄n

]
gnM

)
ġnM

}
δVM (72)

and substituting Equation (59) into Equation (72):

dH
dt

= ∑
n

K

∑
M=1

f̄n

{
(ᾱ + β̄εn)ġnM + gnM

(
1± eᾱ+β̄εn

)
ġnM

}
δVM. (73)

Since both the total number of particles and the total energy of the system are constant,
it follows from Equations (51), (52), (62) and (63) that

dN
dt

=
K

∑
M=1
ṄMδVM =

K

∑
M=1

∑
n

f̄n ġnMδVM =
K

∑
M=1

∆̇M(t)δVM = 0 (74)

and
dE
dt

=
K

∑
M=1
ĖMδVM =

K

∑
M=1

∑
n

f̄n ġnMεnδVM =
K

∑
M=1

δ̇M(t)δVM = 0. (75)

Substitute the previous expression in Equation (73) to obtain

dH
dt

= ∑
n

eᾱ+β̄εn
K

∑
M=1

gnM ġnMδVM ≤ 0. QED. (76)

To obtain the far right side of Equation (76), we have used the relationship gnM ġnM ≤ 0
for t > 0. This can be proven by simply arguing that, in the initial state, if a cell is described
by gnM(t0) > 0 then gnM(t) ≥ 0 and ġnM(t) ≤ 0, and if gnM(t0) < 0 then gnM(t) ≤ 0 and
ġnM(t) ≥ 0. Here we have exploited the fact that the system in equilibrium is homogeneous,
and that, by accepting the local equilibrium hypothesis, gMn(t) is a monotonic function
and gnM → 0 as t→ ∞ as the system approaches the equilibrium state. Another approach
to prove Equation (76) consists of splitting the cells into two subsets, just as we did in the
classical scenario.

Briefly, considering a dilute quantum gas contained in a vessel of volume V (divided
into K small cells), with total energy E and N quantum free particles, which initially is out
of equilibrium—but in such a manner that the local equilibrium hypothesis is valid— the
functional

H(t) =
K

∑
M=1

∑
n

[
fMn(t) ln fMn(t)±

(
1∓ fMn(t)) ln(1∓ fMn(t)

)]
δVM, (77)
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where fMn is the M-th cell distribution function, evolves in time such that dH/dt ≤ 0,
and the equality condition is attained when the system reaches the equilibrium state.
In Equation (77), and for a Fermi (Bose) gas, fMn corresponds to the Fermi–Dirac (Bose–
Einstein) distribution function for each cell. Locally, each cell is in equilibrium, although
the complete system may be non-homogeneous, and is characterized by the respective
fMn, number of particles NM, energy EM, temperature TM, and Legendre multipliers αM
and βM.

4. Quantum—Classical Correspondence

In Sections 2 and 3, we saw that the variational method can be applied to H-functionals,
which correctly describes the behavior of classical and quantum dilute gases, with regard to
their respective time-evolution. Both H-functionals defined in Equations (5) and (47) also
recover the well-known distribution functions, either Maxwell–Boltzmann for a classical
gas, Fermi–Dirac for a Fermi gas, or Bose–Einstein for a Bose gas. Nevertheless, the
functionals (5) and (47) are seemingly different, and in this section, we show they are
related by the correspondence principle.

We start by arguing that, in equilibrium, it is straightforward to proof that Equation (60)
collapses into Equation (19) by taking the limit wherein the degeneration parameter
ξ ≡ exp

(
− (ε − µ)/(kBT)

)
� 1. Alternatively, a more general approach to show the

quantum–classical correspondence consists of analyzing the collapse from the quantum to
the classical H-functionals within the appropriated limit. For the case treated here, this limit
is fnM ≈ 0 for several reasons. Systems at very low temperatures, in which the quantum
effects cannot be ignored, are obviously excluded from the current analysis. In systems at
sufficiently high temperatures, the particles occupy almost exclusively high-energy levels.
Furthermore, the energy spectrum approaches a continuum, as is expected by taking the
limit h̄→ 0, and the number of particles per level is very close to zero.

Subsequently, we substitute fnM ≈ 0 into Equation (47) to obtain

H =
K

∑
M=1

∑
n
[ fnM(t) ln( fnM(t))]δVM =

K

∑
M=1

∑
n
[ fM(εn, t) ln( fM(εn, t))]δVM. (78)

Finally, the sum over the quantum energy levels can be replaced by an integral over
the velocities by invoking both the uncertainty principle and the fact that, for free particles,
the continuum energy spectrum can be written as a function of the velocity. Hence the
quantum H-functional transforms, in the classical limit, to

H =
K

∑
M=1

∫
C′ fM(~v, t) ln

[
C′ fM(~v, t)

]
d~v, (79)

where C′ collects the appropriate constants stemming from writing the energy spectrum as
a function of ~v.

5. Relaxation Processes in Degenerated Quantum Gases

To obtain a time-evolution equation for an out-of-equilibrium quantum gas, we pro-
pose the following approach. We start by evaluating ∆H = H(t2) −H(t1), where our
quantum H-functional—Equation (47)—is evaluated at different times t1 and t2, with
t2 > t1. This yields

∆H =
K

∑
M=1

∑
n
[ f ′′nM ln f ′′nM − f ′nM ln f ′nM

±(1∓ f ′′nM) ln(1∓ f ′′nM)∓ (1∓ f ′nM) ln(1∓ f ′nM)]δVM. (80)

In the above equation, and for the rest of this section, we use the short-hand notation
fnM(t2) ≡ f ′′nM and fnM(t1) ≡ f ′nM. Subsequently, in Equation (80), we replace the distribu-
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tion functions with their expressions in terms of deviations from equilibrium—Equation (64)
—which renders:

∆H =
K

∑
M=1

∑
n

[
f̄n(1 + g′′nM) ln f̄n(1 + g′′nM)− f̄n(1 + g′nM) ln f̄n(1 + g′nM)

±
(
1∓ f̄n{1 + g′′nM}

)
ln
(
1∓ f̄n{1 + g′′nM}

)
∓
(
1∓ f̄n{1 + g′nM}

)
ln
(
1∓ f̄n{1 + g′nM}

)]
δVM. (81)

Subsequently, we expand the logarithmic terms up to the first-order in g′nM and g′′nM and
rearrange the result, which gives

∆H =
K

∑
M=1

∑
n
[ f̄n(1 + ln f̄n)− f̄n{ln(1∓ f̄n)∓ 1}](g′′nM − g′nM)δVM. (82)

Finally we divide Equation (82) by ∆t ≡ t2 − t1, and take the limit ∆t→ 0 to obtain

dH
dt

=
K

∑
M=1

∑
n
[ f̄n(1 + ln f̄n)− f̄n{ln(1∓ f̄n)∓ 1}]

( gnM
dt

)
δVM. (83)

Equation (83) is, within our framework, the time-evolution equation for gnM. Clearly,
to describe a realistic situation, providing a specific approximation for the deviation
function gnM is required. This subject will be explored in future work.

6. Comments and Remarks

The demonstration of the classical H-theorem usually begins by assuming that the gas,
despite being initially out of equilibrium, can be described by a spatially homogeneous
distribution function. Subsequently, the time-evolution of the system occurs in such
a manner that dH/dt ≤ 0. Therefore, this approach does not describe the evolution
to equilibrium of systems with spatial inhomogeneities. To address this issue, in this
article, we proposed a framework that may be useful to describe the time-evolution of
initially non-homogeneous systems. To this end, we divided the system into small cells
to conceive a system wherein the local equilibrium hypothesis is valid in each cell but
in such a manner that the total system is not homogeneous. Systems that satisfy the
previous conditions will evolve towards equilibrium, and the evolution occurs according
to dH′/dt ≤ 0, Equation (5) and dH/dt ≤ 0, and Equation (47), for classical and quantum
gases, respectively. Consequently, this approach can be considered an extension of the
H-theorem for more realistic out-of-equilibrium systems.

The classical and quantum H-functionals, H′ and H, respectively, correctly recover
the most-probable distribution functions in out-of-equilibrium states (locally) and when
the system attains the global equilibrium state. The relaxation process of the system is
described by monotonic functions that account for deviations from the global equilibrium.

It is clear that for describing the relaxation process of a concrete system, it is necessary
to know, at least to some approximation, the specific forms of the monotonic functions
g′M and gnM, for classical and quantum systems. Whereas the complete analysis of these
functions is beyond the scope of the present work, some of their properties can be predicted,
e.g., they must be consistent both with the system relaxation times and the mechanisms of
energy transfer between cells.

An important aspect of the framework proposed in this work is related to the entropy
of systems out-of-equilibrium. Because the functionals H′ and H can be related to the
entropy of dilute gases, either classical or quantum, the fact that these functionals are
defined over a system divided into cells enables their use for defining the entropy of out-of-
equilibrium systems, other than dilute gases. Specifically, and derived from our previous
work (e.g., [30,31]), theH′ andH functionals may serve to describe the entropy, as well as
the entropy generation, occurring during the growth of complex physical systems, such as
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fractals. Possibly, studying these systems might also shed light on the explicit functional
form of g′M and gnM.

In summary, we proposed a variational procedure to demonstrate the classical and
quantum H-theorems, which allowed us to describe, at a mesoscopic local view (cell-
scale), the time-evolution of an out-of-equilibrium and spatially non-homogeneous system
moving towards the equilibrium condition. In principle, this approach would permit the
investigation of the transport phenomena inherent to the equilibration process, occurring
in a system with a spatially inhomogeneous out-of-equilibrium initial condition.
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The following abbreviations are used in this manuscript:

HB The original Boltzmann H-functional
fB = f (~v) The Maxwell–Boltzmann distribution function
H′ Our H-functional for a classical dilute gas
f ′M = f ′(~rM,~v, t) The classical distribution function of a cell centered at~rM
HT The H-functional proposed by Tolman
H Our H-functional for a quantum dilute gas
fnM = fM(~rM, εn, t) The quantum distribution function of a cell centered at~rM
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