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Abstract: Similar to natural complex systems, such as the Earth’s climate or a living cell, semiconduc-
tor lithography systems are characterized by nonlinear dynamics across more than a dozen orders of
magnitude in space and time. Thousands of sensors measure relevant process variables at appro-
priate sampling rates, to provide time series as primary sources for system diagnostics. However,
high-dimensionality, non-linearity and non-stationarity of the data are major challenges to efficiently,
yet accurately, diagnose rare or new system issues by merely using model-based approaches. To
reliably narrow down the causal search space, we validate a ranking algorithm that applies transfer
entropy for bivariate interaction analysis of a system’s multivariate time series to obtain a weighted
directed graph, and graph eigenvector centrality to identify the system’s most important sources of
original information or causal influence. The results suggest that this approach robustly identifies
the true drivers or causes of a complex system’s deviant behavior, even when its reconstructed
information transfer network includes redundant edges.

Keywords: complex systems; time series; transfer entropy; eigenvector centrality; original informa-
tion; node importance; coupled Lorenz systems

1. Introduction

Semiconductor lithography systems are extremely complicated electromechanical
systems, capable of sub-nanometer positioning and sub-milliKelvin temperature control,
while generating extreme ultraviolet light from laser-pulsed tin plasma. It is notoriously
difficult to fully understand the complex interactions among thousands of observed vari-
ables affecting the output of such systems. Model-based approaches alone are inadequate
to effectively diagnose rare or new system issues, as they inherently do not model abnormal
behavior. To efficiently, yet reliably, reduce the search space of potential causes, we consider
both local and global causal influences of a complex system’s components, as measured
by Schreiber’s transfer entropy [1] and Bonacich’s eigenvector centrality [2], respectively.
Transfer entropy quantifies predictive information transfer as a potential signature of
causality between two stationary time series, providing direction, strength and delay of
linear or non-linear interactions. For time series with a Gaussian distribution, transfer
entropy reduces to Granger causality [3]. However, being a bivariate measure, transfer
entropy naturally disregards the multivariate nature of interactions in complex systems.
Therefore, multivariate approaches use conditional transfer entropy [4] to separate true
cause—effect relations from mere correlations, i.e., direct from so-called transitive indirect
or semi-metric, and thus redundant relations, by iteratively conditioning out (subsets of)
all other time series. Unfortunately, such an information decomposition is infeasible in
(real time) diagnosis or prognosis of high-dimensional technological complex systems, due
to its exponential scaling of computational costs with time-series dimension. Instead, we
use a ranking algorithm that relies on standard transfer entropy in exhaustive, but compu-
tationally feasible bivariate interaction analysis of a complex system’s multivariate time
series, resulting in an information transfer network that is likely to contain redundant
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edges. However, Benzi et al. [5] show that eigenvector centrality represents the upper
limit of Katz centrality [6], where the global influence of nodes is essentially determined
by the longest possible paths in the network, which implies its insensitivity to shortest
paths, including transitive indirect or semi-metric, and thus redundant edges. In addition,
empirical studies by Kalavri et al. [7] revealed that PageRank (or eigenvector centrality)
yields similar rankings when computed with, or without, a graph’s (first-order) semi-metric
edges. For diagnostic purposes as envisioned, we suffice to apply standard transfer entropy
for approximative network inference of a complex system'’s true causal structure and then
use graph eigenvector centrality for computationally efficient, yet consistently accurate
ranking of probable causes or key drivers of the system under disturbance.

This study relates most closely to the work of Streicher et al. [8], who implemented
this approach into a two-step ranking algorithm for (chemical) plant-wide fault detection
and diagnosis.

In this paper, we introduce the measures of transfer entropy and eigenvector centrality
and describe the ranking algorithm as used. In rolling window analysis of a simulated
time series representing two bidirectionally coupled Lorenz systems, we compare its causal
network inference results to those of a constraint-based algorithm for multivariate causal
analysis. The rolling analysis approach also allows the ranking algorithm to estimate the
global influence of each state variable as exerted on the coupled Lorenz systems over time.
Finally, we assess the ranking algorithm in diagnosing a real-world industrial system issue,
using a higher-dimensional time series.

2. Applied Algorithms and Methods
2.1. Transfer Entropy

Transfer entropy (TE) is an information-theoretic implementation of Wiener’s notion
of causality applied to time series [9], whereby the cause precedes—and contains unique
information about—the effect. Consider two stationary ergodic Markov processes X and
Y (or X® and XU) as below) and their corresponding time series {x1,xy,...,x)p} and
{y1,y2, .-, ym} of M samples. Transfer entropy quantifies reduction in uncertainty about
future states of a source process X, when passed states of a target process Y are observed
in addition to passed states of X itself. As an asymmetric measure based on transition
probabilities, transfer entropy naturally incorporates directional and dynamic information,
which may imply causation between X and Y:

N (k)
k p(yely,—y, %)
TEg(—ZY(t/ T) = Z P(]/t, ]/E )1, x§ )T) logb #ﬂ)t
yfrygi)lrxgli)T p(yt‘yt,l)

M

where x; and y; represent states of X and Y at time ¢, while TE;?i)Y(t,T) indicates maxi-

mized information transfer from X to Y, Computed across a range D = {O 1,2, ..., Tmax } Of

embedding delays 7, such that max{TEXHY( )} = TEgH)Y(t argmax{TEXHY( 7)}). The

embedding dimensions k and ! denote the number of passed states in X and Y used

to condition the probabilities of transition to the next state of Y (or X) represented by

k )
x§ )T {xt7T7k+1/xt7T7k+2/'"/ xf—T} and yg_)] = {}/t7171+1/]/t—171+2/-~-/]/t71}- The loga_

rithm base b = 2 defines the informational unit of transfer entropy in bits, i.e., reduction
in average code-length required to optimally encode the target variable (effect), given
passed states of the source variable (cause) and target variable. Herein, we keep the em-
bedding dimensions at the commonly used k = | = 1, mostly for computational reasons.
For every pair (X(), X()) from a multivariate time series {X(1), X(2), .., X(N)}, we apply
Equation (1) to estimate information transfer TE and thereby determine the candidate
source times series X(4) and target time series X(,). We then generate 1/(a = 0.05) — 1

surrogates {X;%), Xl(‘(iz)), veer Xl(‘(il)g) }, which share their amplitude distribution and power
spectrum with original time series X 4), using the iterative amplitude adjusted Fourier
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transform (iAAFT) proposed by Schreiber et al. [10]. Following this study, we estimate
information transfer TE from each surrogate to (original) target time series X,y and obtain

{TE;, . TE/lg}. If TE > max{TE’l, . TEllg}, information transfer TE is considered to be
significant or non-significant otherwise. The resultant information transfer network, given
by a directed weighted graph G = (V,E), comprises a set V = {v;}}¥, of N nodes and
E = {eij = (v;, v]-)} of edges. Each edge ¢;; connects a source node v; to target node v; with
strength wij, i.e., information transfer TE.

2.2. Eigenvector Centrality

To diagnose performance issues or even failures within technological complex systems,
we wish to locate where perturbations enter the system and propagate, causing downstream
effects throughout the system. Therefore, we consider an information transfer network
wherein the (main) sources of original information can be identified by measurement and
ranking of each node’s global network influence termed centrality or importance. Centrality,
the basic principle of Google’s search engine [11], has proven useful to measure and rank a
page’s relevance based on its inbound links. Here, we use out-degree eigenvector centrality,
which defines the centrality c(v;) of a node v; € V = {vy,..,v,} as proportional to the
summed centralities of its outbound neighbors:

N
c(v;) = A" Zi Wijc(v;), or We = Ac ?)
]:

where A1 is a proportionality factor and c is the eigenvector of centralities associated
with eigenvalue A of adjacency matrix W, whose entries w;; denote information transfer
from node v; to node v; in graph G. If W is non-negative and irreducible, the Perron-
Frobenius theorem [12,13] ensures there is a unique vector ¢; of N centralities ¢; (v;) >
0,V v; associated with the largest positive eigenvalue Ay = p(W) or spectral radius of
W, satisfying Equation (2). Usually c¢; is normalized, such that each entry indicates the
centrality or importance of a node v; in graph G on a relative scale from 0 to 1. Alternatively,
matrix W is normalized to a transition matrix P, whose entries p;; denote probabilities of
transition from node v; to node v; in a random walk on graph G or Markov chain while

YN, pij = 1, such that:

by = wij/ iji1 wij, if Z}il w;; # 0 5
! 0, otherwise

Following Google’s PageRank approach [14], we modify matrix P by adding a tele-
portation probability v € (0,1) and an all-ones matrix | to obtain an N x N, irreducible,
positive matrix P

P=P+ L(1-7)] @

where a random walker at node v; follows an edge with probability 7 or jumps to any
other node in the N-nodes network with probability (1 — 7). Herein, we use PageR-
ank’s typical value of v = 0.85. Considering the Markov chain associated with matrix
P;, the Perron-Frobenius theorem ensures an unique stationary probability distribution
that matches the eigenvector 771 of P; associated with eigenvalue A4 (P“lr) =1, such that
T = P’Wﬁl. Eigenvector 77 is usually computed via power iteration [15] in k steps:

!
1 = lim 7% = klim Pv(k) 70, where 7(9) denotes an initial distribution.
— 00
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We use the FaultMap algorithm (https:/ /github.com/SimonStreicher/FaultMap, ac-
cessed on 20 May 2015) from Streicher [8], which, to our knowledge, is the only open-source
implementation of the method as described above and summarized in the pseudo-code of
Algorithm 1, as shown below.

Algorithm 1 FaultMap.
Information Transfer Network Inference
1: Input: N- dimensional time series {X M, x@), .., x\N )}, of M samples from system

X represented by: x() = {x 1(\/1)} € RM, statistical significance threshold &
in, e.g., a rank- order test using 1AAFT surrogates, embedding delay range Tjux and
embedding history lengths k and [ for time series i and time series j(# 7)

2. Output: adjacency matrix W e RN*N, where entry (i, j) represents information transfer
from node i to node j

3: fori < 1to N do

4: forj< 1toN,j #ido

5: for T < 0 to Ty, do

6: compute TE; ,;(k, 1, T) by Equation (1)

7: if TE;,; =0<J < max {Equation(1)} then
0<T< Tinax

8: Wij — TEiﬁj

9: else

10: Wi]' 0

11: end if

12: end for

13: end for

14: end for

Spectral Centrality Ranking
1: Input: matrix P; = 7P+ (1 — 7)] where 7 € (0, 1], ranking distance €
2: Output: node centrality score vector 7y
3: initialize 71(0) with probabilities [(1/N,1/N, ..., 1/N)]
4: while |71 — 70| > ¢ do
5 compute eigenvector k1) of matrix P; associated
with eigenvalue A4 (P“/r) =1, such that 1; = P:r s
6: end while

2.3. Validation

In what follows, we assess the method’s accuracy in causal inference and node ranking
using simulated time series, followed by root cause analysis from real-world diagnostic
data. Firstly, we consider a system S ) of two bidirectionally coupled Lorenz systems
L and Ly, investigated by Wibral et al. [16] and given by:

Xq(t) =10.0(Y1(t) — X1 (1)) (5a)
Y1(t) = X1 (£)(25.0 — Z1(t)) — Y1 (t) +0.1Y2(t — 3) (5b)
Zy(t) = X1 (Y1 (t) — 2.67Z4(t) (5¢)
Xp(t) =10.0(Y2(t) — Xa(t)) (5d)
Ya(t) = Xo(t)(28.0 — Zy(t)) — Ya(t) + 0.05Y2(t — 5) (5€)
Zy(t) = Xa(t)Ya(t) —2.67Z5(t) (56)

The bidirectional coupling Y; =2 Y, is governed by time-delayed quadratic terms. We used
Pydelay [17] to generate a multivariate time series {Xj, X2, Y1, Y2, Z1, Z>} of 150K samples by
numerically integrating Equations (5a)—(5f) with step size dt = 0.01 and initial conditions
X1(0) = X2(0) = 1.0, Y1(0) = Y2(0) = 0.97 and Z;(0) = Z»(0) = 0.99. To assess FaultMap’s
accuracy in causal network reconstruction against other model-free approaches, we use
PCMCI (v4.0) from Runge [18] as a distinct, constraint-based, multivariate alternative.


https://github.com/SimonStreicher/FaultMap
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FaultMap estimates edge-weight w;; as ATE(t) = TEy)_, x() (T) — TEx()_ x() (T) using
the Kraskov-5togbauer-Grassberger estimator for transfer entropy in the Java Information
Dynamics Toolkit from Lizier [19]. PCMCI performs condition selection at an optimized
significance level a using Akaike’s information criterion, followed by a conditional indepen-
dence test where we use the linear ParCorr test (at « = 0.05) instead of the computationally
expensive nonlinear CMI test. Following the recommended sample size of Bauer [20], we
use a rolling analysis window W; of 2K samples to define 50 adjacent time series slices for
causal network reconstruction of the coupled Lorenz systems by both algorithms and node
importance ranking by FaultMap only.

3. Results and Discussion
3.1. Coupled Lorenz Systems

Figure 1 depicts the rolling window analysis approach, the butterfly-shaped attractors
of the coupled Lorenz systems in phase space (x,y,z) and cause—effect detection count
heatmaps for both algorithms. Figure 2 exemplifies FaultMap’s rolling window analysis
results of which Figure 3 specifically reports information transfer (delay) via coupling
Y7 2 Y, and global influence of X-, Y- and Z-variables on the coupled Lorenz systems.
The heatmaps in Figure 1b show the total count of each cause—effect relation detected by
FaultMap or PCMCI over 50 adjacent time series slices. Firstly, PCMCI’s linear ParCorr
test detected nonlinear coupling Y; =2 Y, remarkably well, with a rate of 85% vs. 89%
by FaultMap and achieved a notably higher detection rate (95%) of (direct) causal links
throughout the coupled Lorenz systems than FaultMap (83%). ParCorr’s sensitivity to
nonlinear interactions has been previously discussed by Krich et al. [21]. PCMCI’s higher
detection rate of direct links compared to FaultMap is mainly due to its 100% detection
rate of self-influence at each system state variable, whereas FaultMap only reached a
100% detection rate of self-influence at the coupled system state variables Y1 and Y,. We
could not find an obvious explanation for the algorithms” differing detection rates of
self-influence (see the heatmaps’ diagonal), but may argue that self-influence as subset
of the previously defined edge-set E, or formally {e;; = (v;,v;)} C E, is irrelevant in the
context of Equation (2). Lastly, note that unlike what we would expect from its multivariate
causal network reconstruction designed to distinguish direct from indirect effects, PCMCI
detected 23% more transitive indirect links than FaultMap.

Due to the transitivity of bivariate information transfer, most (if not all) networks
inferred by FaultMap include direct and indirect connections, all of which passed strict
significance tests, as Y1 — Y, — Z; and Y7 --» Z; shown in Figure 2. The coupled Lorenz
systems are easily discernible by two subnetworks (Xi,Y1,Z;) and (X3, Ys, Z;) that ex-
hibit distinct levels of information transfer with similar time delays in the range of mil-
liseconds. At a rate of at least 98%, FaultMap detected the same edges X = Y, Y — X,
X — Zand Y — Z indicating (normalized) net influence within both Lorenz subsystems,
as Gencaga et al. [22] found for a single Lorenz system. PCMCI shows similar detection
results for these edges (see heatmaps). It is important to note that the rolling window
approach took PCMCI 495 min of runtime on a 24-core HPC node with 192 Gb for causal
analysis vs. 58 min by FaultMap for a two-step causal analysis and node ranking. PCMCI’s
considerably higher computational costs compared to FaultMap obviously limit its applica-
bility for the diagnostic purposes considered above.
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(b) Cause-effect detection count over 50 adjacent time series slices.

Figure 1. (a) Time series of system S(; —;,) composed of bidirectionally delay-coupled Lorenz
systems L; and Ly, generated from Equations (5a)—(5f). (b) Heatmaps of detection count per cause—
effect relation, for FaultMap (left) and PCMCI (right). Direct cause—effect relations are denoted

by (*).
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Figure 3. Dynamic information transfer via bidirectional delay-coupling Y; = Y; of Lorenz systems
L; and L, and dynamic importance of the Lorenz system state variables. (a) Dynamic informa-
tion transfer (delay) via bidirectional delay-coupling Y1 = Y, between Lorenz systems L; and L.
(b) Distribution of information transfer (delay) in 3a. (¢) Dynamic importance of state variables in
delay-coupled Lorenz systems Lq and L. (d) Distributions of Lorenz system state variable importance
in 3c.

In Figure 3a,b, we focus on reconstruction of time delays in coupling Y1 <= Y2, given
the modeled delays in Equations (5b) and (5e). Figure 3a reveals the dynamic nature of
bidirectional information transfer in terms of strength and delay. The median difference
(=0.05) of information transfer distributions in Figure 3b suggests that Lorenz system L,
predominantly drives L, which is reasonable to expect since the coupling strength (0.1) in
Equation (5b) is twice the coupling strength (0.05) in Equation (5e). Given coupling delays
of 3 and 5 s, the distribution of reconstructed interaction delays seems realistic but may be
impacted by lag synchronisation of the Lorenz systems, as suggested by Coufal et al. [23].
Figure 3c shows highly dynamic global influence of particularly X- and Y-variables, while
the Y-variables remain the driving force within their respective Lorenz subsystem at all
times. Grey-colored bars highlight time windows in which L; is identified as driving,
and L as driven subsystem. Since the coupling strengths are constant, Y7 — Y; is likely to
dominate Y, — Y7 in strength when the Y; state reaches vanishingly low values relative to
the Y; state. The median difference across all node importance distributions in Figure 3d
reflects the aforementioned drive-response relations in, and between, the interacting Lorenz
systems. It might explain FaultMap’s 100% detection rate of Y-variable self-loops vs. lower
rates of all other self-loops. The outcome of both Y-variables as Lorenz system key driver
complies with the Lorenz model of Rayleigh-Bénard convection [24], where temperature
difference drives convective heat transfer in addition to conduction at Rayleigh number
Ra > 25 (see Equations (5b) and (5¢)). To our knowledge, this is the first rolling window
analysis to date, capturing the dynamics of time-varying information transfer or global
influence (importance) of state variables within interacting Lorenz systems. Our findings
may enable automated identification of monitoring observables for performance (anomaly)
diagnostics or predictive maintenance within technological complex systems. The ability
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to capture time-varying importance of a complex system’s state variables is also relevant in
time-series analysis of natural complex systems, including the Earth’s climate.

3.2. Technological Complex Systems

Nanolithography systems are among the most complex technological systems today,
capable of sub-nanometer positioning and sub-milliKelvin temperature control, even as
system modules accelerate at up to 15 Gs. Such systems are particularly challenging
for model-based diagnosis of rare or new issues, due to nonlinear interactions across
multiple time and spatial scales. To assess FaultMap’s potential in diagnosis of issues
within such systems, we investigate temperature, flow and pressure instability within
an ASML subsystem. Therefore, we use a multivariate time series of 315 binary samples
from 366 parameters related to the problem. As shown in Figure 4, FaultMap identified
parameter Py as a primary source of original information, i.e., most probable cause leading
to event Py, through a network of collateral effects { Py, ..., P }. The indicated root cause
is confirmed to be correct by a series of automatically logged system events as well as
service actions. Interestingly, the event log messages Pjg and P,3 follow the network’s
direction of time i.e., from cause to effect (causal inference), while the logged service actions
related to P; and P»3 follow the reversed time order, i.e., from effect to cause (diagnostic
inference). Hence, the last logged service action P; appears as a direct effect of root cause
Py in the network. This observation is promising, with regard to the automation of reliable
data-driven diagnostics for technological complex systems.

[ Jj high x. <Description 1> system event log
<Message 1> 06/18/2017 04:10:18. <ps>
4_11 0 41'0‘ <Message 2> 06/18/2017 04:14:18. <ps>
@ <sensor = Ppj is out of range> 06/18/2017 04:14:27. <ps>
<sensor = Pjg is out of range> 06/18/2017 04:14:32. <ps>
5000 120 250 <Message 5> aeeeeeeses eaeeeeaieeeaes
< <Message 6> s i
o \
@ 38:0—— (P1a
low *. <Description 1> service logbook
® 100 5%0 43.0 240 230 e e
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&
\Z

Figure 4. Top-ranked node P (root cause) transfers original information towards event Pyy via a
network of collateral effects {Py, ..., Py } within an ASML subsystem. (Figure 2 legend applies here.)

4. Conclusions

To fully understand a complex system’s dynamical behavior, it is essential to identify
its main sources of causal influence affecting downstream elements throughout the system.
We empirically show that spectral centrality analysis of its causal network as approximated
by standard transfer entropy allows one to accurately and consistently identify the most im-
portant node(s) of original information representing the most probable cause(s) or driver(s)
of disturbance in the system. The ranking algorithm we use compares favorably against
the alternative algorithm for multivariate information transfer estimation in causal analysis
of two nonlinearly coupled Lorenz systems. In addition, it shows to be accurate, consistent
and efficient, identifying the alternately driving and driven Lorenz subsystems, as well
as the driving force within either subsystem, over time. Finally, the ranking algorithm
correctly traces back the original disturbance within a high-dimensional technological
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complex system from sampled time series of several hundreds of parameters. Considering
the high-dimensionality of observations across multiple time and spatial scales from such
systems, we conclude that the inherent robustness of spectral centrality to semi-metricity
of directed networks makes it a viable option for reliable and scalable diagnostics. Addi-
tionally, spectral centrality ranking allows for feature selection and is particularly useful in
identifying long-term effects.

Regardless of the computational costs, state-of-the-art multivariate causal inference
methods may be the better choice to account and control for unobserved variables or
capture synergistic interactions. However, comprehensive comparison of our method
with these approaches is beyond the scope of this study and therefore recommended for
future research.
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