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Abstract: This paper proposes a new generative adversarial network for infrared and visible image
fusion based on semantic segmentation (SSGAN), which can consider not only the low-level features
of infrared and visible images, but also the high-level semantic information. Source images can be
divided into foregrounds and backgrounds by semantic masks. The generator with a dual-encoder-
single-decoder framework is used to extract the feature of foregrounds and backgrounds by different
encoder paths. Moreover, the discriminator’s input image is designed based on semantic segmenta-
tion, which is obtained by combining the foregrounds of the infrared images with the backgrounds
of the visible images. Consequently, the prominence of thermal targets in the infrared images and
texture details in the visible images can be preserved in the fused images simultaneously. Qualitative
and quantitative experiments on publicly available datasets demonstrate that the proposed approach
can significantly outperform the state-of-the-art methods.

Keywords: image fusion; semantic segmentation; generative adversarial network; infrared image;
visible image

1. Introduction

Image fusion is a significant technology to enhance images, aiming to synthesize
images by integrating complementary information from several source images captured
by different sensors [1,2]. It has been applied in many fields, including computer vision,
medical image processing, and remote sensing [3]. Especially for object detection or
tracking tasks, infrared and visible image fusion can highlight the object and offer more
details. Infrared images can retain thermal radiation; thus, the thermal targets can be
distinguished from their backgrounds based on thermal radiation differences, even in
poor lighting conditions. Relatively, reflected light captured by visible light sensors could
be represented in visible images; hence, visible images can provide texture details with
high spatial resolution and definition, in a manner consistent with the human visual
system [4,5]. Therefore, fused images can simultaneously preserve the texture details of
visible images and the contrast of infrared images, benefiting subsequent tasks [6–8].

Over the past few years, increasingly, infrared and visible image fusion methods
have been proposed. The methods can be classified as multi-scale transform-, sparse
representation-, neural network-, subspace-, saliency-, and deep learning-based methods
and hybrid methods. The existing fusion methods have three key points: image transfor-
mation, activity level measurement, and fusion rule designing. Based on these three points,
a large number of successful fusion methods have emerged.

Although existing fusion methods can achieve good results, several aspects can be
improved. First, artificial rule designing makes the hand-crafted methods more and
more complex and time consuming [9]. Second, GAN-based infrared and visible image
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fusion lack a ground-truth; thus, it is difficult to design a comprehensive input for the
discriminator to specify high-level tasks. There are two existing solutions to this problem,
either taking visible images as references or learning a generative model via the dual-
discriminator using both infrared and visible images as the input [10,11]. However, The
first solution leads to thermal prominence, gradually reducing as the adversarial game
proceeds. The dual-discriminator leads to a more complex network, and it is hard to keep
the balance between the generator and dual-discriminator. Third, existing methods ignore
the high-level semantic information of the source images. They carry a unified method
to extract features from the source images, while source images are manifestations from
the different aspects in different semantic regions. Therefore, their fusion results either
partially lose the texture details of the visible image or the contrast of the infrared image. It
is difficult for the whole image to retain the thermal radiation information of the infrared
image and the texture details of the visible image at the same time.

To address these challenges, a generative adversarial network is proposed for infrared
and visible image fusion based on semantic segmentation (SSGAN). Firstly, the proposed
method is a deep learning-based method without artificial rule designing, which is an end-
to-end fusion network with high efficiency. Secondly, the semantic information of the source
image is taken into account. The source images are divided into the foregrounds and the
backgrounds by utilizing the masks obtained by semantic segmentation. The foregrounds
represent the salient semantic object, while the backgrounds represent the target with finer
texture details. Thirdly, the generator is divided into the foreground- and the background-
path to extract the corresponding information in source images, respectively. Finally, to
overcome the lack of a ground-truth, the input images of the discriminator are designed
by combining the foregrounds of the infrared images with the backgrounds of the visible
images. This can promote the fusion images to preserve more texture details and the
thermal radiation information concurrently. Qualitative and quantitative results reveal the
advantages of the proposed SSGAN compared to other methods.

The contributions of the current work include the following aspects:
First of all, in order to extract the features of source images better, semantic segmenta-

tion is introduced into fusion tasks to divide the source images into the foregrounds and
backgrounds. It is convenient to adopt a more targeted feature extraction strategy for the
foregrounds and backgrounds.

Secondly, to extract various semantic information, a generator is designed with a dual-
encoder-single-decoder model, encoding the corresponding features for different semantic
regions by the dual-encoder and fusing different semantic features by the decoder.

Then, the image obtained by combining the foregrounds of the infrared images with
the backgrounds of the visible ones is applied as the reference data to make the fused
images retain abundant information.

Finally, in order to get the semantic information, the infrared and visible image fusion
dataset is annotated, including 60 typical infrared and visible image pairs with labeled
images. The dataset is available at https://github.com/Jilei-Hou/FusionDataset, accessed
on 20 March 2021.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
research on infrared and visible image fusion, semantic segmentation, and generative
adversarial networks. In Section 3, we describe the problem formulation, loss function,
and network architecture of the proposed SSGAN. In Section 4, the proposed SSGAN is
demonstrated for fusion on publicly available datasets (TNOand INO) with comparisons
to five state-of-the-art approaches, followed by some concluding remarks in Section 5.

2. Related Work

In this section, the infrared and visible image fusion approaches, the recent research
work related to semantic segmentation, as well as GANs and their variants are reviewed.

https://github.com/Jilei-Hou/FusionDataset
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2.1. Infrared and Visible Image Fusion

Numerous infrared and visible image fusion methods have been proposed in re-
cent years, which can be divided into seven categories, including multi-scale transform-
based methods, sparse representation-based methods, neural network-based methods,
subspace-based methods, saliency-based methods, deep learning-based methods, and
hybrid methods.

Multi-scale transform-based methods [12,13] are the most familiar methods of infrared
and visible image fusion, which are devoted to decomposing source images into several
different scales, then fusing their different scales based on certain particular fusion rules.
Finally, a final target fused image can be obtained according to corresponding inverse
multi-scale transforms on the fused representations. The wavelet transform [14] is a typical
multi-scale transform-based fusion method. Although it has achieved great success in
infrared and visible image fusion, with the passage of time, some researchers have proposed
more reliable fusion methods based on it. DTCWT [15] introduces a region-based fusion
method to the dual-tree complex wavelet transform, which can generate fusion images
with more thermal radiation information.

Sparse representation-based methods [16,17] have been successful used in infrared
and visible image fusion, which can be divided into four steps. First, each source image is
decomposed into several overlapping patches using a sliding window strategy. Second, an
over-complete dictionary is learned from many high-quality natural images. According to
the over-complete dictionary, the sparse representation coefficients are obtained by sparse
coding for each patch. Third, the sparse representation coefficients are fused according
to a given fusion rule. Finally, the learned over-complete dictionary and fused sparse
representation coefficients are used to reconstruct the final fused image. The key of this
method is to obtain the over complete dictionary. Wang et al. [18] classified image patches
from source images into different groups based on morphological similarities to obtain
sufficient information for sparse representation in dictionary construction.

Neural network-based methods have been popular ways of performing image fusion
tasks over the past few years [19], due to the strong adaptability, fault tolerance, and anti-
noise ability of neural networks. Kong et al. [20] presented a novel infrared and visible
image fusion method based on a non-subsampled shearlet transform-spatial frequency-
pulse coupled neural network, which can efficiently generate fused images with subjective
visual performance.

Subspace-based methods [21,22] aim to project high-dimensional input images into a
low-dimensional space or subspace, which helps to capture the intrinsic structure of the
original images and remove the redundant information of natural images.

Saliency-based methods [23,24] imitate the feature of the human visual system, which
is easily attracted to prominent objects, and improve the visual effect of fused images by
preserving the integrity of salient objects. Zhang et al. [25] utilized salient target areas of
an infrared image to determine the fusion weights, which can ensure that the fusion results
have more significant thermal radiation targets.

Recently, since the rise of deep learning, a large number of deep learning-based fusion
methods have been proposed [26,27]. Li et al. [28] decomposed infrared and visible images
into base parts and detail content. Then, they fused the detail content by a deep learning
network and fused the base parts in the traditional way, and finally, reconstructed the fused
image. However, the entire fusion process is still like the traditional framework and not
end-to-end. Later, they improved the entire fusion process by a deep learning framework
with a dense block, named DenseFuse [29].

The above-mentioned infrared and visible image fusion methods all have their ad-
vantages and disadvantages. Hybrid methods [30–32] can combine their advantages to
improve image fusion performance.
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2.2. Semantic Segmentation

Semantic segmentation is a typical topic in computer vision that involves taking raw
data (e.g., planar images) as the input and converting them into masks with highlighted
areas of interest. Unlike other topics that only focus on the edge, semantic segmentation
fully provides pixel-level image understanding in a human-perceived way by bringing
together parts of an image that belong to the same target. Compared to other image-
based tasks, semantic segmentation involves high-level cognition, which achieves the
identification of the content and the corresponding location in the image.

Long et al. [33] proposed fully convolutional networks (FCNs), which replace the last
fully connected output layer with a transposed convolution layer to obtain the prediction
of each input pixel. UNet, proposed by Olaf et al. [34], is a typical encoder/decoder
architecture that is a common network structure in semantic segmentation. The encoder
uses a pooling layer to reduce the spatial dimension of input data gradually. Simultaneously,
the decoder gradually recovers the target details and corresponding spatial dimensions
through the deconvolution layer. There is usually a direct information connection between
the encoder and decoder to better help the decoder recover its target details. Alex et al. [35]
presented a deep learning framework for semantic segmentation named SegNet, the same
as UNet, which has a typical encoder/decoder structure. To solve the problem of location
information loss caused by multiple pooling, SegNet uses pooling with the index in max
pooling, selects the maximum pixel, and records the pixel position in the feature map. In
the anti-pooling process, the maximum value is restored to the original corresponding
position according to the recorded coordinates, and zero padding for other positions.
Google proposed a series of deeplab versions, which is a model used to deal with semantic
segmentation. The latest version deeplabv3+ carries a deeper network, and all convolution
layers and pooling layers are replaced by depthwise separable convolution [36]. Semantic
segmentation has been successfully applied in other fields, especially image-to-image
translation [37] and image alignment [38], but there is no application in fusion tasks. To the
best of our knowledge, the current work is the first time that semantic segmentation has
been introduced for addressing the image fusion task.

2.3. Generative Adversarial Networks

Goodfellow et al. [39] first proposed the concept of GAN, which has achieved im-
pressive results in many fields, especially in image generation. The main inspiration of
GAN comes from the idea of a zero-sum game in game theory. The GAN framework
consists of two adversarial models: a generative model G and a discriminative model
D. The generator can generate realistic images from random noise. The discriminator is
trained to distinguish the generated data from the real data. It can make the generator
learn the data distribution through a continuous game between the generative model G
and discriminative model D. Compared with the traditional model, it has two different
networks, not a single network, and the training method is adversarial training. The
gradient update information of G in GAN comes from the discriminator D, not from data
samples. The adversarial training between the generator and discriminator is continued
until the discriminator cannot distinguish the generated samples. Subsequently, a relatively
more realistic image sample can be produced by the generator.

The success that the original GAN has achieved is limited due to the unstable training
process. To solve this problem, CGAN [40] extended GAN to a conditional model, where
the generator and discriminator are conditioned on some extra information. DCGAN[41]
slightly adjusts the network structure and uses the transposed convolution operation to
generate clearer and more colorful images. InfoGAN [42] can learn more interpretable
representations. WGAN[43] modifies the objective function of GANs to make the training
process more stable.

GANs have achieved satisfactory results in infrared and visible image fusion. Fu-
sionGAN [10], proposed by Ma et al., was the first attempt to apply GANs to infrared
and visible image fusion. It forces the fused image to obtain more texture details by intro-



Entropy 2021, 23, 376 5 of 18

ducing a discriminator with the visible image as real data. Subsequently, its variant [44]
was proposed by introducing the target-enhancement loss to enhance the edge details of
the fused image. However, as the adversarial game proceeds, the thermal prominence
is gradually reduced. To address the problems, Ma et al. [11] introduced a GAN with
a dual-discriminator using the infrared and visible image as input. The current work
introduces a GAN based on semantic segmentation that extends the semantic-based image
generation method to fusion tasks.

3. The Proposed Method

In this section, the proposed SSGAN for infrared and visible image fusion is presented.
We begin with a formulation of the infrared and visible image fusion problem as image
generation with GAN, and then, the loss function is discussed. Finally, the network
architectures of the generator and the discriminator are described.

3.1. Problem Formulation

Infrared images can distinguish targets from their backgrounds due to the difference
in thermal radiation even in poor lighting conditions. Visible images can represent texture
details with a high spatial resolution. Meanwhile, both preserve the corresponding semantic
information. Therefore, infrared and visible image fusion should keep both the radiation
information of the infrared images and the texture details of the visible images. The
fused images also need to reserve the high-level semantic information of both source
images. Additionally, for different semantic targets, the information that fusion images
want to retain from infrared and visible images is different. Specifically, the semantic object
with thermal radiation information in infrared images takes precedence over the object’s
information in visible images. In contrast, the semantic object with texture details in visible
images takes precedence over the object’s information in infrared images.

In order to take semantic information into account in the fusion task, this paper
proposes a generative adversarial network based on semantic segmentation, named SSGAN.
According to the difference of thermal radiation information and texture details, each source
image can be divided into a foreground and a background by the mask. The foreground
is mainly composed of semantic targets that contain rich thermal radiation information
in the infrared image, such as a person and a car. The background is mainly made up of
semantic objects with rich texture details in the visible image. The proposed SSGAN can
use different feature extraction methods for the foreground and background to better retain
the information of the source image. The procedure of the proposed SSGAN is shown in
Figure 1.

Ir

Im

Iv

Id

If

Training Process

Ir Im Iv

If

Testing Process

Generator

Discriminator

Ir Im Iv

If

Testing Process

Generator

Figure 1. The entire procedure of semantic segmentation GAN (SSGAN) for image fusion. Ir, Im, Iv,
and I f denote the infrared image, mask, visible image, and fused image, respectively. Id is used as
the reference data to input into the discriminator, and its generation process is described later.
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In the beginning, the mask with the infrared image’s semantic information is obtained
by deeplabv3+, which is a successful model used for semantic segmentation. Then, we take
the infrared image Ir, mask Im, and visible image Iv as the input of the generator G, whose
output is a fused image I f . However, It is hard to generate an informative fused image
only by the generator. Thus, the discriminator D is employed to establish an adversarial
game with the generator. Specifically, the generator aims to generate an image that can
fool the discriminator. The discriminator is committed to distinguishing the generated
image from the real image. As the adversarial game proceeds, a better fusion image can be
generated by the generator. Moreover, in order to make the discriminator work better, we
redesign the discriminator’s input based on semantic segmentation. This is obtained by
blending the foreground of the infrared image and the background of the visible image.
The production process of the real image Id can be formulated as in Equation (1).

Id = Im ◦ Ir + (1− Im) ◦ Iv, (1)

where Ir, Im, and Iv represent the infrared image, mask, and visible image, respectively. ◦
means the Hadamard operator.

The ultimate goal of SSGAN is to learn a generator network G conditioned on a visible
image Iv and an infrared image Ir. The fused image I f , generated by the generator G, is
encouraged to be realistic and informative enough to fool the discriminator. By establishing
an adversarial game between the generator G and discriminator D, the fused image I f will
gradually contain more and more thermal radiation information of infrared image Ir and
the texture details of visible image Iv. Mathematically, the adversarial game between the
generator G and discriminator D can be formulated as in Equation (2).

min
G

max
D

E[logD(Id)] +E[log(1− D(I f ))], (2)

where Id denotes the reference image that we want the generated image to be close to
and D(Id) denotes the classification results of the image Id. I f denotes the fused image
generated by the generator, and D(I f ) represents the classification results of generated
data I f . Through the adversarial process of the generator and discriminator, the divergence
between the distribution of Id and I f will become smaller.

3.2. Loss Function

Due to the instability of the training process, the original GAN’s success was limited
only by the game between the generator and discriminator. To alleviate this shortcoming,
this paper introduces content loss Lcon, which is tasked to constrain the similarity between
the fused image and source images in the content. Moreover, structural similarity loss
is adopted to ensure the structural similarity between the generated image and source
images. Thus, the loss function of the generator G consists of three parts: adversarial loss
Ladv, content loss Lcon, and structural similarity loss LSSIM. The whole loss function can
be defined as in Equation (3).

LG = λadvLadv + λconLcon + λSSIMLSSIM, (3)

where LG denotes the total loss of the generator G, λadv, λcon, and λSSIM are used to control
the trade-off, and the first item Ladv means the typical adversarial loss between generator
G and discriminator D, which is defined as in Equation (4).

Ladv =
1
N

N

∑
n=1

(D(In
f )− a)2, (4)

where N denotes the number of fused image patches, In
f the n-th fused image patch, and a

the value of whether the generator can fool the discriminator.
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The second item Lcon represents the content loss. Each source image can be decom-
posed into thermal radiation information and the texture details in the infrared and visible
image fusion task. Its pixel intensities characterize thermal radiation information, while its
gradients can characterize texture details. Thus, we can gain an informative fused image by
enforcing the fused image I f to have similar intensities and gradients to the source images.
In a word, the content loss Lcon can be defined as in Equation (5).

Lcon =
1

HW
(µ1‖I f − Ir‖2

2 + µ2‖∇I f −∇Ir‖2
2

+ µ3‖I f − Iv‖2
2 + µ4‖∇I f −∇Iv‖2

2),
(5)

where H and W represent the height and width of the source images, respectively. ‖ · ‖2
stands for the two-norm, and ∇means the gradient operator. The first two terms of Lcon
aim to keep the thermal radiation information and texture details of infrared image Ir. the
last two terms of Lcon aim to preserve the thermal radiation information and texture details
contained in the visible image Iv. µ1, µ2, µ3, and µ4 control the trade-off.

It is worth noting that the texture details of visible images and the thermal radiation
information of infrared images should be mainly preserved in the fused results, while the
thermal radiation information of visible images and the texture detail of infrared images
are of secondary importance. Therefore, µ1 > µ3, µ2 < µ4.

The last term LSSIM denotes the structural similarity loss of LG, which can enforce the
generated image and source images to have a similar structure. LSSIM can be formulated
as in Equation (6).

LSSIM = (1− SSIMI f ,Ir ) + η(1− SSIMI f ,Iv), (6)

where SSIM(·) denotes the structural similarity operation. It can be used to measure the
structural similarity of two images, which models the loss and distortion according to the
similarities in light, contrast, and structure information. η is used to control the trade-off.
Mathematically, SSIM between images x and y can be defined as in Equation (7) [45].

SSIMx,y = ∑
xi ,yi

2µxi µyi + C1

µ2
xi
+ µ2

yi
+ C1

·
2σxi σyi + C2

σ2
xi
+ σ2

yi
+ C2

·
σxiyi + C3

σxi σyi + C3
, (7)

where µ denotes the mean value, σ represents the standard deviation/covariance, and C1,
C2, and C3 are the parameters to make the metric stable.

To maintain the game between the generator G and the discriminator D, the discrimi-
nator is essential for distinguishing the real data and the generated data, the loss function
of discriminator LD is defined as in Equation (8).

LD =
1
N

N

∑
n=1

(D(Id)− b)2 +
1
N

N

∑
n=1

(D(I f )− c)2, (8)

where b and c denote the value for whether the discriminator will trust and D(Id) and
D(I f ) represent the classification results of the real data and fused images, respectively.

3.3. Network Architecture
3.3.1. Generator Architecture

As shown in Figure 2, the generator adopts a dual-encoder-single-decoder structure. It
takes the infrared image Ir, visible image Iv, and mask Im as the input. Using the mask with
semantic information, source images can be divided into the foreground and background.
The feature characterization between foreground and background is distinct; therefore,
two encoding paths are employed to extract their feature maps, respectively. Moreover, in
the ideal foreground, the thermal radiation target is remarkable, and the texture details
in the ideal background are rich. In order to achieve the effect as much as possible, two
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times the infrared image’s foregrounds and one time the visible image’s foreground are
input to the foreground encoding path, while the background encoding path takes one
time the infrared image’s background and two times the visible image’s backgrounds as
the input. Finally, the feature maps of the foreground and background are concatenated as
the decoder’s input to generate a fused image.

3x3

3x16

3x3

16x16

3x3

32x16

3x3

48x16

3x3

3x16

3x3

16x16

3x3

32x16

3x3

48x16

3x3

64x32

3x3

32x16

3x3

16x1

3x3

128x64

Encoder-fg

Encoder-bg

Decoder

Iv

Ir

Im

If

2       ：     1

1       ：    2

Figure 2. The overall architecture of the generator. Ir, Im, Iv, and I f denote the infrared image, mask, visible image, and
fused image, respectively. Encoder-fg and Encoder-bg are used to extract the features of the foreground and background,
respectively, and the decoder is used to reconstruct the fused image.

For each encoder path, four layers with 3 × 3 filters are adopted for feature extraction.
Meanwhile, inspired by DenseNet [46], the dense connection is employed to realize feature
reuse in each encoder path. Each layer’s output is cascaded as the input of the next layer.
The decoder is a simple framework that contains four convolutional layers with 3 × 3
filters. We concat the outputs of the dual-encoder as the input of the decoder to reconstruct
the fused image.

The specific settings of all layers are shown in Table 1. All kernel sizes were set as
3 × 3, and all strides were set as one with no pooling layers. To avoid exploding/vanishing
gradients and speed up training and convergence, batch normalization (BN) and LReLU-
activation function were applied.

Table 1. Input/output channels of the generator’s convolutional layers.

Layers Input Channel Output Channel Activation

Encoder-fg

conv1 3 16 LReLU

conv2 16 16 LReLU

conv3 32 16 LReLU

conv4 48 16 LReLU

Encoder-bg

conv1 3 16 LReLU

conv2 16 16 LReLU

conv3 32 16 LReLU

conv4 48 16 LReLU

Decoder

conv1 128 64 LReLU

conv2 64 32 LReLU

conv3 32 16 LReLU

conv4 16 1 Tanh

3.3.2. Discriminator Architecture

The discriminator plays an adversarial role against the generator to make the gener-
ator’s fused image more realistic and visual. Unlike the traditional single discriminator,
it takes only one source image as real data or the dual-discriminator takes the infrared
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image and visible image as real data at the same time. The discriminator D of the proposed
SSGAN is a simple and effective five-layer convolution neural network with well-designed
real data. The discriminator architecture is shown in Figure 3. The front four layers are all
3 × 3 convolution layers with batch normalization (BN) and the LReLU activation function.
In the last layer, the tanh activation function is employed to generate a scalar to estimate
the input image’s probability from source images rather than generated by the generator G.
The stride of all convolutional layers was set as two.

3x3

1x32

3x3

32x64

3x3

64x128

3x3

128x256

L
in

e
ar

S
c
al

ar

If

Figure 3. The overall architecture of the discriminator.

4. Experiments

This section focus on verifying the effectiveness of the proposed algorithm through
a large number of qualitative and quantitative experiments on the TNO dataset (https:
//figshare.com/articles/TNOImageFusionDataset/1008029, accessed on 20 March 2021)
and the INO dataset (https://www.ino.ca/en/technologies/video-analytics-dataset/,
accessed on 20 March 2021). First, the experimental datasets and training details are
introduced. Second, the parameters used in the proposed method are discussed. Third, a
series of recent state-of-the-art methods for comparison and commonly used evaluation
indicators are described in detail. Then, the experimental results on the TNO dataset
and INO dataset are analyzed. Next, the time complexity is also considered. Finally, the
ablation experiments related to the mask and discriminator are illustrated.

4.1. Dataset and Training Details

Dataset: To evaluate the proposed SSGAN, a set of experiments were produced.
Different from existing methods, the proposed approach requires the masks with the
infrared image’s semantic information. To obtain the masks, the model named deeplabv3+
needs to train on the infrared image dataset with the labeled image. Therefore, our datasets
contain two parts: the dataset for semantic segmentation and the dataset for image fusion.

The dataset for semantic segmentation comes from the publicly available dataset for
infrared and visible image fusion, which is well matched and does not require image
registration [47–50]. We selected 136 pairs of infrared and visible images and labeled
60 infrared images to obtain 60 pieces of data that could be used to train deeplabv3+.
However, 60 images were insufficient to train a satisfactory model. Therefore, the dataset
was extended by flipping and mirroring to gain 180 images, of which 100 images were
used for training and 80 images for verification. The remaining 76 images without labels
were used for testing. Finally, we got 76 infrared images with the mask, which could be
used to extract the foregrounds and backgrounds of source images.

The image fusion dataset was selected from these 76 pairs of infrared and visible
images with the masks. Thirty-four infrared and visible image pairs with masks from
the TNO dataset were selected to train our SSGAN. Through the mask with semantic
information, training data can be divided into foreground and background regions. The
expansion strategy of tailoring was adopted to obtain more training data; we set the stride
as 14 and cropped each image into image patches with the size of 120 × 120. Eventually,
the number of patch pairs for training was 10,168. The remaining 42 image pairs were used
to test the performance of the proposed SSGAN.

https://figshare.com/articles/TNO Image Fusion Dataset/1008029
https://figshare.com/articles/TNO Image Fusion Dataset/1008029
https://www.ino.ca/en/technologies/video-analytics-dataset/
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Training details: In the training process, thirty-two pairs of infrared and visible image
patches from the training data were selected to send to the generator. For the discriminator,
thirty-two pairs of Id or fused image patches were used as the input. We first trained the
discriminator k times with the optimizer solver Adam, then we trained the generator until
reaching the maximum number of training iterations. In the testing process, we cropped the
testing data without overlapping and input them into the generator G as a batch. Finally,
the results of the generator were connected according to the sequence of cropping to get
the final fused image.

4.2. Parameter Settings

The training parameters were crucial to make the network achieve the best fused
results. The training parameters of SSGAN were set as follows: The batch size was 32,
and the epoch was set as 20. The training step k of the discriminator was set to 2. The
learning rate was set as 1 × 10−4 with exponentially decaying. Parameters a, b, and c are
not specific numbers: a and b range from 0.7 to 1.2; c ranges from 0 to 0.3. For the other
parameters: λadv, λcon, λSSIM, µ1, µ2, µ3, µ4, and η, they were used to control the trade-off.
µ1 = 1.7, µ2 = 4, µ3 = 0.3, µ4 = 6, λadv = 0.5, λcon = 1, λSSIM = 0.5, η = 1.75.

4.3. Compared Methods and Objective Indexes

As is known to all, the superiority of a method often needs to be proven from quali-
tative and quantitative perspectives. For a qualitative comparison, the proposed SSGAN
was compared to five state-of-the-art methods, including three traditional methods, i.e.,
GTF[51], DTCWT [15], and wavelet [14], and two deep learning-based methods, i.e., Fu-
sionGAN [10] and DenseFuse [29]. All these competitors were implemented based on
publicly available codes, and the parameters were the default. It is worth noting that all
deep learning-based methods ran on the same GPU GTX 1080Ti, while other traditional
methods ran on the same CPU i5-6300HQ.

Although qualitative comparisons can evaluate the quality of fused images according
to the human visual system, this will be affected by human subjective emotion. To eval-
uate the performance of fused images more comprehensively, quantitative experiments
were also conducted based on the mathematical model’s evaluation index. Moreover, an
objective evaluation index cannot fully reflect the quality of the fused images. Therefore,
this paper uses four typical quantitative comparison indicators, namely entropy (EN), the
standard deviation (SD), mutual information (MI), and visual information fidelity (VIF).

Entropy (EN) is a common method for statistical image features, reflecting the amount
of information obtained from infrared and visible images. The mathematical definition of
entropy is defined as in Equation (9) [52].

EN = −
L−1

∑
l

pi log pi, (9)

where L denotes the gray level of the image and pi is the normalized histogram with the
gray value of i in the fused image.

The standard deviation (SD) represents the dispersion of image gray value relative
to the average gray value. The definition of the standard deviation can be defined as in
Equation (10) [53].

SD =

√√√√ M

∑
i=1

N

∑
j=1

(F(i, j)− µ)2, (10)

where F(i, j) is the pixel value of the fused image F in the i-th row and the j-th column, the
size of the fused image F is M× N, and µ is the average pixel value of the fused images.

Mutual information (MI) is a basic concept in information theory, which can measure
the correlation between two random variables. In image fusion, mutual information is
used to measure the correlation between the source images and the fused images. The
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definition of mutual information in infrared and visible image fusion is defined as in
Equation (11) [54].

MI = MIv, f + MIr, f , (11)

where Mr, f denotes the correlation between infrared images and fused images and Mv, f
represents the correlation between visible images and fused images. Mutual information
between any one source image X and fused image F can be defined as in Equation (12).

MIX,F = ∑
x, f

pX,F(x, f ) log
pX,F(x, f )

pX(x)pF( f )
, (12)

where pX(x) and PF( f ) represent the edge histograms of the source image X and the fused
image F, respectively. pX,F(x, f ) represents the joint histograms of the source image X and
the fused image F.

The visual information fidelity (VIF) [55] metric measures the information fidelity of
the fused images, which is consistent with the human visual system. VIF aims to build a
model to compute the distortion between the fused images and source images.

4.4. Results on the TNO Dataset
4.4.1. Qualitative Comparisons

Qualitative comparisons can evaluate the quality of the fusion image based on the
human visual system. Since visible images conform to human visual habits, the fused
results of the infrared and visible images should conform to human visual habits to a
certain extent. To give some intuitive results on the fusion performance, we selected four
typical image pairs from the TNO dataset for qualitative evaluation. The fusion results of
the proposed SSGAN and the other five comparison methods are shown in Figure 4.

Figure 4. Qualitative fusion results on four typical infrared and visible image pairs. From left to right: infrared images,
visible images, mask, results of GTF, DTCWT, wavelet, FusionGAN, DenseFuse, and the proposed SSGAN.

The first two columns in Figure 4 present the original infrared images and visible
images. The third column is the semantic masks of the infrared images. The last column
is the fusion results of the proposed SSGAN, and the remaining columns correspond to
the fusion results of five comparison methods. From the results, we can find that all the
methods can obtain satisfactory performance in preserving texture details and thermal
radiation information, which can help maintain useful information as much as possible.

However, different fusion methods have their own unique performance, and the
infrared thermal target is very obvious in the fused results of GTF and FusionGAN. In other
words, the thermal radiation information of the infrared images is preserved successfully.
On the other hand, although the salient target information in the fused results obtained by
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GTF and FusionGAN is well preserved, some of the texture details in visible images are
missing. In contrast, for other comparison methods like DTCWT, wavelet, and DenseFuse,
the targets (e.g., the human or the building) in the fused images are not as obvious as those
in the infrared images. This means that the thermal radiation information in the infrared
images is not well preserved, but their texture details are well preserved.

In general, all the comparison methods exploit the information in the source images,
either thermal radiation information or texture details. Different from all the comparison
methods, the proposed SSGAN is devoted to preserving both thermal radiation information
and texture details at the same time. For example, in the second column, the fused images of
SSGAN highlight people while retaining the texture of the ground. A similar phenomenon
can also be observed in other examples. This demonstrates that the proposed SSGAN
has better performance than the other state-of-the-art methods in terms of simultaneously
preserving thermal radiation information and texture detail information.

4.4.2. Quantitative Comparisons

The proposed SSGAN was further compared with the five state-of-the-art methods
quantitatively on 26 image pairs. The results are summarized in Figure 5. The proposed
SSGAN can generate the largest average values on the four metrics. It is worth mentioning
that the larger the EN, the more information is contained in the fused images. Thus, the
largest EN means that the proposed SSGAN preserves the most information compared to
the other methods. The largest SD demonstrates that the fused images of SSGAN have
the highest contrast between the thermal targets and their backgrounds. The largest MI
means that considerable information is transferred from source images to the fused image,
which indicates a good fusion performance. The largest VIF means that the fused results
of SSGAN are more consistent with the human visual system. These results demonstrate
that the proposed method can reserve the most information and have the largest image
contrast; meanwhile, the results of the proposed method are consistent with the human
visual system.
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Figure 5. Quantitative comparisons of the four metrics, i.e., entropy (EN), SD, MI, and visual
information fidelity (VIF), on the TNOdataset. The five state-of-the-art methods, DTCWT, GTF,
wavelet, DenseFuse, and FusionGAN, are used for comparison.
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4.5. Results on the INO Dataset

The proposed method and the other five comparison methods were further evaluated
on the INO dataset, which is also a dataset commonly used for infrared and visible image
fusion. Sixteen visible and infrared image pairs were selected from the video named
Trees and runnerfor both qualitative and quantitative comparisons.

4.5.1. Qualitative Comparisons

The qualitative fused results of the proposed SSGAN and the other five comparison
methods are shown in Figure 6. We can see that the infrared image contains rich thermal
radiation information, which helps distinguish the target from the background. In contrast,
the visible image preserves rich texture details, which is convenient for human observation.
Considering the fusion results, the texture information can be well retained by all six
methods, but SSGAN is more like a visible image in overall brightness. Moreover, compared
with the other methods, the proposed method has obvious advantages in retaining the
thermal radiation information, which can be proven by the fact that the people in the image
are better highlighted.

IR VI Mask

GTF DTCWT Wavelet

FusionGAN DenseFuse SSGAN

Figure 6. Qualitative fusion results on the INOdataset. The first row is the infrared image, visible
image, and mask. The rest two rows (from left to right, top to bottom) are the fusion results of GTF,
DTCWT, wavelet, FusionGAN, DenseFuse, and SSGAN.

4.5.2. Quantitative Comparisons

In addition to qualitative experiments, the proposed SSGAN was further compared
with the above-mentioned competitors quantitatively on 16 image pairs from the INO
dataset with four metrics, i.e., entropy (EN), standard deviation (SD), mutual information
(MI), and visual information fidelity (VIF). The results are summarized in Figure 7. We
can find that the proposed SSGAN produced the largest averages on all four metrics, and
SSGAN had obvious advantages with respect to the MI and VIF metrics. For the EN and
SD metrics, only GTF was equivalent to SSGAN in some fused results. These results prove
the superiority of the proposed method in quantitative indexes.
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Figure 7. Quantitative comparisons of the four metrics, i.e., EN, SD, MI, and VIF, on the INO
dataset. The five state-of-the-art methods DTCWT, GTF, wavelet, DenseFuse and FusionGAN are
used for comparison.

The runtime comparison of six methods is also provided in Table 2. From the results,
the conclusion can be drawn that the proposed SSGAN can achieve comparable efficiency
compared with the other five methods.

Table 2. Runtime comparison of the six methods on the TNO dataset and the INO dataset. Each
value denotes the mean of the runtimes of a certain method on a dataset (unit: seconds).

Dataset GTF DTCWT Wavelet FusionGAN DenseFuse SSGAN

TNO 2.3495 0.2193 0.2121 0.0606 0.1538 0.1070
INO 0.6954 0.1139 0.1589 0.0803 0.1625 0.0886

4.6. Ablation Experiments
4.6.1. Experiment Related to the Mask

In order to generate a high quality fused image and overcome the shortcoming of
lacking of a ground-truth, we designed the input image Id of the discriminator based on
semantic segmentation. The masks were used to divide the infrared and visible images
into foregrounds and backgrounds, respectively. Then, we added the foregrounds of the
infrared image and backgrounds of the visible one to get Id. Since the generation of Id was
closely related to the mask, the role of Id was verified, and the benefit of the mask was also
verified to a certain extent. Therefore, we compared the fused results of SSGAN with the
results by replacing Id with infrared image Ir and visible image Iv, respectively.

The comparison results are given in Figure 8. We can see that the proposed SSGAN
preserved more background details than replacing Id with the infrared image Ir. In the
first row, the fused result of SSGAN keep the texture of the tree better. In the second row,
the sky’s color is more realistic, and the texture on the ground is clearer. Compared to
the results of replacing Id with the visible image Iv, SSGAN has higher contrast in the
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foreground. In both two rows, the proposed SSGAN can highlight persons better, which is
conducive to target detection. These results demonstrate that Id, which is designed based
on the mask, does improve the quality of the fused image. Therefore, the conclusion can be
drawn that the mask obtained by semantic segmentation is indeed useful for fusion tasks.

SSGANReplace Id with IvReplace Id with IrIR VI

Figure 8. Fused results of the experiment related to the mask. From left to right: infrared images,
visible images, results of replacing Id with Ir, results of replacing Id with Iv, and results of the
proposed SSGAN.

4.6.2. Experiment without the Discriminator

To verify the effect of the game between the generator and discriminator in GAN,
we removed the discriminator, and the whole network merely contained the generator.
Thus, the adversarial relationship no longer existed. The training goal was to minimize the
content loss Lcon and SSIMloss LSSIM. As shown in Figure 9, compared to the fused results
using the network without discriminator, the results of SSGAN have a clear advantage
in that it retains more texture details and the results more consistent with the human
visual system.

SSGANW/O discriminatorIR VI

Figure 9. Fused results of the experiment related to the discriminator. From left to right: in-
frared images, visible images, results of the SSGAN without the discriminator, and results of the
proposed SSGAN.

5. Discussion and Conclusions

This paper presents a new approach for infrared and visible image fusion. The
key characteristic of the proposed method is that it applies semantic segmentation to
image fusion, and the network structure adopts a dual-encoder-single-decoder to extract
features. The proposed method uses the powerful GAN technique, and the reference data
of the discriminator are redesigned based on semantic segmentation. The experiments on
the TNO and INO datasets demonstrate that the proposed approach yields results that
consistently outperform the state-of-the-art methods, both qualitatively and quantitatively.

However, the current work verifies the effectiveness of semantic segmentation for the
fusion task, and the segmentation network is trained separately. In the future, we will try
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to use a unified network for fusion and segmentation and build segmentation consistency
loss between the fused image and source images. The segmentation consistency loss can
constrain the semantic consistency between the fused image and the source images, which
will enforce the network to generate a fused image with clearer semantic targets and richer
texture details.
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