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Abstract: In this paper we consider a bipartite system composed of two subsystems each coupled to its
own thermal environment. Based on a collision model, we mainly study whether the approximation
(i.e., the inter-system coupling is ignored when modeling the system–environment interaction) is valid
or not. We also address the problem of heat transport unitedly for both excitation-conserving system–
environment interactions and non-excitation-conserving system–environment interactions. For the
former interaction, as the inter-system interaction strength increases, at first this approximation gets
worse as expected, but then counter-intuitively gets better even for a stronger inter-system coupling.
For the latter interaction with asymmetry, this approximation gets progressively worse. In this case
we realize a perfect thermal rectification, and we cannot find an apparent rectification effect for the
former interaction. Finally and more importantly, our results show that whether this approximation
is valid or not is closely related to the quantum correlations between the subsystems, i.e., the weaker
the quantum correlations, the more justified the approximation and vice versa.

Keywords: inter-system coupling; quantum correlation; heat current; thermal rectification; collision model

1. Introduction

In most practical situations, a quantum system inevitably interacts with its environ-
ment, which induces decoherence and dissipation [1]. In this case, its dynamics are usually
described by the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) quantum master equa-
tion with a series of approximations [2]. When deriving a master equation for an open
quantum system, one may always obtain a global master equation, which considers the
full system Hamiltonian, i.e., including the direct coupling between the subsystems [3–6].
However, such derivation is very complicated when the system is composed of two or more
interacting subsystems. Hence a local master equation that ignores the direct interactions
between the subsystems is often used as a substitute [3–11]. By means of these two kinds
of master equations, a lot of efforts has recently been devoted to the heat transport for
thermodynamic systems [7–15]. However, by comparing the dynamics resulting from the
corresponding master equations with exact numerical simulations, both approaches may
lead to seeming thermodynamic inconsistencies or just suit to some parameter regimes, as
pointed out in References [15–22]. In Reference [3], the local description for two coupled
quantum nodes may predict heat currents from a cold to a hot thermal reservoir, or the
existence of currents even in the absence of a temperature gradient. The origin of these
effects, as discussed in References [5,23], lies in the fact that there is an external work
cost related to the breaking of global detailed balance. By including this work cost, this
inconsistencies can be resolved. For weak inter-system coupling, it was shown that the
global approach fails in non-equilibrium situations, whereas the local approach agrees
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with the exact solution [19]. In Reference [21], due to a failure of the secular approxima-
tion, it was reported that the global master equation erroneously gave a vanishing heat
current through a spin- 1

2 Heisenberg chain in the presence of a finite-temperature gradient.
For two coupled qubits interacting with common and separate baths, it was shown that
the global approach with partial secular rather than full secular approximation always
provides the most accurate choice for the master equation [24]. In Reference [25], it was
shown that the completely positive version of the Redfield equation and an appropriate
time-dependent convex mixture of the local and global solutions gives rise to the most
accurate semigroup approximations of the exact system dynamics. Recently, it was proved
that local master equations are consistent with thermodynamics without resorting to a
microscopic model [26]. Moreover, the two approaches above, from the viewpoint of
the system, often rely on approximate Markovian master equations derived under the
assumptions of weak system–environment coupling, which would become challenging
under strong coupling.

Furthermore, the manipulation of heat transport in non-equilibrium steady-state has
been identified as one of the crucial studies of quantum thermodynamics, which gives
us an improved understanding of classical thermodynamics in quantum domain [27–35].
For example, heat transport between two bosonic reservoirs was predicted for a coupled
two-state system, and a formula for thermal conductance was derived based on a rate
equation formalism [33]. Bandyopadhyay et al. proposed a numerical scheme for exactly
simulating the heat transport in a quantum harmonic chain with self-consistent reser-
voirs [34]. By means of an effective harmonic Hamiltonian, a quantum thermal transport
through anharmonic systems was studied within the framework of the nonequilibrium
Green’s function method [35]. Besides, quantum devices such as heat rectifier, thermal
memory, and thermal ratchet, have also become goals of controlling thermal transport
in quantum thermodynamics [36–45]. It was found that, by using the quantum master
equation, thermal rectification in anisotropic Heisenberg spin chains could change sign
when the external homogeneous magnetic field was varied [43]. An optimal rectification
in the ultrastrong-coupling regime of two coupled two-level systems was shown [44].
In Reference [45], Jose et al. studied two interacting spin-like systems characterized by
different excitation frequencies, which can be used as a quantum thermal diode.

Recently, the collision model, also called repeated interactions, has drawn attention
for its potential advantage in simulating open quantum system [46–57]. It was assumed
that the environment consists of a large collection ancillae and the system of interest
interacts, or collides, with an ancilla at each time step. In the framework of collision model,
a continuous-time description in terms of a Lindblad master equation can be derived
in the short-time limit provided some assumptions are made about the system–ancilla
interaction [40,49]. For instance, in Reference [58] the system’s dynamics embodied by the
stroboscopic map can be approximated by a Lindblad master equation in a short-time limit.
In a similar way, in Reference [5] a local master equations with a Lindblad form for two
coupled harmonic oscillator was derived by using the method of repeated interactions.
Moreover, also from the viewpoint of the system, the corresponding reduced dynamics can
be obtained in many cases without any approximations [59–65]. This is because collision
model allows for the possibility to decompose a complicated open dynamics in terms of
discrete elementary processes. It is particularly suited for addressing the thermodynamics
of engineered reservoirs [23,48,49,62,66,67]. For example, under an energy-preserving
system–environment interaction within the framework of collision model, it has been
found that the non-monotonic time behavior of the heat exchange between the system and
environment could serve as an indicator of non-Markovian behaviors [62]. Besides, based
on a microscopic collision model, heat current between a coupled system can flow from the
cold nonthermal reservoir to the hot one due to the contribution of coherence [66]. A link
between information and thermodynamics, for a multipartite open quantum system with a
finite temperature reservoir, was displayed in term of a collision model [67].
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In this paper, we consider a two coupled qubit system that interacts with its local
environment consisting of a large collection of identical ancillae. Inspired by the previous
work on the local and global master equations, we consider an decoupling approximation
within the framework of collision model, specifically, environment acts on subsystem
without considering the inter-system coupling, i.e., ignores the direct coupling between
the subsystems when modeling the system–environment interaction. It is noted that al-
though this approximation in this collision model is not strictly a substitute for the local
master equation we described above, we expect that the results derived from this simple
and solvable model can provide a reference. We mainly study whether this decoupling
approximation is valid or not, i.e., whether or when this direct coupling can be ignored.
We systematically examine the heat transport through the system in both weak and strong
system–ancilla coupling. Within the framework of collision model, we give a more gen-
eral definition of heat current under non-energy preserving system–ancilla interactions
(there is external work performing on the whole system–ancilla compound). In the case
of excitation-conserving system–ancilla interactions, we find that the results predicted
with the decoupling approximation is valid even at strong inter-system interactions. In
particular, we realize a perfect rectification in the asymmetric systems and give a discussion
about the mechanism of this phenomenon. Moreover, we find that whether or not this
decoupling approximation is valid is closely related to the quantum correlations between
the subsystems.

2. Model and Methods

We consider a bipartite system S consisting of two identical two-level subsystems
Si (i = 1, 2), and each subsystem is coupled to its local thermal subenvironment Ei set
at temperature Ti. Here the subenvironment Ei is a sequence of non-interacting ancillae
(Ei

1, Ei
2, ..., Ei

n) all in the same initial state ηi
n. Subsystem Si interacts with the connected

subenvironment Ei via a series of short subsystem–ancilla interactions. The joint state of
system and environment is initially factorized:

ρSE(0) = ρS(0)(⊗n
j=1η1

j )(⊗n
j=1η2

j ) (1)

where ρS(0) and ⊗n
j=1ηi

j are the initial states of the open system and subenvironment
Ei, respectively.

In Figure 1 we show a schematic sketch of the collision model considered. It is
composed of a series of repeated rounds. In any one round of the collision process, first the
whole system S undergoes a free evolution lasting a time interval τ, subsequently S1 and
S2 locally interact with only one ancilla of its environment, respectively. Then by tracing
out the environment’s degrees of freedom and repeating the above process in the next
round, we can obtain the reduced state of the system in the full time evolution. Therefore,
each round is composed of three steps: a free evolution of S and two subsystem–ancilla
interactions. It is noted that the subenvironment is assumed to be large enough, so that the
subsystem never collides twice with the same ancilla. As a consequence, at each collision
round n, the subsystem Si collides with a ”fresh” Ei

n.
We assume throughout this paper that S and each ancilla Ei

n of the subenvironment
Ei are qubits with logical states {|0〉, |1〉}. The corresponding free Hamiltonians for the
subsystem Si (i = 1, 2) and the ancilla Ei

n are ĤSi =
1
2 ωiσ̂z and ĤEi

n
= 1

2 ω0σ̂z, respectively.
Here σ̂z is the usual Pauli operator (we set h̄ = 1). The free dynamics of the whole system
S are described by the unitary evolution operator

ÛS1,S2 = exp [−i(Ĥ0 + ĤS1,S2
int )τ], (2)

with Ĥ0 = ĤS1 + ĤS2 and the inter-system interaction Hamiltonian ĤS1,S2
int . We use uni-

tary operator V̂Si ,Ei
n

to model the collisions between the subsystem Si and ancilla Ei
n of

subenvironment Ei (Its exact definition will be given later in different cases); it is assumed
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that all the subsystem–ancilla collisions have the same duration τ. So the dynamical map
Λ̂S1,S2 that governs the free evolution of the system S and map Ψ̂S1,Ei

n
that governs the

system–subenvironment interaction at the nth round can be written as

Λ̂S1,S2(ρ) = ÛS1,S2 ρÛ†
S1,S2

, (3)

Ψ̂Si ,Ei
n
(ρ) = V̂Si ,Ei

n
ρV̂†

Si ,Ei
n
, (4)

respectively. Following the repeated interaction approach mentioned above, the joint
state of system and ancillae is brought from the nth round to the (n + 1)th round through
the process

ρS
n−1 ⊗ η1

n ⊗ η2
n → ρSE

n = Û [ρS
n−1 ⊗ η1

n ⊗ η2
n]Û †, (5)

where Û = V̂S2,E2
n
V̂S1,E1

n
ÛS1,S2 . Hence after round n, the reduced density matrix of the

system ρS
n is

ρS
n = TrE1

n ,E2
n
[ρSE

n ], (6)

where TrE1
n ,E2

n
[·] denotes the partial trace over the two ancillae E1

n and E2
n. Similarly, the

reduced state η̃
1(2)
n of the nth ancilla of subenvironment E1(2) is

η̃
1(2)
n = Tr

SE2(1)
n

[ρSE
n ]. (7)

Throughout we assume each ancilla of subenvironment Ei to be initially in a thermal state
with inverse temperature βi = 1/Ti (we set k = 1), namely,

ηi
n =

1
Z

exp (−βi ĤEi
n
), (8)

where Z = Tr[exp (−βi ĤEi
n
)] is the partition function.

Figure 1. Schematic sketch of a bipartite system S made up of two interacting subsystems connected
to two independent subenvironments. In the nth round of the dynamics, after a free evolution of
the whole system, S1 interacts with E1

n and next S2 interacts with E2
n. In the (n + 1)th round of the

dynamics, also after a free evolution of the whole system, S1 interacts with E1
n+1 and next S2 interacts

with E2
n+1. The system then moves to the (n + 2)th round and this process is repeated over and over.

In the nth round of the dynamics, the whole system S undergoes a free evolution; S1
interacts with E1

n; next, S2 interacts with E2
n; then S1 and S2 shift by one site to the (n + 1)th

round in which also after the free evolution of system S1-E1
n+1 and S2-E2

n+1 interactions
subsequently take place. This process will repeat to the (n + 2)th round. The free evolution
is governed by Equations (2), and now we begin to give the subsystem–ancilla evolution
operator. When ancilla Ei

n collides with subsystem Si not ignoring the direct interaction
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between the two subsystems, the corresponding unitary time evolution operator can be
written as

V̂Si ,Ei
n
= exp [−i(ĤS1 + ĤS1,S2

int + ĤS2 + ĤEi
n
+ ĤSi ,Ei

n
int )τ], (9)

where ĤSi ,Ei
n

int is the interaction Hamiltonian between the subsystem Si and ancilla Ei
n.

However, it is convenient to ignore the direct interaction between the two subsystems,
namely, a decoupling approximation neglects the coupling between the subsystems when
modeling the system–environment interaction. In this case, the corresponding unitary time
evolution operator is written as

V̂app
Si ,Ei

n
= exp [−i(ĤSi + ĤEi

n
+ ĤSi ,Ei

n
int )τ]. (10)

It is obvious that the difference between Equations (9) and (10) resides in the inter-system
interaction in each round: Equation (9) arises naturally when modeling the subenvironment–
subsystem coupling from a microscopic model considering the full system Hamiltonian,
i.e., not ignore the direct interaction between its subsystems, while Equation (10) ignores
this interaction, i.e., the decoupling approximation.

3. Symmetric System

In this section we consider a symmetric system, from which to investigate whether
the inter-system interaction can be ignored or not. Among the possible choices for the inter-
action between the subsystem Si and their connected ancilla Ei

n, we choose the excitation-
conserving interaction Hamiltonian as

ĤSi ,Ei
n

int = γ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) (11)

with subsystem–subenvironment interaction strength γ. The interaction between S1 and
S2 takes the same form

ĤS1,S2
int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) (12)

with coupling strength δ. We consider that the energy gaps of subsystems are the same, i.e.,
ω1 = ω2 = ω0.

3.1. Heat Current

Now we investigate the heat currents to evaluate the performance of the decou-
pling approximation. We also consider the heat currents in the case of not ignoring the
inter-system interactions (i.e., without the decoupling approximation), which serves as
a benchmark. In the case of decoupling approximation, for the system characterized by
Hamiltonians of Equations (11) and (12), its corresponding unitary system–environment
operator preserves the energy, i.e.,

[V̂ign
Si ,Ei

n
, ĤSi + ĤEi ] = 0. (13)

This implies that all the energy leaving the ancilla enters the system. Hence, during the
(n + 1)th round, the heat exchange4Q between system S1(2) and ancilla E1(2)

n is given by

4Q
E1(2)

n
= Tr[Ĥ

E1(2)
n

(η̃
1(2)
n − η

1(2)
n )]. (14)

Due to4QE1
n
= −4QE2

n
for steady state, the stationary heat current flowing from subenvi-

ronment E1 to the system S1 can be defined as

Jh = −4QE1
n
. (15)
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This definition was often used when Equation (13) is satisfied [42–45,58,66]. However, in
the case of not ignoring the inter-system interactions, the corresponding unitary system–
environment operator no longer preserves the energy because of

[V̂con
Si ,Ei

n
, ĤS1 + ĤS2 + ĤS1,S2

int + ĤEi ] 6= 0. (16)

That is, not all the energy leaving the ancilla enters the system. So an external work is
required to turn the system–ancilla coupling on and off [67,68], which we refer to as the
switching work (labeled WSW). In each round of collisions illustrated in Figure 1, the
corresponding work WSW on the system can be written as

WSW = W1 + W2. (17)

The first term W1 is from the sudden on and off switching of S1 − E1
n interaction, and

it reads
W1 = Tr[ĤS1,E1

n
int (ρ′S1S2

⊗ η1
n − ρS1S2E1

n
)], (18)

where ρ′S1S2
is the state of system before S1 − E1

n collision, and ρS1S2E1
n

is the global state of
system S and ancilla E1

n after S2 − E1
n collision. Similarly, the second term associated with

S2 − E2
n interaction takes the form

W2 = Tr[ĤS2,E2
n

int (ρ′′S1S2
⊗ η2

n − ρS1S2E2
n
)], (19)

where ρ′′S1S2
is the reduced state of system after S1 − E1

n collision, and ρS1S2E2
n

is the global
state of system S and ancilla E2

n after S2− E2
n collision. As a result, Equation (15) is no longer

valid to calculate the heat current in the case of not ignoring the inter-system interactions.
Based on this collision model, we focus on deriving the expression of heat current that

can be applicable in the cases of ignoring and not ignoring the inter-system interactions, as
well as weak and strong system–environment couplings. Physically, heat current is defined
as the energy going through the system. We consider the energy change of the system in
a complete round (i.e., free evolution of S, S1 − E1

n and S2 − E2
n interactions). The energy

change4E1
S of system S in each S1 − E1

n interaction can be written as

4E1
S = Tr[(Ĥ0 + ĤS1S2

int )(ρ′′S1S2
− ρ′S1S2

)]. (20)

Similar expressions can be obtained for S2 − E2
n interaction, and the corresponding energy

change4E2
S of system S is given by

4E2
S = Tr[(Ĥ0 + ĤS1S2

int )(ρ′′′S1S2
− ρ′′S1S2

)], (21)

where ρ′′′S1S2
is the reduced state of system S after S2 − E2

n collision. Since the inter-system
dynamics is unitary, the energy of system is preserved in each free evolution. For steady
state, the state of the system cannot change in a complete round, leading to

4E1
S = −4E2

S. (22)

From the above discussion, it is clear that 4E1
S is the energy going through the system.

Thus, the stationary heat current Jh flowing from E1 to E2 can be rewritten as

Jh = 4E1
S. (23)

In the case of ignoring the inter-system interactions, if the corresponding system satisfies
the commutation condition Equation (13), i.e., all energy changes in the system can be
attributed to energy flowing to or from the ancilla, it is thus clear that Equations (23)
reduces to Equation (15).
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Here we should mention that the exchange of energy between two quantum systems,
characterized by particular commutation relation between the local Hamiltonians and the
interaction operator, can always be split into work and heat [69,70]. This formalism was
extended to situations where one, or both, subsystems are coupled to a thermal environ-
ment. In the case of not ignoring the inter-system interaction, according to Reference [70]
the stationary heat current and work in each S1 − E1

n collision are calculated as

J′h = −i
∫ τ

0
Tr[I⊗ (Ĥ0 + ĤS1,S2

int ), ĤS1,E1
n

int ⊗ I]C12dt, (24)

W = −i
∫ τ

0
Tr[Ĥe f f

S , ĤS]η̃
1
ndt, (25)

where C12 represents the correlations between the system S and E1
n after S1 − E1

n col-

lision, and Ĥe f f
S is the diagonal part of matrix TrE1

n
[ĤS1,E1

n
int (η̃1

n ⊗ I)]. From numerical
calculations, we check that the heat current J′h given by Equation (24) is equal to that
given by Equation (23). Thus our previous definition of Equation (23) is consistent with
Reference [70].

In Figure 2 we plot Jh as a function of the inter-system coupling strength δ for various
subsystem–ancilla coupling strength γ in the cases with and without the decoupling
approximation. We fix the initial state of the system to be |11〉 and set T1 = 5ω0 and
T2 = ω0 for subenvironments E1 and E2, respectively. It can be seen from Figure 2 that,
for fixed γ, the heat currents in both cases increase rapidly with the increase of δ and they
eventually reach the same steady value, before which the heat current from the decoupling
approximation is always smaller than that without the approximation. In general, for
weak inter-system coupling, one would expect smaller deviation from the case without
the approximation. As expected, in the limit δ→ 0, it gives the same (zero) heat current
as that without the approximation. For fixed γ, when δ increases we observe that the
heat current predicted with the decoupling approximation gradually deviates from that
without the approximation, and this deviation quickly increases from zero to its maximum.
However, it might seem counter-intuitive that this deviation gradually decreases with δ
and eventually vanishes at larger values of δ. That is, for larger δ, the heat currents from
the decoupling approximation can still be consistent with that without the approximation,
and this decoupling approximation consequently may not necessarily break down.

Moreover, we find that the difference of the heat currents between those with and
without the decoupling approximation strongly depends on γ, as shown in Figure 2. A
bigger difference is obtained for stronger coupling strength γ. For instance, for γ = 0.8ω0,
the difference that maintains nonzero values is within a larger region of δ, compared
with γ = 0.2ω0 and 0.5ω0. That is, when assessing the heat currents the results from the
decoupling approximation is inconsistent with that without this approximation. Smaller
difference is obtained for weaker coupling strength γ. For γ = 0.2ω0, it can be seen from the
inset of Figure 2 that the difference between two cases maintaining nonzero values is within
a very small region below δ ∼ 0.04ω0. In other words, for smaller values of γ, the results
from the decoupling approximation agrees well with that without this approximation, and
consequently it also approximately predicts the correct heat currents within almost all
region of δ. Physically, this can be easily understood as following: decreasing the system–
ancilla coupling strength would weaken the influence of the inter-system coupling ignored.
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Figure 2. Steady heat currents Jh as a function of δ for different γ, γ = 0.2ω0 (blue), γ = 0.5ω0

(red), and γ = 0.8ω0 (green).The solid and dashed lines correspond to cases without and with the
decoupling approximation, respectively. The inset is the magnified Jh for γ = 0.2ω0. In both cases the
system is initialized in |11〉 and each ancilla is initialized in its thermal state. The plots are obtained
for ω1 = ω2 = ω0, ω0τ = 0.1, T1 = 5ω0 and T2 = ω0.

3.2. Trace Distance

When investigating the accuracy of the local and global master equations, steady state
is often used as a reference for predicting the results of the nonequilibrium dynamics [16,19].
To further assess the validity of decoupling approximation, we also consider the obtained
steady states. As a measure of distinguish ability, here we examine the trace distance
between the steady state obtained from the case with the decoupling approximation and
the steady state obtained without this decoupling approximation:

DT =
1
2
‖ ρS − ρSapp ‖1, (26)

where ‖ · ‖1 is the trace norm while ρS and ρSapp are the reduced steady states of the system
with and without the decoupling approximation, respectively. The trace distance is equal to
unity for fully distinguishable states, while it is null for identical states. Figure 3 shows the
dependence of DT on δ for different strength γ. For fixed γ, it can be seen that DT quickly
increases and then gradually decreases with the increase of δ (e.g., for γ = 0.1ω0). That
is, when δ increases, the steady state ρ

Sapp
n predicted with the decoupling approximation

gradually deviates from the steady state ρS
n predicted without this approximation, then this

deviation reaches its maximum and eventually decreases. It is obvious that this behavior
of the steady state from this approximation is indeed similar to that of heat current. Here
we also arrive at a conclusion similar to that of heat current: even for a large δ, decoupling
approximation can be well justified when predicting the steady state. The inset of Figure 3
plots the value of δ′ for the maximum of DT as a function of γ (i.e., when δ = δ′, DT
reaches its maximum for fixed γ). It can be seen that δ′ nonlinearly increases with the
subenvironment–ancilla interaction strength γ.

Figure 3 also shows the effect of system–ancilla coupling strength γ on DT . For
γ = 0.2ω0, it can be seen that DT maintains a larger value only within a smaller region
of δ, and quickly decreases compared to γ = 0.5ω0 and γ = 0.8ω0. Again, for weak γ,
steady state predicted with the decoupling approximation agrees well with that without the
approximation even at strong interaction strengths δ. In other words, this approximation is
well justified to describe steady state in this case.
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Figure 3. Trace distance DT between the density matrices obtained from cases with and without the
decoupling approximation against δ at steady state. The blue line, the red line and the green line
correspond to γ = 0.2ω0, γ = 0.5ω0 and γ = 0.8ω0, respectively. The other parameters are the same
as those in Figure 2. Inset shows δ′ for the maximum of DT as a function of γ.

3.3. Quantum Discord

Why can the decoupling approximation give a good estimate of heat current and
steady state even for a large δ ? In References [71,72], it was found that the compositeness
(two particles behave like a single particle) is closely related to the quantum correlations
between the constituent particles. It is thus very interesting to consider the quantum corre-
lations between the bipartite system S1 and S2, which can be captured by the discord [73]

D(ρS) = minΠA{I(ρS)− I(ΠAρS)}. (27)

Here ΠA is a set of rank-one POVM projectors on system S1, and I(ρS) = S(ρS)− S(ρS1)−
S(ρS2) is the quantum mutual information associated with the von Neumann entropy.
Without the decoupling approximation, in Figure 4 we plot D as a function of δ. As inter-
system coupling strength δ increases it can be seen that, for fixed γ, D first increases from
zero to its maximum, then it gradually decreases, i.e., the quantum correlations between
two subsystems first increases and then decreases. It is obvious that such behavior is
associated with the heat current or the steady state, i.e., the greater the quantum correlation
D between two subsystems, the greater the deviation of the heat current and steady state
predicted with the decoupling approximation, and vice versa. In general, one would think
that whether this approximation is valid or not should depend on inter-system coupling
strength. In fact, inter-system interactions are really necessary and they serve as physical
means to create quantum correlations, while it is noted that such correlations can still be
present in spatially separated subsystem that no longer interact after it is created. When
the inter-system coupling produces a stronger correlations, these two subsystems behave
more like a composite and can not be treated separately, so this decoupling approximation
gets worse. The fact that decoupling approximation can give an good description even at
stronger inter-system coupling is because the stronger inter-system interaction does not
produce a strong enough quantum correlations, as shown in Figure 4. To summarize, this
approximation depends strongly on quantum correlations between the two qubits, i.e., the
higher the quantum correlations, the worse the approximation, and vice versa.
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Figure 4. Quantum discord D of the qubit system as a function of δ, without approximation. The
blue line and red line correspond to γ = 0.2ω0 and γ = 0.5ω0, respectively. Inset a is the magnified
D for γ = 0.2ω0. Inset b corresponds to γ = 0.8ω0. The remaining parameters are the same as those
in Figure 2.

Moreover, for this model, we also consider the other situations by replacing Equations (11)
and (12) with any of the following three combinations of excitation-conserving interactions:

• ĤS1,S2
int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z) and ĤSi ,Ei

n
int = γ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y).

• ĤS1,S2
int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) and ĤSi ,Ei

n
int = γ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z).

• ĤS1,S2
int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z) and ĤSi ,Ei

n
int = γ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z).

For these three combinations, we also investigate the heat current, trace distance, and
quantum discord with and without ignoring the inter-system interactions. The correspond-
ing results are similar to those from Equations (11) and (12). It is noted that, with the decou-
pling approximation, the corresponding unitary operators of all three combinations above,
like Equations (11) and (12), also satisfy the condition [V̂ign

Si ,Ei
n
, ĤSi + ĤEi ] = 0, i.e., they corre-

spond to energy-preserving system–environment interactions and no external work exists.
Without the approximation, in each round (i.e., free evolution of S, S1 − E1

n and S2 − E2
n in-

teractions) although there is an external work due to [V̂con
Si ,Ei

n
, ĤS1 + ĤS2 + ĤS1,S2

int + ĤEi ] 6= 0,
after some calculations we find that this external work in each round is much smaller than
the heat flowing through the system in each round.

4. Asymmetric System

In this section, we turn our attention to the systems featured by distinct asymmetries,
such as the qubits with different frequencies or asymmetric couplings to their reservoirs.
Indeed, inspired by the manipulation and control of the thermal transport in micro-scale,
such asymmetric systems were widely investigated in the thermal diode and thermal
transistor [37–45]. In the following, we will study the heat transport and, at the same
time, study whether the inter-system interaction can be ignored or not when modeling the
system–environment interaction.

4.1. Off-Resonant Interacting Qubits

First we consider two qubits are characterized by different energy gaps ω1 and ω2,
i.e., ω1 6= ω2. The interaction Hamiltonian between two subsystems S1 and S2 is given as

ĤS1,S2
int = δσ̂z ⊗ σ̂z. (28)
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Such system may arise, for example, when a nonuniform magnetic field is applied to a
pair of interacting spins in the z directions. The coupling to each ancilla of environment is
described by the following non-excitation-conserving Hamiltonian:

ĤSi ,Ei
n

int = γσ̂x ⊗ σ̂x. (29)

For this interaction, in both cases with and without the decoupling approximation, not all
the energy leaving the environment enters the system due to [V̂ign

Si ,Ei
n
, ĤSi + ĤEi ] 6= 0 and

[V̂con
Si ,Ei

n
, ĤS1 + ĤS2 + ĤS1,S2

int + ĤEi ] 6= 0.
From Equation (23) we calculate the stationary heat currents for system characterized

by Hamiltonians of Equations (28) and (29), also addressing with and without the decou-
pling approximation separately. From our study we find that the heat current from the
decoupling approximation is always zero even in the presence of a finite temperature gra-
dient T1 > T2 or T2 > T1, regardless of the coupling strength δ and γ. This result deviates
from that without the approximation, in which heat currents increases as δ increases, so
the decoupling approximation gets progressively worse with the increase of δ.

Moreover, for this model we compare the heat currents for various temperature
difference4T between two environments, which shows an asymmetric heat transport of
the system (i.e., heat rectification). To quantify this rectification efficiency, we also give a
rectification factor R defined as follows [43–45]:

R =
|Jh(4T) + Jh(−4T)|

max(|Jh(4T)|, |Jh(−4T)|) , (30)

where Jh(4T) is the forward heat current for T1 > T2, and Jh(−4T) is the backward heat
current when the temperature gradient is reversed. It can be seen from Figure 5 that in
the case T1 = 10ω0 and T2 = 8ω0, its corresponding forward heat current is greater than
the backward heat currents (T2 = 10ω0 and T1 = 8ω0). Hence an asymmetric conduction
(|Jh(4T)| 6= |Jh(−4T)|) emerges, which varies with the increase of δ. If the temperature
gradient raises, such as T1 = 10ω0 and T2 = 4ω0, this asymmetric conduction increases, i.e.,
the higher the gradient, the stronger the heat rectification. Especially, when T1 = 10ω0 and
T2 = 0.1ω0, its corresponding backward heat current (cf. green dashed line corresponds to
T1 = 0.1ω0 and T2 = 10ω0 in Figure 5) is almost zero for any δ, i.e., an optimal rectification
is realized with R > 0.996. Insets in Figure 5 plot factor R as a function of δ for various
temperature differences4T. It can be seen that R increases with the increase of4T.

The above rectification phenomena can be explained as follows. There are two in-
gredients affecting the rectification effect. One is nonzero heat currents in the absence
of temperature gradient and the other is the temperature difference 4T between two
environments. (i) It can be seen from Figure 6 that the case without the decoupling ap-
proximation can give Jh > 0 even when the two environments are at the same temperature
(cf. black dashed line corresponds to T1 = T2 = 10ω0 in Figure 6). It seems to violate
the second law of thermodynamics but is justified. This is because there is an external
work which is closely related to the internal subsystem–ancilla interaction. By taking this
into account, the thermodynamic consistency can be guaranteed. We also find that the
heat transport through the two-qubit system is dramatically affected by this work cost
and can even be inverted, leading to Jh > 0 for T1 < T2, i.e., heat current from a cold to a
hot bath (cf. dashed lines in Figure 5). Similarly, in Reference [5] heat transport through
a chain of harmonic oscillator is investigated by using a local master equation based on
repeated interactions, and all thermodynamic inconsistencies (such as a heat current from
the cold to the hot bath) can be resolved correctly with the consideration of external work
turning the subsystem–ancilla coupling on and off. (ii) Because there is a non-zero heat
current in the absence of temperature gradient (labeled J0), so when T1 > T2, it can be seen
from Figure 6 that the corresponding heat current (Jh > J0) increases with the increase of
temperature gradient (cf. blue line in Figure 6). However, when T1 < T2, as the temperature
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gradient increases, the corresponding heat current decreases from positive to zero (cf. red
line in Figure 6). If the temperature difference increases further (if it is large enough), the
corresponding heat current can change from positive to negative (cf. green line in Figure 6).

Figure 5. Jh as a function of δ with various temperature difference without the decoupling approx-
imation. We use solid line for T1 = 10ω0 and different T2, T2 = 0.1ω0 (green), 4ω0 (red), and 8ω0

(blue); dashed line for T2 = 10ω0 and different T1, T1 = 0.1ω0 (green), 4ω0 (red), and 8ω0 (blue). The
two qubits are off-resonant with 1

2 ω1 = ω2 = ω0. Here we set γ = 0.3ω0, and the other parameters
are the same as those in Figure 2. Insets a, b, and c show the corresponding rectification factor R for
T1 = 10ω0 and different T2, T2 = 8ω0, 4ω0, and 0.1ω0, respectively.

Figure 6. Jh as a function of δ with various temperature difference without the decoupling approx-
imation. The black dashed line corresponds to T1 = T2 = 10ω0. We use blue line for T1 = 10ω0

and T2 = 5ω0; red and green lines for T2 = 10ω0 and T1 = 5ω0 and 0.05ω0, respectively. The other
parameters are the same as those in Figure 5.

Figure 7 plots the trace distance DT between the density matrices with and without
the decoupling approximation against δ for steady state. As expected, for δ = 0, we observe
that DT = 0, which means that this approximation gives the same steady state as that
without the approximation. For δ 6= 0, DT increases with the increase of δ. Therefore, the
steady state from the decoupling approximation would deviates from that without the
approximation, and this deviation increases as δ increases.
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Figure 7. Trace distance DT between the density matrices obtained from cases with and without
the decoupling approximation against δ for steady state, and the corresponding plot is obtained for
T1 = 10ω0 and different T2, T2 = 0.1ω0 (green), 4ω0 (red), and 8ω0 (blue).

Now we consider quantum discord of the bipartite system. Without the decoupling
approximation, in Figure 8 we plotD, i.e., quantum correlations of two qubits, as a function
of δ at steady state. It is clear that D increases with the increase of δ. This behavior can also
be closely related to that of Figure 5 (or Figure 7), i.e., as δ increases, the heat currents (or
the steady state) predicted with the decoupling approximation gradually deviates from that
without the approximation. Unlike Section 3.3 where quantum correlations first increase
and then decrease with the increase of inter-system coupling, it can be seen from Figure 8
that increasing inter-system coupling enforces stronger correlations, which means these
two qubits behave more like a composite and must be treated as a whole, so the decoupling
approximation gets worse with the increase of the inter-system interaction. This further
confirms our conclusion in Section 3.3, i.e., the higher the quantum correlations between
two qubits, the greater the deviation from not ignoring the inter-system interaction.

Figure 8. Quantum discord D of the qubit system as a function of δ, without the decoupling
approximation. The plots are obtained for T1 = 10ω0 and different T2, T2 = 0.1ω0 (green), 4ω0 (red),
and 8ω0 (blue). The remaining parameters are the same as those in Figure 5.

In addition, we also consider the other situations by replacing Equation (28) with
ĤS1,S2

int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) or ĤS1,S2
int = δ(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z). In spite of a

quantitative difference, the corresponding results are similar to those obtained above.
In Section 3 we only consider a resonant two-qubit system (it is noted that the system–

environment interactions we chose in Section 3 are different from Equation (29) in this
section). For a more comprehensive study of heat transfer, now we consider two off-
resonant qubits under the same interactions as in Section 3. From our numerical calculations
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we find that the corresponding results are similar to those obtained in Section 3, and
are different from the results in this section above. That is, as δ increases, heat current
predicted with the decoupling approximation gradually deviates from that without the
approximation, then this deviation decreases at larger values of δ. Moreover, for the system–
environment interactions in Section 3, we find that although there is also an asymmetric
heat conduction in the case of without the approximation, no obvious thermal rectification
emerges. This shows that thermal rectification are not only related to asymmetry of the
system, but also related to the system–environment interactions.

4.2. Anisotropic Interacting Qubits

Connecting two qubits S1 and S2 by anisotropic interactions is another possible way to
introduce asymmetry that may also exhibit rectification. Here we consider the case where
the inter-system coupling is taken as an anisotropic exchange interaction [42]

ĤS1,S2
int = δσ̂z ⊗ σ̂x, (31)

and the subsystem–ancilla coupling is chosen as Equation (29). From Equation (23), in
Figure 9 we plot the heat current as a function of δ for these two cases. It can be seen that the
heat current increases with the increase of δ. When T1 > T2, the heat current obtained from
the decoupling approximation (cf. red dashed line in Figure 9) gradually deviates from the
corresponding one obtained without the approximation (cf. red solid line in Figure 9) with
the increase of δ. We also investigate the corresponding trace distance DT , and despite
quantitative difference, its behaviors are similar to those of Figure 7, more specifically, as δ
increases, the steady state predicted with the decoupling approximation gradually deviates
from that without the approximation. So this approximation gets progressively worse as
δ increases.

Figure 9. Jh as a function of inter-system coupling strength δ. The solid and dashed lines correspond
to without and with the decoupling approximation, respectively. We use red line for T1 = 10ω0 and
T2 = ω0. Blue line is for T1 = ω0 and T2 = 10ω0 in the case without the approximation. Here we
set γ = 0.5ω0. The other parameters are the same as those in Figure 2. Inset shows corresponding
rectification factor in the case without the decoupling approximation.

Moreover, in Figure 9, when T1 < T2 we also consider the heat current without
the decoupling approximation. It can be seen that in the case T1 = 10ω0 and T2 = ω0
(cf. red solid line in Figure 9), its corresponding forward heat current is greater than the
backward heat currents (T2 = 10ω0 and T1 = ω0) (cf. blue solid line in Figure 9). So
there is also a heat rectification, and the corresponding rectification factor is plotted in the
inset of Figure 9, which decreases with the increase of δ. It can be seen that an optimal
rectification is almost realized with a high rectification factor R > 0.985. Besides, under
the same excitation-conserving system–environment interactions as those of Section 3,
we also compare the forward and backward heat currents for this asymmetric system.
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The corresponding result shows that, despite an asymmetric heat conduction, there is no
obvious thermal rectification. From numerical calculations, we find that as long as the
system–environment interactions are chosen to be like those in Section 3, no matter how
we introduce asymmetry into the system, there is no apparent thermal rectification effect.
Therefore, we conclude that the rectification effect strongly depends on the form of the
system–environment interaction. It might be the reason why most work [42–45] chose
system–bath interactions like Equation (29) to achieve the thermal rectification for various
kinds of asymmetric systems.

Next we move to the quantum correlation D between two subsystems. Without the
decoupling approximation, in Figure 10 we plot D as a function of δ at steady state. It is
clear that its behavior can be closely related to the failure of the approximation. We again
confirm the same conclusion: the weaker the correlation between the two subsystems, the
more justified the decoupling approximation and vice versa.

Figure 10. Quantum discord D of the qubit system as a function of δ, without the decoupling
approximation. The plot is obtained for T1 = 10ω0 and T2 = ω0. The remaining parameters are the
same as those in Figure 9.

5. Conclusions

In this paper we have considered a system of two coupled qubits that each interact
with their own heat bath. Based on the collision model, we mainly study whether the
decoupling approximation (i.e., the inter-system coupling is ignored when modeling
the system–environment interaction) is valid or not for describing the nonequilibrium
dynamics. We have first investigated the stationary heat current and steady state for
symmetric systems characterized by excitation-conserving system–ancilla interactions. In
this situation, we have found that the decoupling approximation is still valid to describe
either heat current or steady state even at strong inter-system couplings. Then, we have
turned to the asymmetric systems in the case of non-excitation-conserving system–ancilla
interactions. In this case we have found that the heat current or (steady state) predicted with
the decoupling approximation gradually deviates from that without this approximation
as δ increases, namely, this approximation gets progressively worse with the increase of δ.
In particular, without the decoupling approximation we have realized a perfect thermal
rectification effect in this asymmetric systems. Through the analysis of different forms of
interaction between system and environment, we have found that the thermal rectification
effect is closely related to the form of system–ancilla interaction.

We have also considered the quantum discord between the two qubits without the
approximation. For symmetric systems, we have found that quantum correlation between
two subsystems first increases and then decreases as the inter-system coupling strength
increases. The deviation of heat current (or steady state) from the decoupling approxima-
tion also increases and then decreases in this case. For asymmetric systems, the quantum
correlation between two subsystems increases with the increase of inter-system coupling
strength. The deviation of heat current (or steady state) from the decoupling approximation
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in this case increases with the increase of inter-system coupling strength. Although one
would think that whether the decoupling approximation is valid or not should depend
on inter-system coupling strength, we have found that it is closely related to the quantum
correlations between the two subsystems. Specifically, the higher the quantum correlations
means these two qubits behave more like a composite and must be treated as a whole, so
the decoupling approximation gets worse, and vice versa.
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7. Naseem, T.M.; Xuereb, A.; Müstecaplıoğlu, Ö.E. Thermodynamic consistency of the optomechanical master equation. Phys. Rev.

A 2018, 98, 052123. [CrossRef]
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