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Abstract: The records of seismic noise in Japan for the period of 1997–2020, which includes the
Tohoku seismic catastrophe on 11 March 2011, are considered. The following properties of noise are
analyzed: The wavelet-based Donoho–Johnston index, the singularity spectrum support width, and
the entropy of the wavelet coefficients. The question of whether precursors of strong earthquakes
can be formulated on their basis is investigated. Attention is paid to the time interval after the
Tohoku mega-earthquake to the trends in the mean properties of low-frequency seismic noise, which
reflect the constant simplification of the statistical structure of seismic vibrations. Estimates of
two-dimensional probability densities of extreme values are presented, which highlight the places
in which extreme values of seismic noise properties are most often realized. The estimates of the
probability densities of extreme values coincide with each other and have a maximum in the region:
30◦ N ≤ Lat ≤ 34◦ N, 136◦ E ≤ Lon ≤ 140◦ E. The main conclusions of the conducted studies
are that the preparation of a strong earthquake is accompanied by a simplification of the structure of
seismic noise. It is shown that bursts of coherence between the time series of the day length and the
noise properties within annual time window precede bursts of released seismic energy. The value of
the lag in the release of seismic energy relative to bursts of coherence is about 1.5 years, which can be
used to declare a time interval of high seismic hazard after reaching the peak of coherence.

Keywords: seismic noise; multifractals; entropy; principal component analysis; coherence; length of
day; vector autoregression

1. Introduction

The article is devoted to the processing of seismic noise data recorded at the network
F-net of stations on the Japanese Islands for 24 years, 1997–2020. During this time period,
on 11 March 2011, a mega-earthquake with a magnitude of 9.1 occurred in Japan. Japan is a
region with a dense, open-access seismic network F-net provided by the National Research
Institute for Earth Science and Disaster Resilience (NIED). This makes it possible to test
various hypotheses about how the preparation of a strong seismic event can affect the
statistical properties of seismic noise.

In works [1–6], it was shown that the processes of earthquake preparation are preceded
by certain changes in the statistical structure of seismic noise. The main changes are in the
simplification of noise, namely in the growth of entropy and loss of multifractality. The
main sources of seismic noise energy are not earthquakes, but the movements of cyclones
in the atmosphere and the impact of ocean waves on the shelf and coast [7–9]. Thus,
the sources of noise energy are located outside the earth’s crust. However, the crust is a
medium for the propagation of seismic waves. As a result, processes inside the earth’s
crust, including the preparation of strong seismic events, are reflected in changes in the
properties of seismic noise.

The article investigates three properties of seismic noise: Entropy, determined through
the distribution of the squares of orthogonal wavelet coefficients, the multifractal sin-
gularity spectrum support width, and the Donoho–Johnstone (DJ) index, defined as the
proportion of the total number of wavelet coefficients that can be considered as "informa-
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tion carriers." These properties are estimated daily from seismic noise records at a network
of stations. The choice of these parameters is due to the fact that their changes reflect
the complication or simplification of the noise structure. With the simplification of the
structure, the entropy increases, while the support width and the DJ index decrease. The
methods outlined in the article are designed to detect spatial areas and time intervals,
where and when the simplification of the noise structure is observed. These areas and time
intervals are interpreted as manifestations of increased seismic hazard.

In addition, a possible trigger of the unevenness of the Earth’s rotation in relation
to the release of seismic energy is being investigated. For this, the quadratic coherence
between the length of the day and the first principal component of the analyzed properties
of seismic noise is estimated within the annual sliding time window. The correlation
function between bursts of coherence and the release of seismic energy turned out to be
significantly shifted by time delays corresponding to the advance of the coherence maxima
to strong earthquakes.

2. Description of Seismic Noise Properties

Minimum normalized entropy of wavelet coefficients En. Let x(t) be a random
signal, and t = 1, . . . , N is the discrete time index. Let c(k)j be the wavelet coefficients of the
analyzed signal. The superscript k is the number of the detail level of the orthogonal wavelet
decomposition and the subscript j numbers the sequence of centers of time intervals in the
vicinity of which the convolution of the signal with finite elements of the basis is calculated.
The bases of 17 orthogonal Daubechies wavelets were used: 10 ordinary bases with a
minimum support with the number of vanished moments from 1 to 10 and 7 Daubechies
symlets [10] with the number of vanishing moments from 4 to 10. For each of the bases, the
normalized entropy of the distribution of the squares of the coefficients was calculated.

En = −
m

∑
k=1

Mk

∑
j=1

p(k)j ln p(k)j / lnNr , p(k)j =
∣∣∣c(k)j

∣∣∣2/∑
l,i

∣∣∣c(l)i

∣∣∣2 (1)

where m is the number of levels of detail accepted for consideration; Mk is the number of
wavelet coefficients at the detail with the number k. The number of levels m depends on
the length N of the analyzed sample. For example, if N = 2m, then m = n, Mk = 2(n−k).
The condition N = 2m is necessary to apply the fast wavelet transform. If the length of N
is not equal to a power of two, then the signal x(t) is padded with zeros to the minimum
length L, which is greater than or equal to N: L = 2m ≥ N. In this case, among the number
Mk = 2(n−k) of all wavelet coefficients at the level k, only N · 2−k coefficients correspond to
the decomposition of the real signal, while the remaining coefficients are equal to zero due
to the addition of zeros to the signal x(t). Thus, in formula (1) Mk = N · 2−k and only “real”
coefficients c(k)j are used to calculate the entropy. The number Nr in formula (1) is equal
to the number of “real” coefficients, that is, Nr = ∑ m

k=1 Mk. The optimal wavelet basis is
found as those that provide minimum to entropy among all 17 tested bases: En→ min.
By construction, 0 ≤ En ≤ 1.

The minimum entropy (1) was proposed in [11]. In works [3,5,6,11–13], it was used
to analyze the predictive properties of seismic noise. Entropy (1) has common features
with the multiscale entropy considered in [14,15]. The multiscale follows from the use
of the wavelet transform, which provides decomposition into discrete energetic atoms∣∣∣c(k)j

∣∣∣2. A similar entropy construction was proposed in [16–18] for the natural time method.
In [19,20], the non-extensive Tsallis entropy was used to study seismic noise.

Donoho–Johnstone index γ. In wavelet filtering, there is a procedure of “thresholding”,
which means setting wavelet coefficients that are smallest by the absolute values to zero [10,21].
An assumption that noise is mainly accumulated at the first detail level is accepted. The
variance of the wavelet coefficients is equal to the variance of the initial signal following
from orthogonality of the wavelet transform. Thus, the noise standard deviation σ could be
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calculated as standard deviation of the wavelet coefficients at the first detail level. In order to
provide a robust estimate, the median of absolute wavelet coefficients at the first detail level
is used

σ = med
{ ∣∣∣c(1)k

∣∣∣ , k = 1, . . . , N/2
}

/0.6745 (2)

where N/2 is the number of these coefficients. The formula (2) follows from the relation
between median and standard deviation for normal random value: Med ≈ 0.6745 · σ. The
estimate of standard deviation σ from formula (2) determines the quantity σ

√
2 · ln N as

a “natural” threshold for separating the noisy wavelet coefficients [10,21]. The formula
σ
√

2 · ln N is following from asymptotic probability of maximal deviations of Gaussian
white noise [10]. Let us define the index γ, 0 < γ < 1 as the ratio of number of wavelet
coefficients satisfying inequality

∣∣∣ck

∣∣∣ > σ
√

2 · ln N to the total number N of wavelet coef-
ficients. The index γ is calculated for the optimal wavelet basis, which was found from
minimum of entropy (1). The lower the index γ, the noisier the signal.

Singularity spectrum support width ∆α. The measure of variability µX(t, δ) of the ran-
dom signal x(t) on the time interval [t, t + δ] is defined as its range:
µx(t, δ) = max

t≤u≤t+δ
x(u) − min

t≤u≤t+δ
x(u). Let us consider the mean value of its power de-

gree q: M(δ, q) = M[(µx(t, δ))q]. The signal is scale-invariant [22] if M(δ, q) ∼ δ ρ(q) when
δ→ 0 , that is, the following limit exists:

ρ(q) = lim
δ→0

(ln M(δ, q)/ln δ) (3)

The process is monofractal if ρ(q) = Hq, where H = const, 0 < H < 1; otherwise,
when ρ(q) is a nonlinear concave function of q, the signal is multifractal. The value of ρ(q)
for a finite sample x(t), t = 0, 1, . . . , N − 1 could be calculated using the method of de-
trended fluctuation analysis (DFA) [23,24], which was modified for estimating multifractals
in [25]. The time series is split into adjacent intervals of length s:

I(s)k = {t : 1 + (k− 1)s ≤ t ≤ ks, k = 1, . . . , [N/s]} (4)

Let us consider a part of signal x(t), corresponding to interval I(s)k :

y(s)k (t) = x((k− 1)s + t), t = 1, . . . , s (5)

Let us fit a polynomial of the order m p(s, m)
k (t) to the signal y(s)k (t) and consider

the deflections:
∆y(s,m)

k (t) = y(s)k (t)− p(s, m)
k (t), t = 1, . . . , s (6)

and the sum:

Z(m)(q, s) =

(
[N/s]

∑
k=1

(max
1≤t≤s

∆y(s,m)
k (t)− min

1≤t≤s
∆y(s,m)

k (t))
q
/ [N/s]

)1/q

(7)

The quantity (7) could be regarded as the estimate of (M(δs, q))1/q. Let us intro-
duce the function h(q) as a linear regression coefficient between ln(Z(m)(q, s)) and ln(s):
Z(m)(q, s) ∼ sh(q) within scales ranging smin ≤ s ≤ smax. The minimum value of scale
smin within Formulae (4)–(7) was chosen to be 20 samples, and the maximum scale equals
smax = N/5. For the monofractal signal h(q) = H = const, but in the general case,
ρ(q) = qh(q). The multifractal singularity spectrum F(α) is defined as the fractal dimen-
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sionality of the set of time moments t for which the Hölder–Lipschitz exponent is equal to
α, which means |x(t + δ)− x(t)| ∼ |δ| α, δ→ 0 [26]. Let us calculate a Gibbs sum:

W(q, s) =
[N/s]

∑
k=1

(max
1≤t≤s

∆y(s,m)
k (t)− min

1≤t≤s
∆y(s,m)

k (t))
q

(8)

The mass exponent τ(q) is defined by the condition W(q, s) ∼ sτ(q). A formula
τ(q) = ρ(q)− 1 = qh(q)− 1 follows from (7). The values of exponent q in the Formula (7)
were taken from interval [−Q,+Q] where Q is some large number. The value Q = 10 is
used. The values F(α) = min

q∈[−Q,+Q]
(αq− τ(q)) are calculated for α ∈ [Amin, Amax] where

Amin = min
q∈[−Q,+Q]

dτ(q)/dq and Amax = max
q∈[−Q,+Q]

dτ(q)/dq. The derivative dτ(q)/dq is

calculated numerically. The accuracy of its calculation is not very important, because this
derivative is used for a rough determination of an a priori interval of α values. The value of
αmin and αmax are determined as minimum and maximum values of α for which F(α) ≥ 0.
Thus, the spectrum F(α) is defined according to the formula:

F(α) = max
{

min
q∈[−Q,+Q]

(αq− τ(q)), 0
}

(9)

Let us consider the estimates of singularity spectrum F(α) in a sliding window. For
this case, its evolution can provide important information about the structure of the chaotic
pulsations of the series. The support width of the singularity spectrum ∆α = αmax − αmin
is an important characteristic of the signal and it is regarded as a measure of variety of
stochastic behavior.

Multifractal analysis is often used in geophysics [27,28]. The natural time approach [17]
has its own toolboxes using multifractals and multiscale entropy for the analysis of seis-
micity [18,29–31]. The multifractal property ∆α of seismic noise was used for the purposes
of predicting earthquakes and assessing seismic hazard in [1–5,13,32]. The singularity
spectrum support width ∆α is used to study the behavior of various nonlinear systems.
A decrease in the parameter ∆α is a well-known effect that anticipates changes in the
properties of biological and medical systems [33–35]. It was shown in [36] that the “loss of
multifractality” is also universal in nature in physical systems.

3. Seismic Noise Data

Vertical seismic oscillations data with sampling rate 1 Hz were used for the analysis.
These data are accessible from the source [37] for 78 seismic stations of the network F-net
in Japan. For the analysis, a time interval from the beginning of 1997 up to 31 March 2021
was selected. Figure 1 presents positions of the network stations and the location of the
Nankai Deep Trench, which is the northern boundary of the Philippine tectonic plate.

The seismic data with a sampling frequency of 1 Hz were reduced to a time step of
1 minute by calculating the mean values in adjacent time intervals of 60 values. The seismic
records from each station after coming to a 1-minute sampling time step were split into
time fragments of the length of 1 day (1440 samples) and for each fragment, parameters
(En, γ, ∆α) of daily seismic noise waveforms were calculated. Scale-dependent trends in
the Formulae (6) and (7) were removed by polynomials of the eighth order. Removing
trends from seismic noise waveforms by the polynomial of the eighth order was used
before computing entropy En and index γ in each daily time window. Thus, the time series
of (En, γ, ∆α) values with a sampling time step of 1 day was obtained from each of the
seismic stations, which are presented in Figure 1.
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Figure 1. Positions of 78 seismic stations in Japan. The blue dashed line shows the position of the
Nankai Deep Trench.

Figure 2 presents the graph of working stations each day during the considered time
interval. The seismic station is considered working within the current day if there are no
gaps during this day. One can see that the number of operable stations at the initial time
fragment (1997–2001) is rather small. This influences the reliability of further estimates.
Nevertheless, the result of data processing should not be removed from the analysis.
Particularly, median values of seismic noise properties are rather stable to the number of
working stations.
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The initial seismic records with a 1 Hz sampling rate were taken “as is”, which includes
background seismic oscillations and records immediately after earthquakes. It is important
to underline that these 1 Hz records were transformed into a sampling time step of 1 min
by averaging within adjacent time fragments of the length of 60 values. This smoothing
operation gets rid of the influence of high-frequency immediate reactions of earthquakes.

The issue of predicting of strong earthquakes in Japan using entropy and multifractal
properties of seismic noise was investigated in [1–5]. The natural time approach was
applied to estimate seismic danger in Japan in [38,39].
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4. Averaged Maps of Seismic Noise Properties

Let us consider the regular grid of the size 30 × 30 nodes covering the region with
latitudes between 28◦ N and 46◦ N and longitudes between 128◦ E and 146◦ E (see
Figure 1). Let U be any value of ∆α, En or γ. For each node (i, j) of the grid and for
each day t, the five nearest operable seismic stations are found, which provides five values
of U. Let us take a median U(t)

ij of these values. The values U(t)
ij form an “elementary” daily

map. These daily maps could be averaged:

Uij(t0, t1) =
t1

∑
t=t0

U(t)
ij /(t1 − t0 + 1) (10)

for daily time indexes t between two given dates t0 and t1.
Figure 3 presents averaged maps of (En, γ, ∆α) for adjacent time intervals: From the

beginning of 1997 up to 25 of September 2003, the day of an earthquake with magnitude
8.3 near Hokkaido; from 26 of September 2003 up to 10 of March 2011, the day before
the Tohoku mega-earthquake 11 of March with a magnitude 9.1l; and from 14 of March
2011 (3 days after seismic shock of 11 March of 2011) up to 31 of March 2021. The spatial
distribution of seismic noise properties is shown only in the vicinity of the Japanese Islands
in the union of circles with a radius of 250 km, built around each seismic station. During
the considered time interval (1 January 1997–31 March 2021) only these two earthquakes
with magnitude above 8 occurred at Japanese Islands. That is why these two events were
taken as characteristic time markers.

The averaged map of ∆α before the Tohoku earthquake is presented in Figure 3a2.
One can notice that the region of future seismic events is extracted by relatively low values
of ∆α. If Figure 3a1,a2 are compared, one can see that after the earthquake on 25 September
2003, the domain with low values of singularity spectrum support width was split into two
parts. The northern part turns out to be the region of the mega-earthquake on 11 March
2011 whereas the southern part preserves low values of ∆α (Figure 3a2,a3).

Based on the assumption that low values of ∆α correspond to high seismic danger, a
hypothesis that the Tohoku earthquake drops only part of the accumulated tectonic energy
from the southern region could be considered, and the region corresponding to the Nankai
Trough could be regarded as the region of a future strong earthquake. Comparing the
averaged maps of entropy En in Figure 3b1–b3 with similar maps of ∆α in Figure 3a1–a3,
one can notice that they are antipodes of each other. It means that high values of entropy
En correspond to regions with high seismic danger. It should be noted that “high” and
“low” values of seismic noise statistics are not considered absolute, but rather relative to
the values within different time intervals. Each time interval is characterized by its own
mean value, and differences with respect to mean value within the time interval define
whether the value is “high” or “low” in the considered time interval.

A possible mechanism as to why low values of ∆α and high values of En extract
seismically dangerous regions was given in [2–6]. It is considered as the consequence
of consolidation of small blocks of the Earth’s crust into the large one before the strong
earthquake. Mutual movements of small blocks follow the existence of high-amplitude,
irregular spikes in low-frequency seismic noise waveforms. After consolidation, these
irregular spikes disappear, which cause the decrease of ∆α and increase of entropy.
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Figure 3. Averaged maps of seismic noise parameters ∆α (a1–a3), En (b1–b3) and γ (c1–c3), calculated for three time
intervals (1 January 1997–25 September 2003, 26 September 2003–10 October 2011, and 14 March 2011–31 March 2021). Black
stars indicate hypocenters of two strong earthquakes: 25 September 2003, M = 8.3 and 11 March 2011, M = 9.1. The spatial
distribution of seismic noise properties is shown only in the vicinity of the Japanese Islands in the union of circles with a
radius of 250 km, built around each seismic station.

The peculiarities of spatial distribution of the wavelet-based index γ, as can be seen
from a comparison of Figure 3a1–a3,c1–c3, basically coincides with the main features of
spatial distribution of the ∆α parameter. However, it should be noted that their calculation
is based on completely different principles. Therefore, the γ parameter seems to provide
additional information and their mutual consideration is important because estimations
of these parameters are based on different approaches. It should be noticed that index γ
in Figure 3c3 has low values in the region of the previous Tohoku events (compared with
Figure 3c2. This could be the consequence of the preparation of two earthquakes that occur
in the aftershocks region of the Tohoku event: Lat = 37.75◦ N, Lon = 141.71 ◦ E, M = 7.1
on 13 February 2021 and Lat = 38.47◦ N, Lon = 141.61 ◦ E, M = 7.0 on 20 March 2021.
In addition, the Tohoku aftershocks region has lower values of ∆α in Figure 3a3 and higher
values of entropy in Figure 3b3 for the same reason.
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5. Trends of Seismic Noise Properties

From the point of view of studying the processes of preparation of large earthquakes,
the behavior of the integral characteristics of the field of seismic vibrations is of particular
interest. As such characteristics, let us consider the median values of the properties of
seismic noise, calculated daily for all operational stations of the seismic network. The
three graphs on the left in Figure 4 show the median values of (En, γ, ∆α), and green lines
present running average values in a moving time window at the length of 57 days. The use
of a moving average over a 57-day window is intended to facilitate visual perception of the
daily median values of seismic noise properties. The window length of 57 days was chosen
experimentally as a value that, on the one hand, smooths high-frequency pulsations of
daily median seismic noise properties, and on the other hand, allows one to see the annual
frequency of changes in these properties. The number 57 equals to double the length of
the Moon month (28 days) plus 1. An additional unit is needed to make the window
length odd.
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Figure 4. Left panel presents graphs of daily median values of seismic noise parameters γ, ∆α and En, green lines are graphs
of running average of the length 57 days. Right panel presents corresponding results of deep smoothing of median daily
values by Gaussian kernel with bandwidth 182 days, red lines present linear trends of smoothed values after 11 March 2011.
Horizontal blue lines present mean values of seismic noise statistics for three time intervals: 1 January 1997–25 September
2003, 26 September 2003–3 October 2011, and 14 March 2011–31 March 2021.

To highlight possible predictive signs in the behavior of the median values of seis-
mic noise properties, a deeper smoothing of high-amplitude random fluctuations should
be performed. For this purpose, a kernel Gaussian smoothing [40,41] with a band-
width of 182 days (half a year) will be applied. The result of this operation is shown in
Figure 4 in the right column of the graphs. The red lines represent linear trends of smoothed
values for the final observation interval, starting from 2012. From the behavior of the linear
trends, it can be seen that, since 2012, there has been a systematic decrease in the singularity
spectrum support width ∆α and the DJ index γ, as well as an increase in the entropy En of
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seismic noise. It should be noted that the final ∆α and γ values are less than any previous
smoothed values, and the final entropy En value is superior to any previous value. Such
behavior of the smoothed values is interpreted as an indicator of the growth of seismic
hazard for the entire region of the Japanese Islands. The smoothed values of ∆α and En
at right panel of Figure 4 have a rather explicit reaction on the Tohoku mega-earthquake
on 11 March 2011: The singularity spectrum width ∆α increases whereas the entropy En
decreases. As for the DJ index γ, its increasing is observed but its amplitude is rather
weak. Thus, the statistic γ serves as some kind of additional characteristic of seismic noise
to the “main” properties ∆α and En. Nevertheless, the Pearson correlation coefficient
between smoothed γ and ∆α curves in the right panel of Figure 4 equals 0.77. Such a high
value of correlation points out the fact that both these statistics reflect similar variations in
seismic noise structure. Besides smoothed curves, it is interesting to compare simple mean
values that are calculated for the sequence of three time intervals, which are discussed in
Figure 3. These mean values are presented in the right panel of Figure 4 by blue horizontal
lines. One can notice that mean values of γ and ∆α progressively decrease, whereas the
mean value of entropy En increases. This fact is interpreted as the general seismic danger
in Japan permanently increasing.

6. Maps of Probability Densities for Extreme Values

Let us consider values of the parameter as a function of 2D vectors of longitudes and
latitudes zij = (xi, yj) of nodes (i, j) explicitly: U(t)

ij ≡ U(t)(zij). For each daily “elementary

map” with a discrete time index t let us find coordinates z(t)mn = (x(t)m , y(t)n ) of the nodes
where U attains a given number nm of extreme values with respect to all other nodes of the
regular grid. If U = ∆α or U = γ, then the minimum values will be sought. Otherwise, for
U = En, the maximum values will be sought. Further on, nm = 10 extreme values are used.
The cloud of 2D vectors z(t)mn, which are regarded within some time interval t ∈ [t0, t1],
forms some random set. Let us estimate their 2D probability distribution function for
each node zij of the regular grid. For this purpose, the Parzen–Rosenblatt estimate with
Gaussian kernel function [41] will be applied:

p(zij|t 0, t 1) =
1

2πnmh2(t 1 − t 0 + 1)

t 1

∑
t=t 0

∑
mn

exp

−
∣∣∣zij − z(t)mn

∣∣∣2
2h2

 (11)

Here, h is the radius of kernel averaging (smoothing bandwidth), t 0, t 1 are intege
indices that numerate daily “elementary” maps. Thus, (t 1 − t 0 + 1) is the number of daily
maps within the considered time interval. The smoothing bandwidth h = 1◦ was used.
Figure 5 presents maps of probability density estimate (11) for time indices t corresponding
to three time fragments similar to the maps presented at Figure 2. Kernel estimates
(11) of the probability densities of extreme values of statistics of random fluctuations of
geophysical fields in a moving time window were used in [6,42]. The distribution of
probability densities of extreme values of seismic noise properties is shown only in the
vicinity of the Japanese Islands in the union of circles with a radius of 250 km, built around
each seismic station.
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Figure 5. Maps of probability densities of extreme values, minimums for ∆α, γ and maximums En, estimated for three
time intervals (1 January 1997–25 September 2003, 26 September 2003–10 October 2011, and 14 March 2011–31 March
2021). Black stars indicate hypocenters of two strong earthquakes: 25 September 2003, M = 8.3 and 11 March 2011, M = 9.1.
The distribution of probability densities of extreme values of seismic noise properties is shown only in the vicinity of the
Japanese Islands in the union of circles with a radius of 250 km, built around each seismic station.

The main purpose of constructing two-dimensional maps of the probability distribu-
tion of extreme values of the studied statistics is an attempt to more accurately localize
those areas where their minima or maxima are most often realized, compared to using
simple maps of property values, similar to those shown in Figure 3. The probability density
distribution maps of extreme values are presented in Figure 5 for the same three time
intervals as in Figure 2. From a comparison of Figures 3 and 5, it is noticeable that the
maxima of the probability densities distinguish compact regions. Note that for the maps in
Figure 5a2,b2,c2 for the time interval 26 September 2003–10 March 2011.near the epicenter
of the future Tohoku mega-earthquake, there is a spot with an increased probability of
minimum values for the ∆α and γ parameters and maximum entropy En values. Thus,
the maxima of the probability density of extreme values in Figure 5 much more accurately
indicate the area of an impending strong earthquake than simple maps of the distribu-
tion of seismic noise statistics in Figure 3. In addition, attention is drawn to the area of
increased probabilities, which is visible both for the time interval 26 September 2003–10
March 2011 and for 14 March 2011–31 March 2021 in the range 30◦ N ≤ Lat ≤ 34◦ N and
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136◦ E ≤ Lon ≤ 140◦ E. It corresponds to a significantly broader range of lower ∆α and
γ values and higher entropy En values in Figure 3. This area is interpreted as a possible
epicenter for the next mega-earthquake. This hypothesis will be discussed in more details
in the Discussion section.

It is noteworthy that the maps of the probability densities of extreme values of the
properties of seismic noise in the left column of the maps in Figure 5 do not distinguish
the epicenter of the 2003 earthquake. As a “justification”, one can cite the consideration
that the presented method for assessing “seismic hazard spots” is applicable only for
mega-earthquakes such as the Tohoku event on 11 March 2011. The 2003 event off the coast
of Hokkaido with a magnitude of 8.3 has an energy of almost 1.5 orders of magnitude less
than the energy of the Tohoku event. Besides that, this could be the consequence of the
small number of operable seismic stations during the initial time fragment of 1997–2001
(see Figure 2).

7. First Principal Component in Moving Time Window and Estimates of
Coherence Spectrum

Furthermore, the method of principal components [43] for aggregating median daily
time series of (En, ∆α, γ) into one scaled time series will be applied. This will be necessary
for investigating the connection of seismic noise properties with the irregularity of Earth’s
rotation. A modification of the principal components method, which was proposed in [5],
will be used.

Let us consider several time series of general dimensionality m P(t) = (P1(t), . . . , Pm(t))
T,

t = 0, 1, . . . In our case m = 3. It is necessary to estimate first principal component of P(t)
in a moving time window of the length L samples. For this purpose, we will consider
samples with time indices t under the condition s− L + 1 ≤ t ≤ s where s is the most
right-hand end of time window. Correlation matrix Φ(s) of the size m×m is calculated
according to formulae

Φ(s) =
(

ϕ
(s)
ab

)
, ϕ

(s)
ab =

s

∑
t=s−L+1

q(s)a (t)q(s)b (t)/L, a, b = 1, . . . , m) (12)

q(s)a (t) = (Pa(t)− P(s)
a )/σ

(s)
a , P(s)

a =
s

∑
t=s−L+1

Pa(t)/L,
(

σ
(s)
a

)2
=

s

∑
t=s−L+1

(Pa(t)−P(s)
a )2/(L− 1), a = 1, . . . , m (13)

Let θ(s) = (θ
(s)
1 , . . . , θ

(s)
m )

T
be the eigenvector of the matrix Φ(s) with the maximum

eigenvalue. Let us calculate

ψ(s)(t) =
m

∑
α=1

θ
(s)
a · q

(s)
a (t) (14)

and define the scalar time series ψ(t) of the adaptive first principal component in a moving
window according to the formula:

ψ(t) =

{
ψ(L−1)(t), 0 ≤ t ≤ (L− 1)

ψ(t)(t), t ≥ L
) (15)

Formulae (12)–(15) are applied independently within each time window. According
to them, in the first time window, the time series ψ(t) consists of L values calculated
according to (14)–(15). In all subsequent time windows, ψ(t) corresponds to the single
most right-hand end. Thus, outside the first time window ψ(t) depends on past values of
P(t) only.

For further analysis, it is necessary to estimate coherence spectra between two time
series in a moving time window. A parametric model of vector autoregression that has
a better frequency resolution than Fourier-based methods for estimating the spectra and
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cross-spectra [44] will be used. For a time series X(t) of dimensionality q, the AR-model is
given by the formula:

X(t) +
p

∑
k=1

B k· X(t− k) = ε(t) (16)

Here, t is the discrete time index, p is the order of autoregression, B k is the matrix
of autoregression coefficients of the size q× q, and ε(t) is the residual signal covariance
matrix P = M

{
ε(t)εT(t)

}
of size q × q. The matrices B k and P are calculated by the

Durbin–Levinson procedure [44]. The parametric estimate of the spectral matrix is defined
by the formula:

SXX(ω) = Φ−1(ω)·P· Φ−H(ω), Φ(ω) = E +
p

∑
k=1

Bke−iωk (17)

where E is the unit size q × q matrix. For dimension q = 2, the quadratic coherence
spectrum is calculated according to the formula:

β2(ω) = |S12(ω)|2/(S11(ω)·S22(ω)) (18)

Here, S11(ω) and S22(ω) are the diagonal elements of matrix (17) whereas S12(ω) is
cross-spectrum. The coherence estimation was performed using a fifth-order vector autore-
gressive model with preliminary removal of linear trends and transition to increments.

8. Connection with Irregularity of Earth’s Rotation

The irregular rotation of the Earth traditionally is explained by the influence of pro-
cesses in the atmosphere [45]. At the same time, some researchers pointed out the connec-
tion between the irregular rotation of the Earth and seismicity [46,47]. The possible trigger
mechanism of the influence of variations in the Earth’s rotation on the seismic process
was investigated in [48]. According to such an interpretation, a question arises about the
impact of the processes in the atmosphere through the irregular rotation of the Earth on
the seismic process. Estimates of the influence of the strong earthquake on the length of
days are given in [49].

Figure 6a presents a graph of the length of day (LOD), which was taken from the
source [50]. Figure 6b is a graph of the first principal component of daily median values of
seismic noise parameters (En, γ, ∆α) (Figure 4, left panel), estimated in the time window
of the length of 365 days. Figure 6c presents a time–frequency diagram of the evolution of
squared coherence (18) between LOD and the first principal component in a moving time
window the length of 365 days with an offset of 3 days. Bursts of coherence are concentrated
within the narrow frequency band with periods from 11 up to 14 days. Figure 6d is a graph
presenting maximum values with respect to the frequencies of the squared coherence.
Figure 6e is a graph of the decimal logarithm of the seismic energy release (joules) in
the vicinity of the Japan Islands: 28◦ N ≤ Lat ≤ 48◦ N, 128◦ E ≤ Lon ≤ 156◦ E.
Information about seismicity was taken from the source [51].

In previous papers [11,52,53], maximum values of the coherence spectrum between
LOD and daily median values of seismic noise properties were investigated in seeking
the reasons for the existence of a break point in 2003 for trends and correlations of global
seismic noise. It was shown that after 2003, trends of global seismic noise became typical
for areas with increasing seismic hazard. Note that after the Sumatran mega-earthquake
of 26 December 2004, M = 9, there was a sharp increase in the number of the strongest
earthquakes around the world.
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Figure 6. (a) Plot of length of day (LOD); (b) graph of first principal component of three seismic noise parameters calculated
within the moving time window of 365 days; green line is a graph of running average of the length of 57 days; (c) time-
frequency map of quadratic coherence between LOD and principal component (b) in a moving time window of the length
of 365 days with a mutual shift of 3 days; (d) graph of the maximum values with respect to the frequencies of the squared
coherence between LOD and the first principal component; (e) plot of the decimal logarithm of seismic energy released in
the vicinity of the Japan Islands; (f) correlation function between the values of the logarithm of the released seismic energy
and the maximums of coherence between the day length and the first principal component. Negative values of time shifts
on graph (f) correspond to the lag in the release of seismic energy relative to bursts of coherence between LOD and seismic
noise first principal component. Graphs (d) and (e) are plotted in dependence of the right end of time window of 365 days
with an offset of 3 days.

Thus, the structure of Figure 6 is the following. Figure 6c in the right-hand part of
Figure 6 is a time-frequency map of the squared coherence function between two curves
at the left-hand part presented by Figure 6a (LOD curve) and Figure 6b (first principal
component of three daily median seismic noise properties). The map in Figure 6c illustrates
a series of bursts of coherence within narrow frequency bands. This series of coherence
bursts is presented as a one-dimensional graph in Figure 6d. The question of how much the
bursts of coherence between LOD and the first principal component of the daily median
properties of seismic noise can, on average, outpace the release of seismic energy is of
interest. The estimate of this lag is presented in Figure 6e. To clarify this issue, the cross-
correlation function for time shifts of ±1200 days was calculated. The graph of correlation
function is presented in Figure 6f.

According to the correlation function estimate, one can notice that its values for
negative time shifts significantly exceed the values for positive shifts. This confirms the
fact that the release of seismic energy is delayed relative to bursts of the coherence measure.
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As for the lag time, it is estimated from the correlation maximum to be 432 days. This result
also relates to the possibility of predicting strong earthquakes. Namely, if there is a burst of
coherence between the LOD and the seismic noise properties, then this may be a harbinger
of the strong release of seismic energy in about 1.5 years.

Although the value of correlation near 0.4 is rather small and it could not be an
argument for a statistically significant linear connection between two random variables, I
suppose that the main purpose of the correlation function estimate is establishing the fact
that one variable shifted with respect to the other. The strong asymmetry of the correlation
function in Figure 6f confirms the preceding of a coherence burst to a burst of seismic
energy, which could be noticed visually by comparing the graphs in Figure 5d,e.

9. Discussion

The problem of a possible strong earthquake in the area of the Nankai Trough is
traditional in Japanese seismology [54,55]. In [55], an estimate of the probability of 0.35–
0.45 of the occurrence of an earthquake with a magnitude of more than 8.5 in this region
during the time interval 2000–2010 is given. In [56], after the mega-earthquake of 11 March
2011, based on the analysis of GPS data, it was concluded that the probability of a strong
earthquake to the south of the Tohoku aftershock region increased. Based on a retrospective
analysis of seismic catalogs in [57], it was concluded that a magnitude 9 earthquake off the
coast of Japan should not have come as a surprise. However, this event came as a surprise
to traditional earthquake prediction methods. It led to an overestimation of the value of
the maximum possible magnitude for seismic events in the Japan Trench, and in [58], an
estimate is given up to a magnitude of 10.

A serious obstacle to the successful prediction of earthquakes is the presence of such a
mechanism for the discharge of accumulated tectonic energy as “slow earthquakes” [59]. In
fact, forecasting methods are only capable of identifying areas and time intervals where and
when there is a noticeable accumulation of energy. The methods for studying low-frequency
seismic noise discussed in the article can capture the accumulation of energy, which is
associated with the consolidation of small blocks of the earth’s crust into large blocks
and, as a consequence of this consolidation, the simplification of the statistical structure
of the noise due to the disappearance of high-amplitude bursts arising from the mutual
motion of small blocks. The stored energy can be discharged both as a result of an ordinary
earthquake, and during a “slow earthquake”, the duration of which can be from several
hours to several days. For the most part, slow earthquakes occur completely imperceptibly
and are not recorded. Nevertheless, in terms of the efficiency of dissipation of accumulated
tectonic energy, they are not inferior to ordinary “fast” earthquakes. Modern methods of
analyzing geophysical data are still unable to give an estimate according to which of the
two scenarios the accumulated energy will be released in. Due to this uncertainty in the
practice of forecasting, there are many cases when the behavior of various characteristics of
observations behaves similarly to previous cases before a seismic event; however, a new
expected event does not occur, which means a possible release of energy according to a
“quiet scenario”.

Identification of areas in which minima or maxima of seismic noise statistics are most
often realized, like the maps in Figure 5, provides a dynamic assessment of seismic hazard.
The regions of maxima of two-dimensional distribution densities of extreme values of
seismic noise statistics can be called “seismic hazard spots”. Seismic hazard spots can arise
and disappear without the manifestation in the form of an ordinary earthquake. At the same
time, the detection of a stable ”seismic hazard patch” like an area 30◦ N ≤ Lat ≤ 34◦ N,
136◦ E ≤ Lon ≤ 140◦ E means that there are persistent tectonic causes, and such areas
should be given close attention.

As for the estimation of the event time, this part of the earthquake forecast is the most
difficult. At present, one can only talk about the assessment of the trend, that is, whether
the seismic hazard is increasing or decreasing. In this regard, the linear trends presented in
the right column of the graphs in Figure 3 indicate an increase in the seismic hazard of the
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next mega-earthquake. In addition, the graph of the cross-correlation function presented in
Figure 6f can give an estimate of the time of the next large earthquake from the occurrence
of a burst of the coherence function between the median properties of seismic noise and
the time series of the length of day reflecting the irregular rotation of the Earth.

10. Conclusions

A method for analyzing continuous records of low-frequency seismic noise on a
network of broadband stations in a seismically active region is presented. The method is
based on the calculation of multifractal singularity spectrum support width and wavelet-
based entropy and Donoho–Johnstone index in successive daily time intervals. Methods
have been developed for assessing the spatial distribution of the values of these seismic
noise properties and the identification of "seismic hazard spots" as areas of increased values
of two-dimensional probability densities of extreme values of seismic noise statistics. The
method is applied to the analysis of data from the F-net seismic network on the Japanese
Islands for the time interval from the beginning of 1997 to the end of March 2021. The
question of a possible trigger effect of the irregularity of Earth’s rotation on the seismic
energy release is considered. An estimate of the lag between strong bursts of seismic energy
release and bursts of coherence between the time series of the length of the day and the
median values of seismic noise properties in Japan is obtained. The value of this lag is close
to 1.5 years, which could be used for announcing a high seismic danger time interval after
the peak of coherence is achieved.
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