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Abstract: Grasping the historical volatility of stock market indices and accurately estimating are two
of the major focuses of those involved in the financial securities industry and derivative instruments
pricing. This paper presents the results of employing the intrinsic entropy model as a substitute for
estimating the volatility of stock market indices. Diverging from the widely used volatility models
that take into account only the elements related to the traded prices, namely the open, high, low,
and close prices of a trading day (OHLC), the intrinsic entropy model takes into account the traded
volumes during the considered time frame as well. We adjust the intraday intrinsic entropy model
that we introduced earlier for exchange-traded securities in order to connect daily OHLC prices with
the ratio of the corresponding daily volume to the overall volume traded in the considered period.
The intrinsic entropy model conceptualizes this ratio as entropic probability or market credence
assigned to the corresponding price level. The intrinsic entropy is computed using historical daily
data for traded market indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Nikkei
225, and Hang Seng Index). We compare the results produced by the intrinsic entropy model with
the volatility estimates obtained for the same data sets using widely employed industry volatility
estimators. The intrinsic entropy model proves to consistently deliver reliable estimates for various
time frames while showing peculiarly high values for the coefficient of variation, with the estimates
falling in a significantly lower interval range compared with those provided by the other advanced
volatility estimators.

Keywords: intrinsic entropy model; historical volatility; volatility estimators

1. Introduction

When studying the financial securities market, what is of interest for practitioners and
investors alike is how much the price of a given instrument varies within a certain time
interval. In other words, the dispersion of the price values across the time frame taken into
account provides multiple types of information, and is perceived in various ways:

(a) Amplitude, between the lowest and highest values in the interval;
(b) Deviation from a reference level, being the average price value for the interval for

instance;
(c) The degree of interest that the instrument receives from the investors, when connected

with the traded volume at a given price level;
(d) The amplitude of the price changes, in connection with the frequency of changes;

frequent movement or slow directional changes following a certain trend, in terms of
going up or going down.
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These are only a few aspects that naturally derive from following the price variation of
a financial instrument in a given time window. This price dispersion over time is identified
as the historical volatility of a financial security over a period of time. It has a salient
importance in practice for assessing portfolio risk and pricing derivative products [1].
Many different methods have been developed to estimate the historical volatility. These
methods use some or all of the usually available daily prices that characterize a traded
security: open (O), high (H), low (L), and close (C).

The most common method used to estimate the historical volatility is the close-to-
close method. In this approach, the historical volatility is defined as either the annualized
variance or standard deviation of log returns [2,3]. In order to keep the presentation
consistent with the concept of dispersion, which we employ throughout this paper, the
standard deviation of log returns will be compared with benchmark estimators for volatility.
If we consider the log return of a traded stock, then:

xi = ln
(

ci + di
ci−1

)
(1)

where di is the dividend, which is not adjusted; ci is the closing price of the current time
frame (day for instance); and ci−1 is the closing price of the previous time frame.

With these assumptions, the classical volatility estimator based on close-to-close prices
of n-period historical data is given by the standard deviation:

σ =

√
1
n

n

∑
i=1

(xi − x)2 (2)

where x = µ, the drift, is the average of log returns xi in the period.
Based on close-to-close approach, the trading interval T is considered as being the

time frame between two consecutive closing prices: from the previous day closing price
until the current day closing price. Since within this interval T there is an “overnight”
period of time during which the market is closed, regardless of the meridian on which
the particular stock exchange is located, this duration is commonly modeled as a fraction
f of the trading interval T. Hence, there is an interval of length f T between the previous
day’s closing and the current day’s opening, and an interval of length (1− f )T between
the current opening and the current closing, during which the market is open for trading.

In terms of notations, we follow the seminal study by Yang and Zhang (2000) [4], as
they built their results on the work of Garman and Klass (1980) [5]. As Yang and Zhang
mention explicitly in their paper [4], the time fraction f does not necessarily quantify the
time length of the market closing period, but the fraction f is rather meant to model the
relative size of the opening jump in comparison to the price evolution during the period
of continuous trading. We note that the opening jump may occur due to inclusion of the
dividend value when it comes to a traded stock, as in (1) when computing the log returns.
Consequently, the notations that we adopt in this paper follow those that were initially
used by Garman and Klass [5]:

C0 or Ci−1—closing price of the previous day;
O1 or Oi—opening price of the current trading day;
H1 or Hi—current day’s high, during the trading interval [f, 1];
L1 or Hi—current day’s low, during the trading interval [f, 1];
C1 or Ci—closing price of the current day;
o = ln O1 − ln C0—the normalized opening price;
u = ln H1 − ln O1—the normalized high of the current period;
d = ln L1 − ln O1—the normalized low of the current period;
c = ln C1 − ln O1—the normalized closing price of the current period.
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In addition to the above notations, we introduce the following extensions concerning
a succession of equally sized n-periods T:

oi = ln(Oi)− ln(Ci−1) = ln
(

Oi
Ci−1

)
, i = 1, n (3)

ui = ln(Hi)− ln(Oi) = ln
(

Hi
Oi

)
, i = 1, n (4)

ui = ln(Hi)− ln(Oi) = ln
(

Hi
Oi

)
, i = 1, n (5)

ci = ln(Ci)− ln(Oi) = ln
(

Ci
Oi

)
, i = 1, n (6)

With these notations, the drift or the average of log returns for an n-period interval T
is expressed as:

µ =
1
n

n

∑
i=1

(oi + ci) (7)

With this notation, the classical close-to-close volatility estimator becomes:

VCC =

√
1
n

n

∑
i=1

[(oi + ci)− µ ]2 (8)

The classical close-to-close estimator does handle drift (µ may not be necessarily equal
to zero) and quantifies potential opening jumps.

In 1980, Parkinson introduced the first advanced volatility estimator [6] based only on
high and low prices (HL), which can be daily, weekly, monthly, or other:

VP =

√
1
n

n

∑
i=1

1
4 ln 2

(ui − di)
2 (9)

As it does not take into account the opening jumps, the Parkinson volatility estimator
tends to underestimate the volatility. On the other hand, since it does not handle drift
(µ = 0), in a trendy market VP may overestimate the volatility in the pertinent time interval.

In the same year (1980), and in the same journal issue as Parkinson, Garman and
Klass [5] proposed their estimator, which is based on all commonly available prices of the
current day of trading (OHLC):

VGK =

√√√√ 1
n

n

∑
i=1

[
1
2

(
ln

Hi
Li

)2
− (2 ln2− 1)

(
ln

Ci
Oi

)2
]

(10)

The Garman–Klass estimator includes opening and closing prices for the current
trading day. From this perspective, the VGK estimator extends and improves the perfor-
mance offered by the Parkinson estimator. It does not include the overnight jumps though;
therefore, it may underestimate the volatility. If the opening price is not available, the
estimator may use the closing price for the previous day of trading. In this context, the
VGK estimator handles the overnight jumps but does not isolate potential opening jumps.

Both the Parkinson and Garman–Klass advanced volatility estimators assume that
there is no drift (µ = 0). In reality, securities may have a noticeable trend for periods of
time. In order to overcome this deficiency of the previous estimators, Rogers and Satchell
proposed in 1991 [7] a volatility estimator that handles non-zero drifts and which takes
into account all of the prices that synthetically characterize a day of trading (OHLC). They
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refined their estimator in 1994, together with Yoon [8]. With the Garman–Klass notation,
the Rogers–Satchell volatility estimator has the flowing formula:

VRS =

√
1
n

n

∑
i=1

[ui(ui − ci) + di(di − ci)] (11)

The Rogers–Satchell estimator does not handle opening jumps; therefore, it under-
estimates the volatility. It accurately explains the volatility portion that can be attributed
entirely to a trend in the price evolution. Developing (11) based on (4)–(6), we obtain
the following form of Rogers–Satchell volatility estimation, which is simply based on the
current day open, high, low, and close prices:

VRS =

√
1
n

n

∑
i=1

[
ln
(

Hi
Oi

)
ln
(

Hi
Ci

)
+ ln

(
Li
Oi

)
ln
(

Li
Ci

)]
(12)

According to Rogers and Satchell, the Garman–Klass estimator seems to present two
major drawbacks: first, the estimator is biased when there is a non-zero drift rate for
the stock return in the period, and second, the empirical observations of stock prices are
not continuous, as the Brownian motion model approach stipulates [1]. While the first
drawback seems to have no effect since the estimator “works just as well for non-zero (drift
rate)”, the second has some consequences. Garman and Klass suggest the use of a given set
of values to adjust the figures found when historical volatilities are calculated. However,
Rogers and Satchell [8] try to embody the frequency of price observations in the model in
order to overcome the drawback. They claim that the corrected estimator outperforms the
uncorrected one in a study based on simulated data.

Yang and Zhang noted in [4] that VGK and VRS estimators are arithmetic averages of
their corresponding single-period (n = 1) estimators, whereas the classical VCC estimator is
a multiperiod-based one. They argued that an unbiased variance estimator, which would
be both drift-independent and able to handle opening jumps, must be based on multiple
periods. Yang and Zhang proposed in 2000 [4] a new minimum-variance, unbiased,
multiperiod-based variance estimator (n > 1):

VYZ =
√

VO + k VC + (1− k) VRS (13)

where VO and VC are:

VO =
1
n

n

∑
i=1

(oi − o)2 (14)

VC =
1
n

n

∑
i=1

(ci − c)2 (15)

and o = 1
n

n
∑

i=1
oi, c = 1

n

n
∑

i=1
ci are corresponding averages of opening and closing prices in

the considered multiperiod, respectively. Yang and Zhang chose the constant k in order to
minimize the variance of the VYZ estimator:

k =
0.34

1.34 + n+1
n−1

(16)

Yang and Zhang commented in [4] that k can never reach zero or one, and this
fact proves that neither the classical close-to-close estimator VCC nor the Rogers–Satchell
estimator VRS alone has the property of minimum variance. The estimator with minimum
variance is a linear combination of both VCC and VRS with positive weights [9]. Yang and
Zhang noticed that the weight (1− k) applied on VRS is always greater than the weight k
applied on VCC, which reflects the fact that the variance of VRS is smaller than the variance
of VCC.
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2. Materials and Methods

Over the past decades, the use of entropy in modeling various economic phenomena,
along with the emergence of econophysics as a scientific discipline [10], has resulted in
rapid progress being made in economics outside of the mainstream [11]. Information
entropy has been used both to assess the price fluctuations of financial instruments in
connection with the maximum entropy distribution [12] or for studding the predictability
of stock market returns [13,14].

We conceived the intrinsic entropy model initially based on the intraday trading
data, namely the execution data generated by the stock exchange matching engine once
one buy and one sell orders are put in correspondence [15]. For each exchange-listed
security, a trading day consists of a succession of transactions generated by the exchange
matching engine when buy and sell orders meet the conditions for being partially or
entirely executed [16,17]. Each individual transaction, namely a trade, consists of the
following information: the price at which the trade was made, the executed quantity, and
the timestamp at which the order matching occurred and the trade was generated.

With this perspective in mind, the total executed (traded) quantity of a given security
is not known until the trading day is over. Therefore, the intrinsic entropy value for a given
security is determined every time a new trade is made, and all of the ratios are recalculated
for all trades that were made during the day up to the latest one considered at time t. Let X
be a traded symbol on the market. Based on these considerations, the intraday intrinsic
entropy model has the following formalization:

HX
t = −

Nt

∑
k=1

(
pk

pre f
− 1

)
qk
Qt

ln
(

qk
Qt

)
(17)

where:

• HX
t is the intrinsic entropy computed for symbol X at moment t;

• Nt is the total number of trades executed for symbol X in the current trading session
up to moment t;

• k is ordinal trade number;
• qk is trade quantity, i.e., number of shares of trade k for symbol X;
• pk is trade price, i.e., the price of trade k for symbol X;
• Qt is the total traded quantity, i.e., the number of shares traded during the day for

symbol X up to moment t, Qt =
t

∑
k=1

qk;

• pref is reference price for symbol X, corresponding to the trading data prior to the
moment t.

The ratios
qk
Qt

signify the degree of confidence or support that the market provides to

the price level at which the trade was made. The price at which the order matching occurs
relative to a certain reference price offers an indication of the inclination of the investors
towards buying or selling the considered stock.

The intraday intrinsic entropy model proves to gauge the investors’ interest in a
given exchange-traded security. Furthermore, the intrinsic entropy provides an indication
regarding the direction and intensity of this interest, either in buying or selling the security.
Regarding the employed reference prices, we conclude in [15] that the price of the preceding

transaction in the relative price variation
(

pk
pk−1

− 1
)

provides anchoring to the entropic

probability represented by the fraction
qk
Qt

, along with an indication regarding the trading

attractiveness in the given security up to the point in time when the intrinsic entropy is
computed.

In the case of the intraday trading, the total traded quantity of the entire day is not an
a priori known value, hence the intrinsic entropy model proposed for the intraday trading
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employs ratios that have a moving base. The denominator of the series increases with each
exchange-executed quantity for the underlying security:

q1

q1
,

q2

q1 + q2
,

q3

q1 + q2 + q3
, · · · ,

qt

q1 + q2 + q3 + · · ·+ qt−1 + qt
(18)

qk
Qt

, Qt =
Nt

∑
k=1

qk , where t is a timestamp, hence
Nt

∑
k=1

qk
Qt

> 1 (19)

Consequently, the value of the fraction becomes smaller as we advance in the trading
day and with the number of executed trades, regardless of how big the executed quantity
is at any given moment t. We note that t is a timestamp and does not have the meaning of
equally distanced time intervals, since it represents the actual moment during the trading

day when the trade was made. Similarly, if we compute the
qk
Qt

ratios starting with the

most recent transaction and go backwards to the very first one from the beginning of the
trading day, we obtain the following series:

qt

qt
,

qt−1

qt + qt−1
,

qt−2

qt + qt−1 + qt−2
, · · · ,

q1

qt + qt−1 + qt−2 + · · ·+ q2 + q1
(20)

which produces the same value for the limit:

lim
k, t→∞

(
qk
Qt

)
= 0 , lim

k, t→∞

(
qk
Qt

ln
(

qk
Qt

))
= 0 (21)

In other words, depending on the direction in which the trading data for the considered
period are taken into account, either from the oldest to the most recent or from the most
recent to the oldest, the information provided by the traded volume correspondingly favors
the older prices or the more recent ones.

Employing the price of the preceding transaction as a reference price preserves the
atomicity of each trade within the overall pool of transactions that constitute the trading
day on the stock exchange. Consequently, a Markov chain is thereby constructed, in which
the price of each individual trade is compared only to the price of the preceding trade.

We proposed a new unbiased volatility estimator based on multiperiod data (n > 1)
and on the intrinsic entropy model that we introduced in [15].

Developing on this principle, we first considered the intrinsic entropy-based volatility
estimator as taking into account only the closing price of the current trading day versus the
closing price of the previous day:

HCC = −
n

∑
i=1

(
ci

ci−1
− 1

)
pi ln pi (22)

pi =
qi
Q

, Q =
n

∑
i=1

qi , i = 1, n ,
n

∑
i=1

pi = 1 (23)

Based on the meaning of intrinsic entropy introduced in [15] for intraday trading,

these daily ratios
qi
Q

represent the degree of credence that the investors and the market

provide to the price levels or to the intensity of price changes. Formula (22) represents
an intrinsic entropy-based volatility estimator, which emulates the classical close-to-close
approach to volatility.

Diverging from the previously presented volatility models that take into account only
the elements related to the traded prices—namely open, high, low, and close prices for a
trading day (OHLC)—the intrinsic entropy model takes into account the traded volumes
during the considered time frame as well.

We adjusted the intraday intrinsic entropy model that we introduced earlier for
exchange-traded securities in order to connect daily OHLC prices with the ratio of the
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corresponding daily volume to the overall volume traded in the considered period. The
intrinsic entropy model conceptualizes this ratio as entropic probability or market credence
assigned to the corresponding price level.

The intrinsic entropy is computed using historical daily data for traded market indices
(S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Russell 2000, Hang Seng Index,
and Nikkei 225). We compared the results produced by the intrinsic entropy model with
the volatility obtained for the same data sets using widely employed industry volatility
estimators, namely close-to-close (C), Parkinson (HL), Garman–Klass (OHLC), Rogers–
Satchell (OHLC), and Yang–Zhang (OHLC) estimators [18,19].

We consequently studied the efficiency of the intrinsic entropy-based volatility and
the other variance-based volatility estimates by comparing them with the volatility of the
standard close-to-close estimate. It will be shown that this intrinsic entropy-based volatility
model proved to consistently deliver a minimal estimation error, i.e., the minimal variance
of the estimates for time frames of 5 to 11 days.

The intrinsic entropy-based model for estimating volatility follows the Yang and
Zhang approach regarding the treatment of the overnight jumps, opening jumps, and the
drift manifested during the trading day:

H =
∣∣∣ HCO + k HOC + (1− k) HOHLC

∣∣∣ (24)

where HCO, HOC, and HOHLC are the corresponding intrinsic entropies for the overnight,
opening, and daily trading hours of the interval T, respectively. The intrinsic entropy-based
volatility model uses the constant k determined by Yang and Zhang with the same purpose
of weighting the component that handles the opening jumps k HOC and the component
that handles the drift (1− k) HOHLC. The sum of entropic components may have negative
values, and in order to keep the estimates within a comparable spectrum with estimates
provided by the other volatility estimators, we take the absolute value of the intrinsic
entropy, hence the notation with vertical bars | . . . | in Formula (24):

HCO = −
n

∑
i=1

(
Oi

Ci−1
− 1
)

pi−1 ln pi−1 (25)

HOC = −
n

∑
i=1

(
Ci
Oi
− 1
)

pi ln pi (26)

HOHLC = −
n

∑
i=1

[(
Hi
Oi
− 1
)(

Hi
Ci
− 1
)
+

(
Li
Oi
− 1
)(

Li
Ci
− 1
)]

pi ln pi (27)

where pi =
qi
Q

are provided by the relations in (23).

The intrinsic entropy-based estimation does not make use of the average of the log
returns for an n-period interval T. Therefore, the estimator that we introduced is inde-
pendent of drift (µ), and quantifies the overnight and opening jumps. We note that the

fractions pi =
qi
Q

, i = 1, n (23) represent the ratio between the daily traded volume qi and

the overall traded volume Q of the financial instrument in the considered period. Using
log returns provides empirically lower values for the intrinsic entropy-based estimates:

HCO = −
n

∑
i=1

ln
(

Oi
Ci−1

)
pi−1 ln pi−1 (28)

HOC = −
n

∑
i=1

ln
(

Ci
Oi

)
pi ln pi (29)

HOHLC = −
n

∑
i=1

[
ln
(

Hi
Oi

)
ln
(

Hi
Ci

)
+ ln

(
Li
Oi

)
ln
(

Li
Ci

)]
pi ln pi (30)
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In the case of the historical volatility, the n-period interval for which it is computed is
known a priori, along with daily trading data for the interval. If the intention is to give
more weight to the more recent data (prices) then the volume ratios can be computed using
(23). This seems to be a more natural approach from the whole market perspective, given
that an n-period interval is not large enough to completely cancel the contribution of the
order data. On the other hand, knowing exactly the number of trading days for which one
computes the volatility estimator, a simpler and fairer approach may be more appropriate,
for example by calculating the overall traded quantity (volume) from the very beginning,
and thereafter performing calculations for the fraction of each day’s volume in the total

trade volume of the period. In the intrinsic entropy model, the pi =
qi
Q

ratios effectively

substitute the probabilities in the Shannon’s information entropy formula. Hence, the
series of ratios have the following format:

p1 =
q1

Q
, p2 =

q2

Q
, p3 =

q3

Q
, · · · , pn =

qn

Q
,

n

∑
i=1

pi = 1, Q =
n

∑
i=1

qi (31)

We used the probabilities provided by (23) and (31) throughout this paper to compute
the intrinsic entropy-based volatility estimator.

Given the fact that the intrinsic entropy-based estimator of historical volatility does
not produce results in a comparable range of values with the variance-based estimators,
this raises the question regarding how these estimators could actually be compared in a
relevant manner that would allow decisive discrimination [20,21].

We note that the intrinsic entropy-based estimates are consistently in a lower range
of values compared to the estimates produced by the other volatility estimators, while
changing relevantly from one day to another.

The information that is brought in by the daily traded volume and the entropic
mechanism through which the intrinsic entropy-based estimations are computed provide
for more dynamic changes, although we note that these estimates can offer a more valuable
perspective of the overall market evolution for short time horizons. Moreover, the traded
volume can be taken into account by investors when focusing on a technical analysis
approach [22–24]. Figure 1 shows the volatility estimates generated by the intrinsic entropy-
based estimator for a 20 day time window of historical data for the S&P 500 market index,
along with the index price evolution and the daily traded volume. In comparison, the Yang–
Zhang volatility estimator (Figure 2), for the same 20 day time window, provides higher
estimates and shows little changes of volatility on a daily basis. If we move to a 60 day time
interval, the same pattern is preserved—the intrinsic entropy-based estimator generates
volatility in a lower range of values than those produced by the Yang–Zhang estimator,
while showing consistent changes in volatility estimates on a daily basis (Figures 3 and 4).

We note that the other volatility estimators that we considered in our analysis, namely
the classical close-to-close, Parkinson, Garman–Klass, and Rogers–Satchell estimators,
exhibited the same pattern as the Yang–Zhang estimator in terms of providing higher
estimates than the intrinsic entropy-based one, and all showed little change of volatility on
a daily basis. Furthermore, this pattern is reflected in the volatility estimates computed for
all the stock market indices that we took in account (S&P 500, Dow 30, NYSE Composite,
NASDAQ Composite, Russell 2000, Hang Seng Index, and Nikkei 225) and for all the n
day intervals that we considered (5, 10, 15, 20, 30, 60, 90, 150, 260, and 520).
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3. Results

We now present our empirical findings and compare the estimates produced by the
intrinsic entropy-based volatility model against the volatility provided by the classical
close-to-close, Parkinson, Garman–Klass, Rogers–Satchell, and Yang–Zhang estimators.
We considered for this comparison the historical daily trading data for S&P 500, Dow 30,
NYSE Composite, NASDAQ Composite, Russell 2000, Hang Seng Index, and Nikkei 225
indices. The estimates are computed for the following n-period intervals, going back from
31 January 2021: 5, 10, 15, 20, 30, 60, 90, 150, 260, and 520. The estimates are computed
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on a daily basis, by rolling back n-period time windows, corresponding to the considered
intervals.

As the intrinsic entropy-based model of volatility consistently delivers lower estimates
for each time interval and stock market index, we first investigated the following set of in-
dicators to serve for the purpose of comparison, namely the average (Mean), variance (Var),
and coefficient of variation (CV).

Var = σ2
V̂ =

1
n

n

∑
i=1

(
V̂i − V̂

)2
, Mean = V̂ =

1
n

n

∑
i=1

V̂i, CV =

√
Var

Mean
(32)

These indicators are computed for each volatility estimator V̂i, stock market index,
and time interval. The results are presented in Table 1 for the historical trading data for
the S&P 500 index. Along with the shorter time interval, we chose a 260-period time
interval in to order encompass an entire trading year and a 520-period time interval for
approximating two years of trading data. We also want to investigate the manner in which
the volatility estimators reflect the market crash caused by COVID-19 pandemic in the
spring of 2020 [25].

Table 1. Comparison of volatility indicators’ main statistical characteristics, namely the mean, variance, and CV, for the S&P
500 stock market index.

n-day
period Indicator Close-to-Close Parkinson Garman–Klass Rogers–Satchell Yang–Zhang Intrinsic

Entropy

5
Mean 0.01081191 0.00858391 0.00846942 0.00934932 0.00950730 0.00183014
Var 0.00001267 0.00000570 0.00000393 0.00000334 0.00000355 0.00000181
CV 0.32923308 0.27821303 0.23396580 0.19555159 0.19805620 0.73423570

10
Mean 0.00848572 0.00682842 0.00692432 0.00735007 0.00776445 0.00164044
Var 0.00000446 0.00000184 0.00000136 0.00000134 0.00000129 0.00000098
CV 0.24886403 0.19870065 0.16862562 0.15752465 0.14611841 0.60381781

15
Mean 0.00796663 0.00747017 0.00762885 0.00797837 0.00839386 0.00218300
Var 0.00000135 0.00000011 0.00000010 0.00000013 0.00000013 0.00000073
CV 0.14600436 0.04494159 0.04173677 0.04543190 0.04363811 0.39170477

20
Mean 0.00720326 0.00714908 0.00736426 0.00771872 0.00814834 0.00210023
Var 0.00000151 0.00000043 0.00000034 0.00000037 0.00000035 0.00000101
CV 0.17040678 0.09185855 0.07930043 0.07867658 0.07236708 0.47937098

30
Mean 0.00697398 0.00650756 0.00671276 0.00705408 0.00768235 0.00255213
Var 0.00000054 0.00000026 0.00000029 0.00000036 0.00000044 0.00000174
CV 0.10551644 0.07828882 0.07965612 0.08491295 0.08667840 0.51750714

60
Mean 0.01139396 0.00866943 0.00879631 0.00909731 0.01064884 0.00532412
Var 0.00000248 0.00000098 0.00000083 0.00000071 0.00000117 0.00000062
CV 0.13816747 0.11409147 0.10337760 0.09249231 0.10152583 0.14735764

90
Mean 0.01174813 0.00909485 0.00908652 0.00925370 0.01090736 0.00491880
Var 0.00000061 0.00000026 0.00000018 0.00000012 0.00000035 0.00000049
CV 0.06669324 0.05629938 0.04662809 0.03702058 0.05431710 0.14238142

150
Mean 0.02026517 0.01292374 0.01268508 0.01270180 0.01662604 0.00425425
Var 0.00004805 0.00000982 0.00000895 0.00000848 0.00002077 0.00001062
CV 0.34207228 0.24244449 0.23587519 0.22924472 0.27411918 0.76600130

260
Mean 0.01900556 0.01154922 0.01130363 0.01129923 0.01504082 0.00216291
Var 0.00002038 0.00000577 0.00000544 0.00000534 0.00001086 0.00000067
CV 0.23753649 0.20792360 0.20626915 0.20451721 0.21905171 0.37938593

520
Mean 0.01206458 0.00858504 0.00840142 0.00836915 0.01025407 0.00195492
Var 0.00001327 0.00000256 0.00000251 0.00000254 0.00000642 0.00000039
CV 0.30195812 0.18654889 0.18840840 0.19061419 0.24702965 0.31958341
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Figures 5–10 offer a visual perspective of the data contained in Table 1, for time
intervals of 5, 10, 15, 20, 30, and 60 days, respectively. We note that the volatility estimates
provided by the intrinsic entropy consistently show the mean in a lower range of values,
while the coefficient of variation (CV) confirms the earlier observation that the intrinsic
entropy estimates change on a daily basis. This peculiar characteristic of the volatility
estimates produced by the intrinsic entropy estimator suggests that it may be more useful in
estimating the market volatility for short-term trading purposes rather than characterizing
the evolution of the historical volatility over the long term.
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In Appendix A, Table A1 contains the values of the Mean, Var, and CV of volatility
estimates computed for all of the volatility estimators considered for the following stock
market indices: Dow 30, NYSE Composite, NASDAQ Composite, Russell 2000, Nikkei 225,
and Hang Seng Index. We emphasize the fact that the volatility estimates provided by the
intrinsic entropy consistently show the mean in a lower value range, while the coefficient of
variation (CV) confirms the earlier observation that the intrinsic entropy estimates change
on a daily basis. These empirical results were replicated for all of the stock market indices
observed and all of the time intervals considered.
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4. Discussion

The empirical evidence shows that the volatility estimates based on intrinsic entropy
fall in lower value ranges for all of the stock market indices and the time intervals consid-
ered; a comparison established on a referential indicator might be worth investigating. In
particular, we highlight Molnar, who mentioned in [26] the mean squared error (MSE) and
proportional bias (PB). Arnerić et al. [27] employed the MSE as well in their analysis, in
order to rank the volatility estimators. For a n-period time interval, these functions have
the following representations, where Vi is the true, unobserved volatility, employed as a
benchmark, and V̂i is the estimated volatility provided by one of the estimators for each
period i in the interval:

MSE =
1
n

n

∑
i=1

(
Vi − V̂i

)2 (33)

PB =
1
n

n

∑
i=1

∣∣Vi − V̂i
∣∣

Vi
(34)

We note that not having access to the true, unobserved volatility of the market Vi, we
substituted it with VCC

i , the classical close-to-close volatility estimator, as a benchmark.
In addition to the MSE and PB indicators, we note the volatility estimators’ efficiency.

The efficiency of an estimator is defined as the variance of a benchmark estimator divided
by the variance of that particular estimator:

Efficiency (Estimator) =
Var(Benchmark)
Var(Estimator)

(35)

Table 2 presents the mean squared error (MSE), proportional bias (PB), and efficiency
values for the Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic
entropy volatility estimators relative to the classical close-to-close estimator as a benchmark.
The computation process uses the S&P 500 stock market index daily trading data for various
moving time windows.

Table 2. Comparison of volatility indicators for MSE, PB, and efficiency values for the S&P 500 stock market index,
considering the close-to-close estimator as a benchmark.

n-day period Indicator Parkinson Garman–Klass Rogers–Satchell Yang–Zhang Intrinsic Entropy

5
MSE 0.00000639 0.00000818 0.00000564 0.00000488 0.00010374
PB 0.18841732 0.18392193 0.18060307 0.17284327 0.76078733

E f f iciency 2.22170586 3.22700215 3.79078219 3.57371914 7.01730423

10
MSE 0.00000423 0.00000471 0.00000367 0.00000267 0.00005435
PB 0.18139121 0.16823886 0.15273526 0.13357895 0.78269438

E f f iciency 2.42249618 3.27115119 3.32675961 3.46473785 4.54539052

15
MSE 0.00000132 0.00000151 0.00000136 0.00000147 0.00003661
PB 0.08677112 0.09596655 0.11311439 0.13535058 0.71360683

E f f iciency 12.00391935 13.34518672 10.29748059 10.08383070 1.85035735

20
MSE 0.00000049 0.00000071 0.00000101 0.00000163 0.00002848
PB 0.06976201 0.09452474 0.13010625 0.17429379 0.70464018

E f f iciency 3.49376290 4.41797208 4.08555032 4.33322901 1.48647158

30
MSE 0.00000058 0.00000049 0.00000045 0.00000083 0.00002091
PB 0.08109629 0.08418711 0.08855724 0.11604767 0.63921308

E f f iciency 2.08625170 1.89392060 1.50929350 1.22121439 0.31042934

60
MSE 0.00000782 0.00000727 0.00000592 0.00000086 0.00004082
PB 0.23606244 0.22358785 0.19592847 0.06647757 0.52001945

E f f iciency 2.53322216 2.99713613 3.50044573 2.12033020 4.02642459

90
MSE 0.00000718 0.00000727 0.00000648 0.00000080 0.00004764
PB 0.22508669 0.22533215 0.21056193 0.07097473 0.57981658

E f f iciency 2.34154450 3.41988203 5.23098789 1.74899576 1.25163039
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Table 2. Cont.

n-day period Indicator Parkinson Garman–Klass Rogers–Satchell Yang–Zhang Intrinsic Entropy

150
MSE 0.00006840 0.00007309 0.00007350 0.00001893 0.00035241
PB 0.33503046 0.34542667 0.34263106 0.15609292 0.70799995

E f f iciency 4.89480315 5.36766037 5.66770065 2.31355323 4.52512182

260
MSE 0.00006018 0.00006422 0.00006439 0.00001729 0.00030523
PB 0.38206067 0.39451774 0.39413663 0.19999741 0.87010186

E f f iciency 3.53434983 3.74902165 3.81649668 1.87752467 30.26783213

520
MSE 0.00001630 0.00001769 0.00001788 0.00000452 0.00011739
PB 0.26329038 0.27943249 0.28265855 0.13576132 0.81734381

E f f iciency 5.17426017 5.29677442 5.21488373 2.06836292 34.00095019

We note that the intrinsic entropy-based estimator’s efficiency is consistently higher
than the other volatility estimators, particularly for short time intervals of between 5
and 11 days, representing roughly one to two weeks of trading. In order to explore this
observation in more detail, we computed the volatility estimators’ efficiency for a series of
successive time intervals from 5 to 20 days, along with a 30 day window. Figure 11 shows
the evolution of the volatility estimators’ efficiency for the S&P 500 (GSPC) index over
these time intervals.
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We note that the volatility estimators’ efficiency was not consistent with regard to the
stock market indices. The empirical data show no volatility estimator as having the best
efficiency for all market indices considered in our analysis. For example, Figure 12 shows
the evolution of the volatility estimators’ efficiency for the NYSE Composite (NYA) index
over the same 30 day time window.
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In Table A2 and Appendix B, we provide the MSE, PB, and efficiency values for the
Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropy volatility
estimators relative to the classical close-to-close estimator as a benchmark for all of the
considered stock market indices.

In Appendix C we include Figures A1–A5, showing the volatility estimators’ efficiency
for the Dow 30 (DJI), NASDAQ Composite (IXIC), Russell 2000 (RUT), Nikkei 225 (N225),
and Hang Seng Index (HIS) over the 30 day time interval.

We cannot precisely pinpoint the unit of measure for the intrinsic entropy-based
estimation of volatility. We perceive this aspect as a limitation of the estimator in the
sense that it does measure the dispersion of daily price changes with respect to the daily
traded volumes, but not as a pure variance-based estimator; its estimates cannot be directly
compared to other volatility estimators that we considered in our research. It does offer a
higher coefficient of variance for a lower mean of the estimates, which may suggest a better
purpose for its usage as an investment decision support tool, rather than a descriptive
reporting tool for historical volatility.

Figure 13 shows the comparative evolution of the Yang–Zhang and intrinsic entropy-
based volatility estimators for the S&P 500 stock market index over a time window of 260
days. We want to encompass an entire trading year, with data going backwards from 31
January 2021, in order to reflect the market crash caused by the COVID-19 pandemic in
the spring of 2020. We note that the other variance-based volatility estimators, namely
the Parkinson, Garman–Klass, Rogers–Satchell, and classical close-to-close estimators,
exhibit a similar evolution curve as the Yang–Zhang estimator. The manner in which the
intrinsic entropy-based estimator reflects the volatility of “local adjustments” is peculiar.
Figure 14 depicts a similar evolution of the Yang–Zhang and intrinsic entropy-based volatil-
ity estimators for the NYSE Composite stock market index. In Appendix D, we provide
Figures A6–A10, which show the evolution of Yang–Zhang and intrinsic entropy-based
estimates for Dow 30, Russel 2000, NASDAQ Composite, Nikkei 225, and Hang Seng
stock market indices, respectively, over a time window of 260 days, going backwards from
31 January 2021.
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From this different perspective of market volatility, we note that the intrinsic entropy-
based volatility estimates may have a more useful role in emphasizing the fractured nature
of the market [28,29]. Robert A. Levy argued in [30] that even if we assume the efficient
market hypothesis advocated by Eugene Fama [31,32] to be at play, intercorrelations or
co-movements in securities prices could conceal existing dependencies in successive price
changes. Levy conducted a serial correlation study of securities performance ranks and
reached the conclusion that this technique offers a better indication regarding close re-
lationships between certain securities over time than a similar study of successive first
differences would provide. Levy concluded in [30] that even if one adheres to the efficient
market hypothesis, his findings regarding the superior profits that can be achieved by
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investing in securities, which historically have had strong price movements, do not nec-
essarily contradict the random walks hypothesis. Perhaps this observation of “relatively
strong price movements” has something to do with the interest that the investors show
in those securities, something which may be due to the fundamentals of those securities.
The intrinsic value of these securities appears to consistently drag investors towards them.
It is the market perception that their underlying companies are the leaders of the field
they are activating in. Essentially, Levy’s suggestion is an early hint to the fractal theory
investigated more recently through econophysics methods [33].

Levy also commented in [30] that the best results were obtained when dealing with the
most volatile stocks, an aspect emphasized by Myers as well in [34]. Corroborating Levy’s
observations with the characteristics of the estimates produced by the intrinsic entropy-
based volatility, we note that the currently identified limitations regarding the precise
nature of the estimator’s unit of measure and its high variability within a low mean of the
estimates could provide a complementary perspective of the market in comparison with the
variance-based volatility estimators. We also notice that the stock market indices containing
fewer constituents, namely the Dow Jones Industrial Average (30 listed companies) and
Hang Seng Index (50 constituents), exhibited a higher level of uncertainty (Figures A6 and
A10 in Appendix D) during the 2020 COVID-19 crisis compared to the considered indices
with higher numbers of constituents [35].

5. Conclusions

This paper presents the results from employing the intrinsic entropy model for volatil-
ity estimation of stock market indices. Diverging from the widely used volatility models
that take into account only the elements related to the traded prices, —namely the open,
high, low, and close prices of a trading day (OHLC)—the intrinsic entropy model includes
the traded volumes during the considered time frame as well. We adjusted the intraday
intrinsic entropy model that we introduced earlier for exchange-traded securities in order
to connect daily OHLC prices with the ratio of the corresponding daily volume to the
overall volume traded in the considered period. The intrinsic entropy model conceptualizes
this ratio as an entropic probability or market credence assigned to the corresponding
price level. The intrinsic entropy is computed using historical daily data for traded market
indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Russell 2000, Nikkei
225, and Hang Seng Index). We compared the results produced by the intrinsic entropy
model with the volatility obtained for the same data sets using widely employed in the
markets volatility estimators. The intrinsic entropy model proved to consistently deliver
lower volatility estimations for various time frames we experimented with, compared with
those provided by the other advanced volatility estimators. We note that while producing
estimates in a significantly lower range compared with the other considered volatility
estimators, the intrinsic entropy-based volatility offers consistently higher values for the
coefficient of variation of its estimates. The tests that we conducted using historical trading
data concerning the major international stock market indices provide empirical evidence
that the intrinsic entropy-based volatility estimator offers more information regarding the
market volatility, particularly for short time intervals of 5 to 11 days of trading data.

We comment that the identified limitations of the intrinsic entropy-based volatility
estimator, namely the precise nature of its unit of measure and its high variability within a
low average of the estimates, could provide a complementary perspective of the market in
comparison with the variance-based volatility estimators.
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Appendix A

Table A1. Comparison of the volatility indicators’ main statistical characteristics, namely the mean, variance, and CV, for
various market indices and multiple time intervals.

Market Index n-Day
Period Indicator Close-to-

Close Parkinson Garman–
Klass

Rogers–
Satchell

Yang–
Zhang

Intrinsic
Entropy

Dow Jones
Industrial

Average (DJI)

5
Mean 0.00872549 0.00760229 0.00754322 0.00865029 0.00856066 0.00108887
Var 0.00001057 0.00000480 0.00000294 0.00000238 0.00000268 0.00000020
CV 0.37256598 0.28828100 0.22740526 0.17837381 0.19124099 0.41072566

10
Mean 0.00629339 0.00633495 0.00664493 0.00732520 0.00726412 0.00075100
Var 0.00000419 0.00000167 0.00000119 0.00000101 0.00000110 0.00000031
CV 0.32519031 0.20414570 0.16436334 0.13735154 0.14410079 0.74521819

15
Mean 0.00664820 0.00723611 0.00756510 0.00806379 0.00798587 0.00161825
Var 0.00000052 0.00000014 0.00000019 0.00000015 0.00000012 0.00000046
CV 0.10861893 0.05157401 0.05708595 0.04782620 0.04343745 0.41922541

20
Mean 0.00634074 0.00707205 0.00740962 0.00785842 0.00777947 0.00192130
Var 0.00000078 0.00000025 0.00000021 0.00000024 0.00000024 0.00000034
CV 0.13904517 0.07051616 0.06160368 0.06270260 0.06359191 0.30428563

30
Mean 0.00686036 0.00669725 0.00691114 0.00729518 0.00780892 0.00293758
Var 0.00000148 0.00000013 0.00000017 0.00000024 0.00000138 0.00000346
CV 0.17718691 0.05349952 0.06021042 0.06779648 0.15068228 0.63313642

60
Mean 0.01134663 0.00892807 0.00903451 0.00937458 0.01119832 0.00506816
Var 0.00000135 0.00000090 0.00000081 0.00000067 0.00000070 0.00000103
CV 0.10239516 0.10630727 0.09991470 0.08702575 0.07497771 0.20003902

90
Mean 0.01171399 0.00939358 0.00938298 0.00955836 0.01107694 0.00456890
Var 0.00000161 0.00000039 0.00000028 0.00000017 0.00000040 0.00000071
CV 0.10847675 0.06686391 0.05634895 0.04351317 0.05688703 0.18448833

150
Mean 0.02170437 0.01368483 0.01346145 0.01350815 0.01787153 0.00390013
Var 0.00005743 0.00001145 0.00001103 0.00001085 0.00002920 0.00001105
CV 0.34914484 0.24727311 0.24676850 0.24387037 0.30235806 0.85235792

260
Mean 0.02020483 0.01217782 0.01200416 0.01206577 0.01635550 0.00152954
Var 0.00002495 0.00000674 0.00000649 0.00000648 0.00001431 0.00000265
CV 0.24722445 0.21323553 0.21228536 0.21093988 0.23130861 1.06509868

520
Mean 0.01264301 0.00903343 0.00887152 0.00887895 0.01084191 0.00162913
Var 0.00001554 0.00000273 0.00000272 0.00000280 0.00000821 0.00000065
CV 0.31178985 0.18280559 0.18596253 0.18853902 0.26430795 0.49510797

NYSE
Composite

(NYA)

5
Mean 0.00999167 0.00828879 0.00758533 0.00788503 0.00903201 0.00217643
Var 0.00001591 0.00000809 0.00000378 0.00000202 0.00000114 0.00000101
CV 0.39926079 0.34317659 0.25620649 0.18018449 0.11795987 0.46107967

10
Mean 0.00793090 0.00647394 0.00643729 0.00685279 0.00858355 0.00208306
Var 0.00000450 0.00000211 0.00000103 0.00000069 0.00000041 0.00000341
CV 0.26749438 0.22425631 0.15777336 0.12109913 0.07460033 0.88625605

15
Mean 0.00772841 0.00703536 0.00695069 0.00725928 0.00875594 0.00384908
Var 0.00000116 0.00000013 0.00000005 0.00000004 0.00000016 0.00000403
CV 0.13927251 0.05156573 0.03227089 0.02784363 0.04603203 0.52183261
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Table A1. Cont.

Market Index n-Day
Period Indicator Close-to-

Close Parkinson Garman–
Klass

Rogers–
Satchell

Yang–
Zhang

Intrinsic
Entropy

NYSE
Composite

(NYA)

20
Mean 0.00728634 0.00673434 0.00658236 0.00676479 0.00850976 0.00351101
Var 0.00000131 0.00000041 0.00000031 0.00000038 0.00000022 0.00000176
CV 0.15710656 0.09556383 0.08501332 0.09084071 0.05460423 0.37834994

30
Mean 0.00785300 0.00629268 0.00607379 0.00613773 0.00856592 0.00464284
Var 0.00000111 0.00000016 0.00000019 0.00000030 0.00000084 0.00000609
CV 0.13401653 0.06348007 0.07206534 0.08996397 0.10729091 0.53171555

60
Mean 0.01094247 0.00774638 0.00780221 0.00801616 0.01143271 0.00585759
Var 0.00000058 0.00000049 0.00000053 0.00000054 0.00000076 0.00000580
CV 0.06969755 0.09044795 0.09298216 0.09148769 0.07617531 0.41126514

90
Mean 0.01109840 0.00810146 0.00804125 0.00819502 0.01174738 0.00439989
Var 0.00000130 0.00000030 0.00000017 0.00000013 0.00000097 0.00000145
CV 0.10277452 0.06710360 0.05093658 0.04422149 0.08373039 0.27362296

150
Mean 0.02062438 0.01259377 0.01204715 0.01203390 0.01806551 0.00591515
Var 0.00004959 0.00001252 0.00001025 0.00000958 0.00002012 0.00000561
CV 0.34142557 0.28094846 0.26580124 0.25724352 0.24830724 0.40037931

260
Mean 0.01896447 0.01137712 0.01081267 0.01078937 0.01549087 0.00280943
Var 0.00002326 0.00000663 0.00000572 0.00000546 0.00001516 0.00000200
CV 0.25432823 0.22631879 0.22125780 0.21650257 0.25134869 0.50332551

520
Mean 0.01131510 0.00778750 0.00747694 0.00744806 0.00971367 0.00159828
Var 0.00001622 0.00000354 0.00000309 0.00000308 0.00000934 0.00000069
CV 0.35590767 0.24148810 0.23525584 0.23552246 0.31459725 0.52058985

NASDAQ
Composite

(IXIC)

5
Mean 0.01157188 0.01035305 0.01129200 0.01244809 0.01353675 0.00408215
Var 0.00001000 0.00000251 0.00000226 0.00000218 0.00000247 0.00002062
CV 0.27321548 0.15299240 0.13311757 0.11853632 0.11608744 1.11235012

10
Mean 0.01161696 0.00825879 0.00874064 0.00929393 0.01121429 0.00555657
Var 0.00000310 0.00000131 0.00000132 0.00000162 0.00000122 0.00000624
CV 0.15163815 0.13848034 0.13157515 0.13693933 0.09861928 0.44946510

15
Mean 0.01088608 0.00865584 0.00887243 0.00940540 0.01144369 0.00463459
Var 0.00000140 0.00000010 0.00000020 0.00000030 0.00000031 0.00000293
CV 0.10879803 0.03687045 0.04991479 0.05775397 0.04858379 0.36952140

20
Mean 0.00940537 0.00833124 0.00844374 0.00888517 0.01077243 0.00444092
Var 0.00000237 0.00000038 0.00000051 0.00000070 0.00000079 0.00000329
CV 0.16374541 0.07400096 0.08444790 0.09391669 0.08241422 0.40871987

30
Mean 0.00854009 0.00791435 0.00802071 0.00837675 0.01001908 0.00517048
Var 0.00000152 0.00000023 0.00000023 0.00000029 0.00000061 0.00000215
CV 0.14414421 0.06049226 0.05935301 0.06389885 0.07798144 0.28328017

60
Mean 0.01451791 0.01067853 0.01079663 0.01097024 0.01400781 0.00769692
Var 0.00000533 0.00000228 0.00000241 0.00000264 0.00000499 0.00000183
CV 0.15896702 0.14132476 0.14372830 0.14803564 0.15942286 0.17560914

90
Mean 0.01517412 0.01162185 0.01170372 0.01198524 0.01515253 0.00727522
Var 0.00000070 0.00000057 0.00000053 0.00000060 0.00000080 0.00000072
CV 0.05502695 0.06481122 0.06222848 0.06473221 0.05895934 0.11646775

150
Mean 0.02138930 0.01432470 0.01441073 0.01478194 0.02015007 0.00599041
Var 0.00003283 0.00000595 0.00000640 0.00000711 0.00002152 0.00001535
CV 0.26789784 0.17025042 0.17558314 0.18042035 0.23024395 0.65407890

260
Mean 0.01960486 0.01235858 0.01245717 0.01280128 0.01814186 0.00334872
Var 0.00001664 0.00000551 0.00000583 0.00000637 0.00001285 0.00000167
CV 0.20807373 0.19000917 0.19387646 0.19714888 0.19756094 0.38585769

520
Mean 0.01382996 0.00988246 0.00963434 0.00963449 0.01283398 0.00275594
Var 0.00000970 0.00000203 0.00000250 0.00000296 0.00000796 0.00000109
CV 0.22524939 0.14432519 0.16404452 0.17867106 0.21980565 0.37917334
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Table A1. Cont.

Market Index n-Day
Period Indicator Close-to-

Close Parkinson Garman–
Klass

Rogers–
Satchell

Yang–
Zhang

Intrinsic
Entropy

Russell 2000
(RUT)

5
Mean 0.00991671 0.01307366 0.01405525 0.01437876 0.01385329 0.00083727
Var 0.00000200 0.00000185 0.00000216 0.00000234 0.00000201 0.00000015
CV 0.14245664 0.10393763 0.10450040 0.10628188 0.10224085 0.46229401

10
Mean 0.01368915 0.01263666 0.01219173 0.01207957 0.01219841 0.00192724
Var 0.00000418 0.00000234 0.00000164 0.00000143 0.00000136 0.00000163
CV 0.14926302 0.12102483 0.10505896 0.09903673 0.09550284 0.66187800

15
Mean 0.01485351 0.01336544 0.01269242 0.01239219 0.01272227 0.00313515
Var 0.00000134 0.00000034 0.00000017 0.00000019 0.00000014 0.00000104
CV 0.07780405 0.04387729 0.03216149 0.03560095 0.02927366 0.32549423

20
Mean 0.01374033 0.01241325 0.01180092 0.01168943 0.01201008 0.00339509
Var 0.00000167 0.00000109 0.00000104 0.00000079 0.00000079 0.00000047
CV 0.09417478 0.08393490 0.08661318 0.07593790 0.07396221 0.20295617

30
Mean 0.01259099 0.01144940 0.01081205 0.01086922 0.01113579 0.00368403
Var 0.00000074 0.00000072 0.00000074 0.00000063 0.00000062 0.00000034
CV 0.06837743 0.07401461 0.07935853 0.07310552 0.07043307 0.15746301

60
Mean 0.01480119 0.01265195 0.01186316 0.01186514 0.01229146 0.00417849
Var 0.00000062 0.00000032 0.00000035 0.00000034 0.00000035 0.00000067
CV 0.05320246 0.04498704 0.04963282 0.04921266 0.04806367 0.19624034

90
Mean 0.01510832 0.01281169 0.01211768 0.01213506 0.01259779 0.00389472
Var 0.00000206 0.00000080 0.00000064 0.00000052 0.00000071 0.00000039
CV 0.09498441 0.06980047 0.06602921 0.05946552 0.06677849 0.16050359

150
Mean 0.02610188 0.01809627 0.01645875 0.01606316 0.01836359 0.00508462
Var 0.00005948 0.00001348 0.00000869 0.00000673 0.00001505 0.00000246
CV 0.29548104 0.20291649 0.17914216 0.16149934 0.21128298 0.30827922

260
Mean 0.02333263 0.01550435 0.01385642 0.01333010 0.01567160 0.00326408
Var 0.00003082 0.00001071 0.00000846 0.00000786 0.00001191 0.00000163
CV 0.23792027 0.21109646 0.20994577 0.21030392 0.22019177 0.39094495

520
Mean 0.01436620 0.01070409 0.00974964 0.00955855 0.01056899 0.00163485
Var 0.00002264 0.00000647 0.00000471 0.00000402 0.00000721 0.00000103
CV 0.33121091 0.23757214 0.22256792 0.20977774 0.25411107 0.62175585

Nikkei 225
(N225)

5
Mean 0.00829316 0.00590831 0.00586416 0.00577873 0.00841014 0.00278551
Var 0.00000329 0.00000188 0.00000072 0.00000033 0.00000179 0.00000455
CV 0.21873735 0.23182143 0.14440470 0.09867811 0.15919239 0.76564286

10
Mean 0.00898294 0.00765397 0.00745450 0.00736650 0.00911263 0.00336760
Var 0.00000128 0.00000025 0.00000024 0.00000033 0.00000028 0.00000315
CV 0.12601767 0.06545846 0.06523808 0.07741332 0.05808681 0.52711600

15
Mean 0.01028821 0.00768830 0.00726169 0.00705643 0.00873785 0.00490483
Var 0.00000053 0.00000028 0.00000017 0.00000016 0.00000037 0.00000206
CV 0.07104007 0.06911293 0.05619278 0.05659153 0.06922396 0.29290580

20
Mean 0.00935830 0.00709325 0.00668748 0.00646914 0.00794516 0.00390015
Var 0.00000100 0.00000046 0.00000040 0.00000042 0.00000073 0.00000359
CV 0.10679656 0.09554995 0.09507488 0.10017245 0.10747424 0.48589158

30
Mean 0.00879826 0.00653223 0.00624471 0.00610922 0.00801385 0.00536512
Var 0.00000019 0.00000015 0.00000012 0.00000011 0.00000018 0.00000419
CV 0.04899434 0.05959295 0.05653370 0.05496111 0.05292154 0.38168796

60
Mean 0.00898387 0.00615293 0.00598793 0.00588966 0.00838410 0.00656110
Var 0.00000019 0.00000014 0.00000010 0.00000009 0.00000008 0.00000245
CV 0.04848564 0.06059229 0.05179811 0.05043859 0.03348016 0.23855099

90
Mean 0.01011872 0.00650566 0.00629646 0.00619052 0.00895189 0.00558431
Var 0.00000190 0.00000030 0.00000023 0.00000022 0.00000057 0.00000241
CV 0.13638939 0.08430888 0.07583497 0.07509455 0.08463322 0.27821256
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Table A1. Cont.

Market Index n-Day
Period Indicator Close-to-

Close Parkinson Garman–
Klass

Rogers–
Satchell

Yang–
Zhang

Intrinsic
Entropy

Nikkei 225
(N225)

150
Mean 0.01626332 0.01068111 0.01036458 0.01028280 0.01352427 0.00345285
Var 0.00001327 0.00000741 0.00000736 0.00000758 0.00000864 0.00000996
CV 0.22401535 0.25491003 0.26180507 0.26776032 0.21740212 0.91423899

260
Mean 0.01420960 0.00934585 0.00920654 0.00923586 0.01236840 0.00171642
Var 0.00000549 0.00000343 0.00000306 0.00000292 0.00000267 0.00000105
CV 0.16492315 0.19805769 0.19005619 0.18517540 0.13215394 0.59727134

520
Mean 0.01153063 0.00832437 0.00854684 0.00912397 0.01165899 0.00154829
Var 0.00000236 0.00000079 0.00000127 0.00000294 0.00000104 0.00000111
CV 0.13318057 0.10683364 0.13173585 0.18785646 0.08750409 0.67896459

Hang Seng (HSI)

5
Mean 0.01956351 0.01074962 0.00965815 0.00877234 0.01151177 0.00265669
Var 0.00000123 0.00000133 0.00000142 0.00000155 0.00000311 0.00000689
CV 0.05666707 0.10710221 0.12354561 0.14170138 0.15330080 0.98830986

10
Mean 0.01267402 0.00949451 0.00892711 0.00844995 0.01002106 0.00382612
Var 0.00001850 0.00000078 0.00000046 0.00000035 0.00000163 0.00000404
CV 0.33934355 0.09327441 0.07630697 0.06978540 0.12725720 0.52525825

15
Mean 0.00995849 0.00868882 0.00824539 0.00787501 0.00913536 0.00380871
Var 0.00000934 0.00000064 0.00000048 0.00000036 0.00000101 0.00000144
CV 0.30690718 0.09189419 0.08433178 0.07626410 0.10997993 0.31467183

20
Mean 0.00928480 0.00797566 0.00763721 0.00741642 0.00873041 0.00378076
Var 0.00000415 0.00000088 0.00000057 0.00000034 0.00000064 0.00000157
CV 0.21949958 0.11756282 0.09910608 0.07810021 0.09152956 0.33142364

30
Mean 0.00859774 0.00740572 0.00732699 0.00737287 0.00859487 0.00555617
Var 0.00000199 0.00000033 0.00000014 0.00000006 0.00000020 0.00000273
CV 0.16407102 0.07708164 0.05136769 0.03340176 0.05199003 0.29746784

60
Mean 0.00999766 0.00783693 0.00781165 0.00793119 0.01049283 0.00940318
Var 0.00000026 0.00000011 0.00000011 0.00000010 0.00000031 0.00000163
CV 0.05113584 0.04321107 0.04167040 0.03900648 0.05296988 0.13596310

90
Mean 0.01100589 0.00900838 0.00897859 0.00907533 0.01146275 0.00932830
Var 0.00000165 0.00000096 0.00000091 0.00000088 0.00000107 0.00000088
CV 0.11683910 0.10886818 0.10618960 0.10311341 0.09020843 0.10083989

150
Mean 0.01446876 0.01040708 0.01021338 0.01016939 0.01461140 0.00566834
Var 0.00000382 0.00000083 0.00000069 0.00000058 0.00000445 0.00002236
CV 0.13513553 0.08752616 0.08145981 0.07495792 0.14444075 0.83417471

260
Mean 0.01308660 0.00903498 0.00880629 0.00873866 0.01326762 0.00282995
Var 0.00000200 0.00000109 0.00000105 0.00000100 0.00000227 0.00000332
CV 0.10807663 0.11573942 0.11625878 0.11417704 0.11361934 0.64361558

520
Mean 0.01147340 0.00808229 0.00786284 0.00781326 0.01140458 0.00258423
Var 0.00000086 0.00000032 0.00000031 0.00000030 0.00000105 0.00000266
CV 0.08064755 0.06979732 0.07091310 0.07035058 0.09001304 0.63075326
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Appendix B

Table A2. Comparison of volatility indicators in terms of MSE, PB, and efficiency for various market indices and multiple
time intervals.

Market Index n-day
period Indicator Parkinson Garman–

Klass
Rogers–
Satchell Yang–Zhang Intrinsic

Entropy

Dow Jones
Industrial

Average (DJI)

5
MSE 0.00000239 0.00000381 0.00000321 0.00000287 0.00006913
PB 0.10335934 0.16714493 0.22406694 0.20971034 0.85651467

E f f iciency 2.20021749 3.59146481 4.43877290 3.94284763 52.83562727

10
MSE 0.00000118 0.00000208 0.00000300 0.00000261 0.00003573
PB 0.15230175 0.23129992 0.30256947 0.28312224 0.86386610

E f f iciency 2.50425173 3.51118602 4.13751298 3.82249178 13.37198059

15
MSE 0.00000095 0.00000169 0.00000274 0.00000242 0.00002692
PB 0.14453173 0.19290714 0.24120017 0.22627440 0.74783664

E f f iciency 3.74408943 2.79595936 3.50597856 4.33356585 1.13300321

20
MSE 0.00000080 0.00000152 0.00000268 0.00000238 0.00002136
PB 0.13851800 0.18996644 0.25596578 0.24214663 0.68543244

E f f iciency 3.12553247 3.73066735 3.20147694 3.17605264 2.27425574

30
MSE 0.00000128 0.00000151 0.00000182 0.00000146 0.00001660
PB 0.12838546 0.15416248 0.18329925 0.16617185 0.59182791

E f f iciency 11.50972874 8.53325011 6.04047849 1.06721403 0.42715212

60
MSE 0.00000598 0.00000552 0.00000412 0.00000022 0.00004304
PB 0.21291417 0.20288330 0.17170042 0.03302700 0.54303903

E f f iciency 1.49848211 1.65662661 2.02811810 1.91479392 1.31329269

90
MSE 0.00000588 0.00000607 0.00000547 0.00000096 0.00005295
PB 0.19462257 0.19468696 0.17856055 0.05423257 0.60709813

E f f iciency 4.09296368 5.77604088 9.33414772 4.06646223 2.27259947

150
MSE 0.00008198 0.00008618 0.00008569 0.00001950 0.00042680
PB 0.34079898 0.35112633 0.34775532 0.15914838 0.74269431

E f f iciency 5.01502588 5.20406566 5.29170304 1.96670484 5.19642257

260
MSE 0.00007031 0.00007337 0.00007238 0.00001634 0.00037809
PB 0.38460595 0.39301453 0.38946605 0.18242582 0.91334059

E f f iciency 3.70028327 3.84228670 3.85181590 1.74333852 9.40132311

520
MSE 0.00001831 0.00001951 0.00001935 0.00000441 0.00014227
PB 0.25638195 0.27041844 0.27039170 0.12961557 0.84322301

E f f iciency 5.69824433 5.70923563 5.54497102 1.89231430 23.88423184

NYSE Composite
(NYA)

5
MSE 0.00000465 0.00001017 0.00001131 0.00000973 0.00007604
PB 0.14701504 0.21533101 0.25055516 0.31886002 0.76175831

E f f iciency 1.96685384 4.21366866 7.88403093 14.02012845 15.80334927

10
MSE 0.00000280 0.00000403 0.00000368 0.00000324 0.00004378
PB 0.17382806 0.16213128 0.13319829 0.23780581 0.71361972

E f f iciency 2.13524908 4.36315560 6.53518330 10.97638717 1.32054053

15
MSE 0.00000124 0.00000167 0.00000133 0.00000204 0.00002329
PB 0.09231486 0.09682737 0.07946651 0.18228647 0.48119705

E f f iciency 8.80269037 23.02675044 28.35778868 7.13156717 0.28716676

20
MSE 0.00000064 0.00000102 0.00000087 0.00000226 0.00001783
PB 0.07257883 0.09015989 0.07888785 0.20618995 0.50654635

E f f iciency 3.16395424 4.18475206 3.47006177 6.06904181 0.74260300

30
MSE 0.00000345 0.00000423 0.00000413 0.00000092 0.00001385
PB 0.18696460 0.21499835 0.20648954 0.10602555 0.45135577

E f f iciency 6.94132920 5.78116310 3.63274464 1.31133823 0.18174519



Entropy 2021, 23, 484 25 of 33

Table A2. Cont.

Market Index n-day
period Indicator Parkinson Garman–

Klass
Rogers–
Satchell Yang–Zhang Intrinsic

Entropy

NYSE Composite
(NYA)

60
MSE 0.00001030 0.00000995 0.00000866 0.00000030 0.00003483
PB 0.29269079 0.28771003 0.26804049 0.04462181 0.45456950

E f f iciency 1.18487186 1.10517734 1.08145282 0.76690087 0.10022703

90
MSE 0.00000943 0.00000996 0.00000913 0.00000052 0.00004705
PB 0.26733500 0.27175644 0.25734475 0.06068569 0.60167731

E f f iciency 4.40223841 7.75505152 9.90660715 1.34475646 0.89764145

150
MSE 0.00007685 0.00008842 0.00008948 0.00001323 0.00029600
PB 0.37283178 0.39628374 0.39473529 0.11023476 0.63921841

E f f iciency 3.96085308 4.83582967 5.17430168 2.46419226 8.84053916

260
MSE 0.00006267 0.00007243 0.00007310 0.00001320 0.00027799
PB 0.38940303 0.41771064 0.41736015 0.17883978 0.85530370

E f f iciency 3.50884833 4.06450310 4.26336223 1.53449500 11.63422798

520
MSE 0.00001707 0.00001989 0.00002014 0.00000356 0.00010780
PB 0.28297883 0.31005276 0.31278680 0.12797901 0.85332546

E f f iciency 4.58568443 5.24158377 5.27036515 1.73666195 23.42570107

NASDAQ
Composite (IXIC)

5
MSE 0.00000449 0.00000334 0.00000433 0.00000671 0.00011466
PB 0.15748469 0.17268559 0.18842112 0.23219854 0.67460326

E f f iciency 3.98420983 4.42390799 4.59103018 4.04780186 0.48479494

10
MSE 0.00001296 0.00001037 0.00000788 0.00000168 0.00004962
PB 0.28084622 0.24335615 0.21226868 0.10067113 0.52261986

E f f iciency 2.37242314 2.34621423 1.91578260 2.53708173 0.49750350

15
MSE 0.00000612 0.00000492 0.00000302 0.00000116 0.00004151
PB 0.19713320 0.17851613 0.12951049 0.08826098 0.57757491

E f f iciency 13.77240952 7.15223191 4.75409109 4.53806327 0.47828217

20
MSE 0.00000238 0.00000191 0.00000113 0.00000262 0.00002791
PB 0.12601152 0.11043506 0.08233896 0.16391768 0.53051429

E f f iciency 6.24017334 4.66490724 3.40622705 3.00925120 0.71993451

30
MSE 0.00000110 0.00000100 0.00000081 0.00000260 0.00001370
PB 0.08998943 0.08794591 0.08098583 0.18754978 0.38922616

E f f iciency 6.61134694 6.68665388 5.28910949 2.48245536 0.70635895

60
MSE 0.00001546 0.00001453 0.00001323 0.00000038 0.00005730
PB 0.26206152 0.25403355 0.24228802 0.03843482 0.44834247

E f f iciency 2.33863512 2.21187638 2.01956375 1.06802245 2.91536914

90
MSE 0.00001280 0.00001218 0.00001032 0.00000012 0.00006427
PB 0.23414898 0.22875748 0.21029118 0.01800901 0.51779728

E f f iciency 1.22887285 1.31441247 1.15830675 0.87353942 0.97108004

150
MSE 0.00006091 0.00005913 0.00005323 0.00000277 0.00032484
PB 0.31023096 0.30709875 0.29018536 0.05138754 0.64993599

E f f iciency 5.52057592 5.12854766 4.61633986 1.52546488 2.13874334

260
MSE 0.00005574 0.00005407 0.00004889 0.00000244 0.00028181
PB 0.36395327 0.35992685 0.34321390 0.07060252 0.81584767

E f f iciency 3.01769707 2.85281009 2.61256306 1.29537764 9.96665454

520
MSE 0.00001847 0.00001999 0.00001957 0.00000109 0.00013365
PB 0.27241389 0.29374444 0.29599382 0.07087188 0.78967056

E f f iciency 4.77040152 3.88509754 3.27494010 1.21946261 8.88697192
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Table A2. Cont.

Market Index n-day
period Indicator Parkinson Garman–

Klass
Rogers–
Satchell Yang–Zhang Intrinsic

Entropy

Russell 2000
(RUT)

5
MSE 0.00001307 0.00002069 0.00002343 0.00001850 0.00008509
PB 0.34307376 0.44498167 0.47718972 0.42197967 0.91134936

E f f iciency 1.08083677 0.92509662 0.85455350 0.99482300 13.32077603

10
MSE 0.00000217 0.00000494 0.00000638 0.00000510 0.00014001
PB 0.09649740 0.13433544 0.14779499 0.13252835 0.86653289

E f f iciency 1.78502294 2.54484288 2.91717043 3.07622972 2.56583729

15
MSE 0.00000269 0.00000576 0.00000768 0.00000570 0.00013806
PB 0.09882136 0.14568714 0.16693149 0.14394860 0.79191443

E f f iciency 3.88343442 8.01495026 6.86187691 9.62894681 1.28250258

20
MSE 0.00000190 0.00000407 0.00000474 0.00000339 0.00010914
PB 0.09528841 0.13957769 0.14631765 0.12319895 0.75090667

E f f iciency 1.54243749 1.60274132 2.12500146 2.12203218 3.52660207

30
MSE 0.00000134 0.00000325 0.00000309 0.00000221 0.00007989
PB 0.09093437 0.14169209 0.13664375 0.11542312 0.70771995

E f f iciency 1.03215630 1.00679842 1.17394685 1.20489911 2.20263067

60
MSE 0.00000472 0.00000876 0.00000877 0.00000641 0.00011475
PB 0.14469368 0.19813543 0.19792240 0.16915358 0.71547438

E f f iciency 1.91410821 1.78861753 1.81868224 1.77670632 0.92223306

90
MSE 0.00000563 0.00000944 0.00000948 0.00000674 0.00012801
PB 0.15012759 0.19583070 0.19416491 0.16404573 0.74047269

E f f iciency 2.57518083 3.21681226 3.95478676 2.90987932 5.27006120

150
MSE 0.00008048 0.00011583 0.00012724 0.00007471 0.00051469
PB 0.28327538 0.34285766 0.35479234 0.27523663 0.77710243

E f f iciency 4.41153506 6.84247433 8.83892455 3.95146738 24.21016697

260
MSE 0.00006666 0.00009715 0.00010817 0.00006335 0.00042633
PB 0.32565819 0.39619070 0.41850007 0.32094999 0.85764445

E f f iciency 2.87687782 3.64144833 3.92129005 2.58798253 18.92506472

520
MSE 0.00001836 0.00002809 0.00003081 0.00001876 0.00017765
PB 0.23137651 0.29633447 0.30710948 0.24504031 0.89289669

E f f iciency 3.50108048 4.80828788 5.63106289 3.13890590 21.91263652

Nikkei 225
(N225)

5
MSE 0.00000738 0.00000778 0.00000889 0.00000109 0.00003386
PB 0.27855892 0.27546494 0.28275131 0.11525135 0.68077772

E f f iciency 1.75409158 4.58892647 10.11997522 1.83584013 0.72347522

10
MSE 0.00000229 0.00000306 0.00000354 0.00000070 0.00003296
PB 0.14368725 0.16422825 0.17372981 0.08057687 0.63967579

E f f iciency 5.10499868 5.41827393 3.94046179 4.57359568 0.40667537

15
MSE 0.00000713 0.00000968 0.00001111 0.00000307 0.00003121
PB 0.25096447 0.29135247 0.31065256 0.14727009 0.52282195

E f f iciency 1.89194108 3.20811499 3.34975956 1.46003976 0.25881139

20
MSE 0.00000534 0.00000738 0.00000862 0.00000208 0.00003246
PB 0.24055591 0.28396651 0.30759687 0.15066795 0.59183438

E f f iciency 2.17448443 2.47087871 2.37858746 1.36991672 0.27814154

30
MSE 0.00000532 0.00000669 0.00000740 0.00000071 0.00001537
PB 0.25680266 0.28947476 0.30480437 0.08869711 0.40483572

E f f iciency 1.22623461 1.49088993 1.64817307 1.03308915 0.04431074

60
MSE 0.00000807 0.00000908 0.00000970 0.00000051 0.00000742
PB 0.31514640 0.33297913 0.34374668 0.06780446 0.27488732

E f f iciency 1.36506776 1.97229626 2.15004307 2.40805251 0.07745301

90
MSE 0.00001382 0.00001552 0.00001637 0.00000182 0.00002697
PB 0.35221056 0.37225166 0.38267255 0.10887566 0.42835275

E f f iciency 6.33114737 8.35372228 8.81334397 3.31818614 0.78907628
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Table A2. Cont.

Market Index n-day
period Indicator Parkinson Garman–

Klass
Rogers–
Satchell Yang–Zhang Intrinsic

Entropy

Nikkei 225
(N225)

150
MSE 0.00003209 0.00003578 0.00003671 0.00000808 0.00020806
PB 0.34831090 0.36867444 0.37454550 0.16646963 0.72895431

E f f iciency 1.79047186 1.80266399 1.75089062 1.53539206 1.33198279

260
MSE 0.00002396 0.00002547 0.00002525 0.00000394 0.00016208
PB 0.34712786 0.35568347 0.35289069 0.12347693 0.87688560

E f f iciency 1.60289753 1.79378424 1.87760961 2.05560324 5.22562470

520
MSE 0.00001283 0.00001294 0.00001308 0.00000349 0.00010545
PB 0.26759045 0.24423115 0.25791050 0.15712594 0.85479105

E f f iciency 2.98173469 1.86023998 0.80272676 2.26573685 2.13396741

Hang Seng
(HSI)

5
MSE 0.00007880 0.00009933 0.00011786 0.00006640 0.00029575
PB 0.45058035 0.50655746 0.55186277 0.41329445 0.86106800

E f f iciency 0.92719635 0.86320134 0.79538256 0.39462267 0.17827414

10
MSE 0.00002255 0.00002866 0.00003391 0.00001743 0.00011087
PB 0.25811212 0.29027447 0.31438111 0.23775924 0.63502227

E f f iciency 23.58508142 39.86187756 53.19491116 11.37406623 4.57978372

15
MSE 0.00000738 0.00000912 0.00001101 0.00000542 0.00004943
PB 0.15659830 0.15793404 0.17600015 0.14874107 0.58358860

E f f iciency 14.65222312 19.31951449 25.89753366 9.25385977 6.50325117

20
MSE 0.00000340 0.00000479 0.00000600 0.00000200 0.00003700
PB 0.12763564 0.15753862 0.17899413 0.08154588 0.57392995

E f f iciency 4.72431701 7.25006611 12.37997547 6.50460621 2.64537375

30
MSE 0.00000220 0.00000276 0.00000311 0.00000128 0.00001670
PB 0.12797443 0.13391359 0.13452421 0.09393993 0.38030251

E f f iciency 6.10654465 14.04756330 32.81100235 9.96582599 0.72845297

60
MSE 0.00000475 0.00000489 0.00000441 0.00000044 0.00000263
PB 0.21549808 0.21783693 0.20567681 0.05900356 0.12075745

E f f iciency 2.27911326 2.46664854 2.73084941 0.84606693 0.15990293

90
MSE 0.00000422 0.00000442 0.00000411 0.00000045 0.00000484
PB 0.18041633 0.18266040 0.17332471 0.05699241 0.14539149

E f f iciency 1.71922103 1.81905743 1.88830217 1.54651655 1.86877582

150
MSE 0.00001782 0.00001966 0.00002027 0.00000017 0.00012093
PB 0.27486512 0.28757041 0.28977497 0.02470342 0.56236693

E f f iciency 4.60753355 5.52300735 6.57925902 0.85829901 0.17099234

260
MSE 0.00001661 0.00001855 0.00001917 0.00000008 0.00011008
PB 0.31002168 0.32743999 0.33235547 0.01825834 0.78336900

E f f iciency 1.82936246 1.90844531 2.00941381 0.88029091 0.60298684

520
MSE 0.00001164 0.00001318 0.00001355 0.00000002 0.00008524
PB 0.29490902 0.31409903 0.31838095 0.01220096 0.76283930

E f f iciency 2.69041761 2.75393821 2.83378358 0.81245099 0.32224499
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