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Abstract: Multimodal medical image fusion aims to fuse images with complementary multisource
information. In this paper, we propose a novel multimodal medical image fusion method using
pulse coupled neural network (PCNN) and a weighted sum of eight-neighborhood-based modified
Laplacian (WSEML) integrating guided image filtering (GIF) in non-subsampled contourlet transform
(NSCT) domain. Firstly, the source images are decomposed by NSCT, several low- and high-frequency
sub-bands are generated. Secondly, the PCNN-based fusion rule is used to process the low-frequency
components, and the GIF-WSEML fusion model is used to process the high-frequency components.
Finally, the fused image is obtained by integrating the fused low- and high-frequency sub-bands.
The experimental results demonstrate that the proposed method can achieve better performance in
terms of multimodal medical image fusion. The proposed algorithm also has obvious advantages in
objective evaluation indexes VIFF, QW, API, SD, EN and time consumption.

Keywords: multimodal medical image; image fusion; PCNN; WSEML; GIF; NSCT

1. Introduction

In recent years, numerous medical image processing algorithms are being extensively
used for visualizing complementary information. Medical image fusion is a very effective
technique in combining the important information obtained from the multimodal images
into one single composite image and enhance the diagnostic accuracy [1,2]. Medical images
can be divided into the following categories: Computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET), single-photon emission
CT (SPECT) etc. Usually, there is no single imaging method that can reflect the complete
tissue information; medical image fusion technology can retain the diagnostic information
of input image to the maximum extent [3,4]. Figure 1 shows the example of image fusion,
it involves not only medicine, but also a multifocus image and remote sensing image. In
this paper, we mainly discuss the application of multimodal medical image fusion.

At present, a lot of image fusion techniques have been proposed by the researchers,
and these image fusion methods are broadly categorized as spatial domain and transform
domain [5,6]. The spatial domain-based image fusion methods have high computational
efficiency, but these methods suffer from poor contrast and spatial localization [7,8]. In
terms of technical development, many multiscale transform decomposition methods have
been introduced to design an effective platform that provide better localization of an image
contour and texture details [9]. These transforms include the discrete wavelet transform
(DWT) [10], stationary wavelet transform (SWT) [11], dual-tree complex wavelet transform
(DTCWT) [12], curvelet transform (CVT) [13], contourlet transform (CNT) [14], surfacelet
transform [15], non-subsampled contourlet transform (NSCT) [16], shearlet transform
(ST) [17], non-subsampled shearlet transform (NSST) [18], adjustable non-subsampled
shearlet transform (ANSST) [19] etc. Iqbal et al. [20] proposed a novel multifocus image
fusion scheme utilizing discrete wavelet transform and guided image filtering, which can

Entropy 2021, 23, 591. https://doi.org/10.3390/e23050591 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1785-4024
https://doi.org/10.3390/e23050591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050591
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23050591?type=check_update&version=1


Entropy 2021, 23, 591 2 of 21

provide outperformance fusion results both on qualitative and quantitative comparisons.
Wang et al. [21] introduced a technique for multifocus image fusion based on discrete
wavelet transform and convolutional neural network (CNN), leading to better fusion
results than traditional DWT-based fusion algorithm. DTCWT is an extension of DWT and
has translation invariance. Aishwarya et al. [22] proposed an image fusion method utilizing
DTCWT and adaptive combined clustered dictionary, leading to good performance than
the conventional multiscale transform-based algorithms and the state-of-the-art sparse
representation-based algorithms.
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Figure 1. The example of image fusion.

Due to the limited ability in capturing directional information in two-dimensional
space about the wavelets based methods, most wavelet transforms cannot generate an
optimal representation for images. In order to address the aforementioned problem, a
series of multi-scale geometric analysis (MGA) theory including curvelet, contourlet and
shearlet have been introduced by the scientist, these methods accelerate the development
of image fusion technology. Mao et al. [23] proposed an image fusion technique based on
curvelet transform and sparse representation. Chen et al. [24] introduced an approach for
multi-source optical remote sensing image fusion based on principal component analysis
and curvelet transform. Li et al. [25] introduced the non-subsampled contourlet transform
into the medical image fusion based on fuzzy entropy and regional energy. Wu et al. [26]
conducted another NSCT-based work using pulse coupled neural network (PCNN) for
infrared and visible image fusion. Li et al. [27] proposed an image fusion scheme based
on parameter-adaptive pulse coupled neural network (PAPCNN) and improved sum-
modified-laplacian (ISML) in non-subsampled shearlet transform (NSST) domain, leading
to a good fusion performance.
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In recent years, the sparse representation-based, convolutional neural network-based,
edge-preserving filter-based techniques also achieve successfully in the field of image
fusion. Xing et al. [28] proposed an image fusion method based on Taylor expansion theory
and convolutional sparse representation with gradient penalties scheme. Liu et al. [29]
introduced an adaptive sparse representation (ASR) for multimodal image fusion and
denoising. Liu et al. [30] proposed an image fusion technique using deep convolutional
neural network (DCNN), leading to state-of-the-art image fusion performance in terms of
visual quality and objective assessment. Li et al. [31] introduced the guided image filtering
for image fusion (GFF), and the calculation efficiency is relatively high. The main image
fusion models mentioned above can be summarized as shown in Table 1.

Table 1. The classifications and methods of main image fusion models.

Categories Methods

Multiscale transform
decomposition

discrete wavelet transform (DWT) [10], stationary wavelet
transform (SWT) [11], dual-tree complex wavelet transform

(DTCWT) [12], curvelet transform (CVT) [13], contourlet
transform (CNT) [14],

surfacelet transform [15], non-subsampled contourlet transform
(NSCT) [16], shearlet transform (ST) [17], nonsubsampled shearlet

transform (NSST) [18], adjustable non-subsampled shearlet
transform (ANSST) [19]

Sparse representation convolutional sparse representation [28],
adaptive sparse representation (ASR) [29]

Deep learning deep convolutional neural network (DCNN) [30]

Edge-preserving filter guided image filtering [31]

The image fusion methods, based on transform domain, mainly use different energy
functions to construct the weight of the source image for image fusion. Although the
details of each source image can be well-preserved, the space continuity of the high- and
low-frequency coefficients in the transform domain is often not considered, the fused image
will introduce artificial texture, which will affect the image fusion effect. In this paper,
a novel fusion model with pulse coupled neural network (PCNN) and weighted sum of
eight-neighborhood-based modified Laplacian (WSEML) in NSCT domain is proposed
for multimodal medical image fusion. The guided filtering is introduced to enhance the
spatial continuity of the image, and then the corresponding artificial texture is suppressed
and the gray level of the fused image is enhanced. The contributions of the proposed
framework can be summarized as follows: (1) The multiscale NSCT decomposition is used
to decompose the input source images into low- and high-frequency components; (2) the
PCNN is adopted to fuse the low-frequency components, and the WSEML integrating
guided image filtering is utilized to fuse the high-frequency components. The guided
image filtering is a good edge-preserving filter, the proposed model can efficiently capture
the spatial information and suppress noise; (3) the effectiveness of the proposed work is
authenticated utilizing the extensive experimental fusion results and comparisons with the
state-of-the-art image fusion algorithms.

The rest of this work is organized as follows. Preliminaries is briefly reviewed in
Section 2. The proposed fusion algorithm is illustrated in Section 3. The experimental
results and discussions are shown in Section 4. The conclusions are presented in Section 5.

2. Preliminaries
2.1. Non-Subsampled Contourlet Transform

The non-subsampled contourlet transform (NSCT) is an improved model of contourlet,
NSCT adopts the multiscale, multidirectional analysis and shift-invariance. It is applied for
image decomposition into one low-frequency and several high-frequency sub-bands. The
decomposition model utilizes non-subsampled pyramid (NSP) to generate low-frequency
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and high-frequency components and then the non-subsampled directional filter bank
(NSDFB) is adopted to generate several sub-image components [32]. The overview of
NSCT is depicted in Figure 2. NSCT is recognized as an effective method for image
fusion [25,26], and it is selected as the multiscale transform for proposed fusion algorithm
in this paper.
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2.2. Pulse Coupled Neural Network

Pulse coupled neural network (PCNN) is a feedback network, and it is widely used in
the field of image fusion. In particular, it is reasonable to apply the PCNN model to merge
the low-frequency components generated by the NSCT. The PCNN model is described as
follows [16]:

Fij(n) = Sij (1)

Lij(n) = e−αL Lij(n− 1) + VL∑pq Wij,pqYij,pq(n− 1) (2)

Uij(n) = Fij(n) ∗
(
1 + βLij(n)

)
(3)

θij(n) = e−αθ θij(n− 1) + VθYij(n− 1) (4)

Yij(n) =

{
1 if Uij(n) > θij(n)
0 else

(5)

Ti,j = Ti,j(n− 1) + Yi,j(n) (6)

where Fij shows the feeding input and Sij denotes the external input stimulus signal, the
linking input Lij depicts the sum of neurons firing times in linking range, Wij,pq represents
the synaptic gain strength, αL denotes the decay constants, VL and Vθ present the amplitude
gain, β shows the linking strength, Uij is the total internal activity, θij represents the
threshold, n is the iteration times, Yij is the pulse output of PCNN, Tij denotes the firing
times. Figure 3 shows the architecture of the PCNN model.
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2.3. Guided Image Filter

Guided image filter is a linear filtering, we suppose that the filtering output image q is
the linear transform of the guidance image I in a window ωk centered at the pixel k [33]:

qi = ak Ii + bk, ∀i ∈ ωk (7)

where ωk presents the square window of size (2r + 1) × (2r + 1). The linear coefficients
(ak, bk) are constant in the ωk, and they could be estimated by minimizing the cost function
in the window ωk:

E(ak, bk) = ∑
i∈ωk

(
(ak Ii + bk − pi)

2 + εa2
k

)
(8)

where ε represents the regularization parameter penalizing large ak. The linear coefficients
(ak, bk) can be calculated by the following:

ak =

1
|ω|∑i∈ωk

Ii pi − µk pk

σ2
k + ε

(9)

bk = pk − akµk (10)

where µk and σ2
k denote the mean and variance of I in ωk, |ω| shows the number of pixels

in ωk, and pk represents the mean of p in ωk, it can be calculated by the following:

pk =
1
|ω|∑i∈ωk

pi (11)

In order to keep the qi value unchanged in different windows, all the possible data of
(ak, bk) are first averaged, the filtering output can be computed by

qi =
1
|ω| ∑

k|i∈ωk

(ak Ii + bk) = ai Ii + bi (12)

where ai and bi present the mean of ak and bk, respectively; they can be computed by

ai =
1
|ω|∑k∈ωi

ak (13)

bi =
1
|ω|∑k∈ωi

bk (14)
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In this work, the Gr,ε(p, I) is utilized to denote the guided filtering operation, r and ε
denote the parameters which control the size of filter kernel and blur extent, respectively. p
refers to the input image, and I represents the guidance image. The guided image filter is
used to process the high-frequency components generated by NSCT.

3. Proposed Fusion Method
3.1. Overview

The proposed multimodal medical image fusion algorithm in this work is shown
in Figure 4. The input source images are assumed to be well registered with the size
256 × 256, the detailed image fusion approach consists of four parts, namely NSCT decom-
position, low-frequency sub-bands fusion, high-frequency sub-bands fusion, and NSCT
reconstruction.
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3.2. Detailed Fusion Algorithm

Step 1: NSCT decomposition

Suppose the registered input source images A and B are decomposed by NSCT trans-
form with L-level, and generate the corresponding decomposition low- and high-frequency
sub-bands {LA, LB} and

{
Hl,k

A , Hl,k
B

}
, respectively.
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Step 2: Low-frequency sub-band fusion

The low-frequency sub-band contains the approximate information of the source
images, in this section, the PCNN based fusion rule is applied to keep more useful informa-
tion. According to the PCNN model described from Equations (1)–(6), the fusion rule is
depicted in the following:

DF(i, j) =

{
1 i f TA,ij(N) ≥ TB,ij(N)
0 else

(15)

LF(i, j) =

{
LA(i, j) i f Dij(N) = 1
LB(i, j) else

(16)

where TA,ij(N) and TB,ij(N) are the PCNN firing times, N presents the total number of
iterations; Dij represents the decision map, LF(i, j) denotes the fused low-frequency sub-
band.

Step 3: High-frequency sub-bands fusion

The high-frequency sub-bands contain the plentiful edge and texture detail informa-
tion of the input images, in order to extract the details information, the weighted sum of
eight-neighborhood-based modified Laplacian (WSEML) is adopted, and it is defined as
follows [34]:

WSEMLS(i, j) =
r

∑
m=−r

r

∑
n=−r

W(m + r + 1, n + r + 1) × EMLS(i + m, j + n) (17)

EMLS(i, j) = |2S(i, j)− S(i− 1, j)− S(i + 1, j)|
+|2S(i, j)− S(i, j− 1)− S(i, j + 1)|
+ 1√

2
|2S(i, j)− S(i− 1, j− 1)− S(i + 1, j + 1)|

+ 1√
2
|2S(i, j)− S(i− 1, j + 1)− S(i + 1, j− 1)|

(18)

where S ∈ {A, B}; W denotes the weighting matrix, and it can be calculated by the
following:

W =
1
16

 1 2 1
2 4 2
1 2 1

 (19)

For the high-frequency coefficients, the fusion rule based on WSEML is adopted, and
then the two zero-value matrixes mapA and mapB are initialized, and the matrixes are
computed by the following:

mapA(i, j) =

{
1 i f WSEMLHl,k

A
(i, j) ≥WSEMLHl,k

B
(i, j)

0 else
(20)

mapB(i, j) = 1−mapA(i, j) (21)

In order to enhance the spatial continuity of the high-frequency coefficients, the guided
filter on mapA and mapB is adopted, and the corresponding coefficients Hl,k

A and Hl,k
B are

utilized as the guided images:

mapA = Gr,ε

(
mapA, Hl,k

A

)
(22)

mapB = Gr,ε

(
mapB, Hl,k

B

)
(23)
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where mapA and mapB should be normalized, the fused high-frequency coefficients Hl,k
F (i, j)

can be generated by the following Equation:

Hl,k
F (i, j) = mapA× Hl,k

A (i, j) + mapB× Hl,k
B (i, j) (24)

Step 4: NSCT reconstruction

The final fused image is generated by performing inverse NSCT transform over the
merged fusion sub-bands

{
LF, Hl,k

F

}
.

3.3. Extension to Color Image Fusion

The proposed medical image fusion algorithm is extended to fuse the anatomical and
functional image in this section. The anatomical image contains the CT and MRI, and the
functional image usually denotes the PET and SPECT. When solving the gray image and
color image fusion, the image color space conversion is adopted, in this paper, the RGB to
YUV color space is used to compute the anatomical and functional image fusion work [34].
The framework of the anatomical and functional image fusion is shown in Figure 5.
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4. Experimental Results and Discussions
4.1. Experimental Setup

In this section, to explore the effectiveness of the proposed multimodal medical
image fusion algorithm, we evaluate the method on the two public datasets http://www.
imagefusion.org and http://www.med.harvard.edu/AANLIB/home.html (accessed on
10 February 2021). Figure 6 shows the selected public gray source image fusion pairs,
all the CT and MRI source images have the same size with 256 × 256. Figure 7 denotes
the selected anatomical and functional (MRI-PET/SPECT) images with the size 256 × 256,
and all the source images are pre-registered. In addition, eight state-of-the-art fusion
approaches are used to compare with the proposed scheme, namely image fusion based on
non-subsampled contourlet transform (NSCT) [16], image fusion using dual-tree complex
wavelet transform (DTCWT) [12], guided image filtering for image fusion (GFF) [31],
image fusion utilizing ratio of low-pass pyramid (RP) [13], image fusion via adaptive
sparse representation (ASR) [29], deep convolutional neural network based image fusion
(DCNN) [30], image fusion using convolutional sparsity based morphological component
analysis (CSMCA) [35], single-scale structural image decomposition (SSID) [36]. In this
paper, the pyramid filter and directional filter with the parameters “9–7” and “pkva";
the NSCT decomposition level is 4, and the corresponding directions are 4, 4, 4, 4; the
parameters of the PCNN is set as p × q, αL = 0.06931, αθ = 0.2, β = 3, VL = 1.0,

http://www.imagefusion.org
http://www.imagefusion.org
http://www.med.harvard.edu/AANLIB/home.html
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Vθ = 20, W =

 0.707 1 0.707
1 0 1

0.707 1 0.707

, and the iterative number is N = 200; the parameters

r and ε of guided image filer are set as 3 and 1, respectively. For the parameters in the
comparison algorithms, corresponding parameter values are as described in the original
papers proposed by the scholars. Table 2 summarizes the tested algorithms and the
parameter setup. All of the experiments run in win7, MATLAB R2018b software. The
hardware is Intel(R) Core(TM) i5-2520M CUP (2.50 GHz) and 12-GB memory.
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Table 2. All tested algorithms and the parameter settings.

Methods Parameter Setting

NSCT [16] PCNN is set as p× q, αL = 0.06931, αθ = 0.2, β = 0.2, VL = 1.0, Vθ = 20, W =

 0.707 1 0.707
1 0 1

0.707 1 0.707

,

and N = 200; the NSCT decomposition direction numbers are [4, 4, 4, 4].
DTCWT [12] L = 4

GFF [31] r1 = 45, ε1 = 0.3, r2 = 7, ε2 = 10−6

RP [13] L = 4
ASR [29] dictionary size: 256, ε = 0.1, C = 1.15, σ = 0, the number of sub-dictionaries: 7

DCNN [30] patch size = 16 × 16, convolutional layer: kernel size = 3 × 3, stride = 1, max-pooling layer: kernel
size = 2 × 2, stride = 2

CSMCA [35] L = 6, λc = λt = max(0.6− 0.1× i, 0.005), i ∈ [1, L]
SSID [36] r = 15

Proposed PCNN is set as p× q, αL = 0.06931, αθ = 0.2, β = 3, VL = 1.0, Vθ = 20, W =

 0.707 1 0.707
1 0 1

0.707 1 0.707

,

and N = 200; the NSCT decomposition direction numbers are [4, 4, 4, 4], r = 3, ε = 1

Notes: NSCT (non-subsampled contourlet transform), DTCWT (dual-tree complex wavelet transform), GFF (guided image filtering for
image fusion), RP (ratio of low-pass pyramid), ASR (adaptive sparse representation), DCNN (deep convolutional neural network), CSMCA
(convolutional sparsity based morphological component analysis), SSID (single-scale structural image decomposition).

The proposed medical image fusion technique is evaluated and compared with other
classical fusion algorithms by qualitative and quantitative analyses. In terms of qualitative
analysis, it is based on human visual system such as image details, image contrast and im-
age brightness etc. As for quantitative analysis, multiple evaluation metrics are selected to
assess the proposed fusion algorithm and the comparison fusion algorithms, which include
the visual information fidelity (VIFF) [37–41], weighted fusion quality index (QW) [42,43],
average pixel intensity (API) [44], standard deviation (SD) [44], entropy (EN) [44–48] and
time (seconds). VIFF measures the visual information fidelity of the fused image by com-
puting the distortion of the images, a larger VIFF means the fused image has higher visual
information fidelity; the QW addresses the distortions of coefficient correlation, illumina-
tion and contrast between the source images and fused image, a larger QW means less
distortion of image quality; API measures an index of contrast, a larger API reflects the
fused image has higher contrast; SD measures the amount of information contained in the
fused image from the perspective of statistics and reflects the overall contrast, a larger SD
reflects the fused image contains more information and higher contrast; the computation
of EN value is based on information theory, and it measures the amount of information in
the fusion image, a larger EN means the fused image contains more information. The low
computation time shows that the algorithm is efficient. Among the examined quantitative
metrics, VIFF and QW are reference-based metrics, while API, SD and EN are no-reference
evaluation metrics. The fusion method takes the anatomical or functional image as the
reference, it is easy to introduce the interference information from the source images into
the fusion image. In order to comprehensively evaluate the fusion performance from
different perspectives, this study uses reference-based and no-reference-based indicators.
The corresponding fusion results and metrics data as shown in Figures 8–12 and Tables 3–7.
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Table 3. Objective assessment of different fusion methods on the first group gray images.

VIFF QW API SD EN Time/s

NSCT 0.3440 0.7833 40.3719 49.9211 6.6284 23.3362
DTCWT 0.3747 0.7481 32.5113 42.9503 6.2258 0.2269

GFF 0.4863 0.8337 50.1930 53.7113 6.7920 0.2579
RP 0.2256 0.5289 36.4669 51.5819 6.0500 0.2034

ASR 0.3744 0.7526 31.5150 40.0483 6.1778 91.1108
DCNN 0.2398 0.6949 22.3834 52.2447 3.4737 75.3303

CSMCA 0.4752 0.8030 37.2620 50.7438 6.3268 200.6023
SSID 0.4423 0.7988 51.2897 52.4270 6.6580 0.1608

Proposed 0.4594 0.8438 53.2905 55.1511 6.8000 17.9221
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Table 4. Objective assessment of different fusion methods on the second group gray images.

VIFF QW API SD EN Time/s

NSCT 0.4728 0.8324 56.2619 69.6178 5.2291 22.4744
DTCWT 0.4830 0.8326 52.1862 65.5521 4.9310 0.1799

GFF 0.4850 0.8448 54.5311 65.9081 5.3836 0.2404
RP 0.3582 0.5464 55.5456 70.0442 4.5744 0.1278

ASR 0.4680 0.8164 51.5346 63.9370 4.1560 87.0228
DCNN 0.4638 0.8279 60.4476 74.8379 4.5250 78.8741

CSMCA 0.4940 0.8444 53.2322 67.4899 4.3896 205.1055
SSID 0.5122 0.8426 55.8888 70.3751 4.5738 0.0721

Proposed 0.5151 0.8492 60.6443 75.1231 5.0524 18.5094

Table 5. Average objective assessment of different fusion methods on the nine groups gray medical
images in Figure 6.

VIFF QW API SD EN Time/s

NSCT 0.5210 0.7761 59.8996 65.1086 6.1218 23.7192
DTCWT 0.5181 0.7713 54.4182 59.9131 5.7897 0.1778

GFF 0.5095 0.7813 60.0666 62.8036 6.0636 0.2568
RP 0.3701 0.5758 58.8046 64.2301 5.6415 0.1428

ASR 0.4824 0.7584 53.6929 57.2958 5.3715 106.4758
DCNN 0.5439 0.7674 65.3528 73.7230 5.1390 80.0550

CSMCA 0.5473 0.7822 56.8599 63.2075 5.4745 199.1734
SSID 0.5970 0.7934 66.2517 70.0540 5.6540 0.0848

Proposed 0.6121 0.8072 70.5363 74.2915 5.9685 19.0577

Table 6. Objective assessment of different fusion methods on the first group anatomical and functional
images.

VIFF QW API SD EN Time/s

NSCT 0.2651 0.7986 43.1364 64.8996 4.7648 28.2017
DTCWT 0.5901 0.8250 43.4533 62.9923 4.6493 0.1937

GFF 0.1899 0.8075 33.8746 64.0359 4.4073 0.2377
RP 0.8443 0.8471 45.8674 68.7058 4.7289 0.1570

ASR 0.3150 0.7602 42.9496 61.1235 4.1997 85.6910
DCNN 0.2016 0.8049 36.4412 63.0764 4.5451 80.3691

CSMCA 0.3088 0.7926 44.4419 63.9466 4.5383 193.1375
SSID 0.3675 0.6837 53.5451 74.4686 4.6702 0.0806

Proposed 0.3905 0.7737 57.7310 80.6245 4.9169 20.5294

Table 7. Average objective assessment of different fusion methods on the nine groups anatomical
and functional images in Figure 7.

VIFF QW API SD EN Time/s

NSCT 0.5016 0.8946 39.8883 56.0495 4.7101 26.5087
DTCWT 0.7396 0.9034 35.7573 50.1217 4.7462 0.2026

GFF 0.4947 0.8995 38.8141 55.1386 4.6584 0.2475
RP 0.6223 0.7878 38.4400 53.6370 4.6522 0.1562

ASR 0.4688 0.8342 35.2421 48.2889 4.3736 92.3286
DCNN 0.4952 0.8936 39.6507 56.7982 4.6641 79.5171

CSMCA 0.3801 0.6798 29.8909 42.2079 4.1895 186.4474
SSID 0.5425 0.8690 41.1085 56.0659 4.6606 0.0828

Proposed 0.5484 0.8968 43.7113 59.6273 4.8847 19.3064
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4.2. Comparison of Gray Image Fusion

Figures 8–10 represent the gray medical image fusion results generated by different
image fusion approaches. Figure 8 depicts the fused results of the methods on the first
group gray medical images. Figure 9 presents the fusion results of the algorithms on the
second group gray medical images. Figure 10 shows the fused results of the methods on
other gray medical images.

With regard to the visual performance, the edge information in Subfigure (a) of
Figures 8 and 9 denotes that the fused images of NSCT have lost some details of MRI
images, and the results have some noise, which affects the doctor’s observation. From the
Subfigure (b) of Figures 8 and 9 generated by the DTCWT method have the low contrast
and brightness. We can denote the blocking artifacts are generated by GFF algorithm as
shown in Subfigure (c) of Figures 8 and 9, due to the guided image filtering is a non-linear
filter, it needs the same or better guidance image to implement the smoothing process.
The fused images calculated by RP and DCNN schemes as shown in Subfigures (d) and
(f) of Figures 8 and 9, respectively, and the results produce certain kinds of distortions,
especially the Figure 8f obtained by DCNN, almost all the information of MRI image is
lost in the fusion image. ASR algorithm can generate the block effect and the gradient
contrast is poor, which could be denoted from Subfigure (e) of Figures 8 and 9. It can be
seen from Subfigure (g) of Figures 8 and 9 that the fused results computed by CSMCA
approach lead to information loss. The fusion results calculated by the SSID and proposed
techniques are relatively high-quality, and they are depicted in Subfigures (h) and (i) of
Figures 8 and 9, the results of the proposed method retain more image information and the
brightness is higher.

In order to reduce the influence of individual subjective judgment on image fusion
quality as far as possible, the objective evaluation indicators are introduced, and the
corresponding index values are shown in Tables 3–5. From the Table 3, in terms of QW, API,
SD and EN, the proposed approach generates superb performance, although the best data
for VIFF and Time are generated by GFF and SSID, with 0.4863 and 0.1608, respectively.
From the Table 4, we can see that the values of VIFF, QW, API and SD obtained by the
proposed fusion scheme are the best, while the best data for EN and Time are generated by
GFF and SSID, with 5.3836 and 0.0721, respectively. In order to analyze the universality
of the fusion algorithms more objectively, we take the average values of the index data
obtained from nine groups of gray medical images computed by the nine fusion methods,
as shown in Table 5, in addition to the EN and Time values, the other four metric values
obtained by the proposed algorithm are the best.

4.3. Comparison of Anatomical and Functional Image Fusion

In this section, nine groups of color medical images (MRI-PET/SPECT) are used to
assess the fused results of the proposed fusion technique, and the corresponding compara-
tive analysis is given. The typical MRI-PET fusion results of the techniques are given in
Figure 11. From the Figure 11, we can denote that the fused images such as Figure 11a–c,f
generated by the NSCT, DTCWT, GFF, and DCNN algorithms, respectively, suffer from
color distortion. Figure 11d–e are the fusion results computed by the RP and ASR methods,
respectively; it can be clearly denoted that the fused results still exists the color distortion,
but the image contrast and brightness have improved. The fused image computed by
the CSMCA is shown in Figure 11g, and the artificial textures are appeared, the fusion
effects are undesirable. The fused images calculated by SSID and the proposed methods
are depicted in Figure 11h,i, respectively, the two fused images are similar, but the pro-
posed method has a better fusion performance and higher brightness. Figure 12 shows
the fused results of different algorithms on the other eight groups of anatomical and
functional images.

The quantitative assessments on the fused images of Figure 11 corresponding to the
first group anatomical and functional images are tabulated in Table 6. We can see that
the metrics data of API, SD and EN computed by the proposed algorithm are the best
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compared with other state-of-the-art fusion strategies, while the best data for VIFF, QW
and Time are computed by RP and SSID, with 0.8443, 0.8471and 0.0806, respectively.

Here, the average of the six metrics calculated by the various fusion approaches on the
selected nine groups anatomical and functional images in Figure 7 are recorded, as shown
in Table 7. In contrast to the other fusion techniques, there is a remarkable enhancement on
the metrics API, SD and EN. The overall comparative analysis shows that the proposed
scheme works better in terms of anatomical and functional images fusion, demonstrating
its effectiveness.

From the anatomical-anatomical image fusion results and anatomical-functional im-
age fusion results aforementioned, the proposed algorithm has obvious advantages in
subjective and objective evaluations compared with other state-of-the-art fusion algorithms.
The PCNN fusion rule and GIF-WSEML fusion rule are used in the NSCT domain, the
combination of the two fusion models denotes better preservation of spatial and spectral
features. The fusion images can provide accurate location of defected tissues, and provide
meaningful quantitative explanation for clinical diagnosis. Given that there are many pa-
rameters in this algorithm, it needs continuous manual debugging to select the appropriate
values of parameters to achieve the optimal fusion effect.

5. Conclusions

In this paper, a practical multimodal medical image fusion algorithm based on PCNN
and GIF-WSEML in non-subsampled contourlet transform domain is introduced. For
sub-bands fusion, two different rules are adopted, the low-frequency sub-bands are fused
by PCNN model, and the weighted sum of eight-neighborhood-based modified Laplacian
integrating guided image filtering (GIF-WSEML) is used to merge the high-frequency sub-
bands. The nine groups of anatomical-anatomical images and nine groups of anatomical-
functional images are used to simulate by the proposed framework and other conventional
fusion approaches. The comparative experimental fusion results conducted on both gray
and color medical image datasets demonstrate that the proposed fusion algorithm has a
better performance with improved brightness and contrast of multimodal medical images,
and the objective metrics such as VIFF, QW, API, SD and EN computed by the proposed
method also have obvious advantages. Compared to DTCWT, GFF, RP and SSID, the time
consuming of the proposed method is high, so reducing the operation time and improving
the real-time performance of the algorithm are the problems we need to solve in the future.

Author Contributions: The experimental measurements and data collection were carried out by L.L.
and H.M. The manuscript was written by L.L. with the assistance of H.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Shanghai Aerospace Science and Technology Innovation
Fund under Grant No. SAST2019-048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PCNN pulse coupled neural network
WSEML weighted sum of eight-neighborhood-based modified Laplacian
GIF guided image filtering
NSCT nonsubsampled contourlet transform
CT computed tomography
MRI magnetic resonance imaging
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PET positron emission tomography
SPECT single-photon emission CT
DWT discrete wavelet transform
SWT stationary wavelet transform
DTCWT dual-tree complex wavelet transform
CVT curvelet transform
CNT contourlet transform
ST shearlet transform
NSST nonsubsampled shearlet transform
ANSST adjustable nonsubsampled shearlet transform
CNN convolutional neural network
MGA multi-scale geometric analysis
PAPCNN parameter-adaptive pulse coupled neural network
ISML improved sum-modified-laplacian
DCNN deep convolutional neural network
GFF guided image filtering for image fusion
NSP nonsubsampled pyramid
NSDFB nonsubsampled directional filter bank
RP ratio of low-pass pyramid
ASR adaptive sparse representation
CSMCA convolutional sparsity based morphological component analysis
SSID single-scale structural image decomposition
VIFF visual information fidelity
QW weighted fusion quality index
API average pixel intensity
SD standard deviation
EN entropy
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