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Abstract: Over the last twenty years, quantum game theory has given us many ideas of how quantum
games could be played. One of the most prominent ideas in the field is a model of quantum playing
bimatrix games introduced by J. Eisert, M. Wilkens and M. Lewenstein. The scheme assumes that
players’ strategies are unitary operations and the players act on the maximally entangled two-qubit
state. The quantum nature of the scheme has been under discussion since the article by Eisert et al.
came out. The aim of our paper was to identify some of non-classical features of the quantum scheme.
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1. Introduction

The scheme defined by J. Eisert, M. Wilkens and M. Lewenstein [1] was one of the
first formal protocols of playing quantum games, and is definitely one of the most used
schemes for quantum games. This conclusion is confirmed by the number of citations of
the article (around 500 citations according to Web of Knowledge). The scheme generalizes
a 2 × 2 game in the sense that the game generated by the Eisert–Wilkens–Lewenstein
(EWL) scheme with unitary strategies restricted to some type of one-parameter operators is
equivalent to the classical game. The seminal paper [1] and the subsequent papers [2–18]
are just a very smart part of the huge literature devoted to the EWL scheme. It was
shown in [1] that a quantum way of playing the Prisoner’s Dilemma game can lead to a
reasonable and Pareto efficient outcome. Further research has shown, for example, that
players can benefit from the use of quantum strategies in symmetric 2× 2 games [3]. The
Eisert–Wilkens–Lewenstein (EWL) scheme can also be extended to consider extensive-form
games [4]. It was also shown that the EWL scheme can be implemented with a quantum
computer [5,6].

Despite the significance of the scheme in the development of quantum game theory,
doubts arise as to quantum nature of the EWL game. These concerns include the following:

• Does the quantum solution provided by the EWL scheme really solve the input classi-
cal game? (to what extent the quantum solution solves the underlying classical game).

• Can the quantum solution be obtained in a classical game? (to what extent the quan-
tum solution is really quantum mechanical in that it cannot be achieved classically).

These questions were raised in [19]. By considering the Prisoner’s Dilemma game, the
authors come to the conclusion that the EWL scheme does not imply a quantum mechanical
game. Moreover, according to [19], the solution (Nash equilibrium) resulting from playing
the EWL game does not appear to solve the original game.

Recently, there have been discussions about van Enk and Pike’s arguments. It is
claimed in [20] that the EWL approach to the Hawk–Dove game enables the players
to obtain a game result that is not achievable in the classical game. As a result, it was
concluded in [20] that a quantum game cannot be fully modeled by the classical game.
Shortly after appearing [20], B. Groisman [21] suggested that the scheme used by N. Vyas
and C. Benjamin changes the rules of the original game. Hence, the author stated that the
solution provided in [20] cannot be treated as a quantum extension of the classical game.
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In light of the above, it can be seen that the problem of quantumness of the EWL
scheme is not resolved. The purpose of this article is, on the one hand, to show that the
form of the scheme considered in [19–21] does not fully describe the EWL scheme, on the
other hand, to draw attention to other non-classical properties of the scheme.

2. Preliminaries on Game Theory

This section is based on [22,23]. We review relevant material connected with the notion
of strategic-form games and payoff regions in those games.

The basic model of games studied in game theory is a game in strategic form.

Definition 1 ([22]). A game in strategic form (or in normal form) is an ordered triple

(N, (Si)i∈N , (ui)i∈N), (1)

in which

• N = {1, 2, . . . , n} is a finite set of players;
• Si is the set of strategies of player i, for every player i ∈ N;
• ui : S1 × S2 × · · · × Sn → R is a function associating each vector of strategies s = (si)i∈N

with the payoff ui(s) to player i, for every player i ∈ N.

In the case of a finite two-person game, i.e., N = {1, 2}, S1 = {0, 1, . . . , m − 1},
S2 = {0, 1, . . . , r− 1}, the game can be written as a bimatrix with entries (u1(s), u2(s)),


0 1 · · · r− 1

0 (a00, b00) (a01, b01) · · · (a0,r−1, b0,r−1)
1 (a10, b10) (a11, b11) · · · (a1,r−1, b1,r−1)
...

...
...

. . .
...

m− 1 (am−1,0, bm−1,0) (am−1,1, bm−1,1) · · · (am−1,r−1, bm−1,r−1)

. (2)

The elements of Si are called the pure strategies of player i. The set of pure strategy
vectors (profiles) is ∏n

i=1 Si. A mixed strategy of player i is a probability distribution over
Si. We denote the set of mixed strategies of player i by ∆(Si). The set of mixed strategy
profiles is ∏n

i=1 ∆(Si). In particular, if Si = {si
0, si

1}, player i’s set of mixed strategies will be
denoted by

{[p1(si
0), p2(si

1)] : p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1}. (3)

A correlated strategy is a probability distribution over ∏n
i=1 Si. The set of correlated

strategies is denoted by ∆(∏n
i=1 Si).

Let ui : ∏n
i=1 Si → R be the payoff function of player i in (N, (Si)i∈N , (ui)i∈N). Then

the payoff functions ui : ∏n
i=1 ∆(Si) → R and ui : ∆(∏n

i=1 Si) → R are defined by the
expected values of ui : ∏n

i=1 Si → R determined by mixed strategies σ ∈ ∏n
i=1 ∆(Si) and

probability distributions over ∏n
i=1 Si, respectively. Let us define the vector-valued payoff

function u : ∏n
i=1 Si → Rn by u(s) = (u1(s), . . . , un(s)), s ∈ ∏n

i=1 Si.

Definition 2 ([23]). Let (N, (Si)i∈N , (ui)i∈N) be a finite strategic-form game. The ranges

Rpu = u

(
n

∏
i=1

Si

)
, Rnc = u

(
n

∏
i=1

∆(Si)

)
, Rco = u

(
∆

(
n

∏
i=1

Si

))
(4)

are called the pure-payoff region, the non-cooperative payoff region and the cooperative payoff region,
respectively.

The notion of Nash equilibrium is one of the most important solution concepts in
non-cooperative game theory. It defines a strategy vector at which each strategy is a best
reply to the strategies of the other players.
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Definition 3 ([22]). A strategy vector s∗ = (s∗1 , s∗2 , . . . , s∗n) is a Nash equilibrium if for each player
i ∈ N and each strategy si ∈ Si the following is satisfied:

ui(s∗) ≥ ui(si, s∗−i), (5)

where s∗−i = (s∗1 , . . . , s∗i−1, s∗i+1, . . . , s∗n).

In particular, if a strategic form game is described in bimatrix form, Nash equilibrium
can be defined as follows:

Definition 4. A position (i, j) in a bimatrix game (2) is a Nash equilibrium if

aij ≥ akj for all k ∈ {0, 1, . . . , m− 1} (6)

and
bij ≥ bil for all l ∈ {0, 1, . . . , r− 1}. (7)

3. The Eisert–Wilkens–Lewenstein Scheme

The Eisert–Wilkens–Lewenstein (EWL) scheme is a model of a normal-form frame-
work. It concerns bimatrix 2× 2 games—two person strategic form games with two-element
sets of strategies that can be written as

( s2
0 s2

1
s1

0 (a00, b00) (a01, b01)
s1

1 (a10, b10) (a11, b11)

)
. (8)

In the EWL scheme, players’ strategies are unitary operators that each of two players
acts on a maximally entangled quantum state. In the literature there are a few descriptions
of the EWL scheme that are strategically equivalent. In what follows, we recall the general
n-person scheme we adapted for the purpose of our research. For more details of the
schematic description, see Figure 1 in [24].

Figure 1. Quantum circuit for the EWL scheme. Qubits q[1] and q[0] are identified with the first
and second qubit, respectively. Player 1 acts on q[1] with UQC

2 (π, π), player 2 acts on q[0] with
UQC

2 (π/2,−π/2), which corresponds to the strategy profile (U(π/2, 0,−π/2), U(π/2, 0, 0)) in the
EWL approach.

Definition 5 ([13]). Let us consider a strategic game Γ = (N, (Si)i∈N , (ui)i∈N) with
Si = {si

0, si
1} for each i ∈ N. The Eisert–Wilkens–Lewenstein approach to game Γ is defined

by a triple ΓEWL = (N, (Di)i∈N , (vi)i∈N), where

• N = {1, 2, . . . n} is the set of players.
• Di is a set of unitary operators from SU(2). A possible parameterization of U ∈ SU(2) is

Ui(θi, αi, βi) =

(
eiαi cos θi

2 ieiβi sin θi
2

ie−iβi sin θi
2 e−iαi cos θi

2

)
, θi ∈ [0, π], αi, βi ∈ [0, 2π). (9)
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• vi : D1 ⊗ D2 ⊗ · · · ⊗ Dn → R is a payoff function given by

vi

(
n⊗

i=1

Ui(θi, αi, βi)

)
= tr(|Ψ〉〈Ψ|Mi), (10)

where

|Ψ〉 = J†

(
n⊗

i=1

Ui(θi, αi, βi)

)
J|0〉⊗n, J = (1⊗n + iσ⊗n

x )/
√

2,

Mi = ∑
j1,...,jn∈{0,1}

ai
j1,...,jn |j1, . . . , jn〉〈j1, . . . , jn|,

(11)

and ai
j1,...,jn ∈ R are payoffs of player i in Γ given by equation ai

j1,...,jn = ui(s1
j1

, . . . , sn
jn).

In particular, the EWL approach to a 2× 2 game (2) results in the following vector-
valued payoff functions:

v(U1(θ1, α1, β1), U2(θ2, α2, β2)) = (a00, b00)

(
cos (α1 + α2) cos

θ1

2
cos

θ2

2
+ sin (β1 + β2) sin

θ1

2
sin

θ2

2

)2

+ (a01, b01)

(
sin (α2 − β1) sin

θ1

2
cos

θ2

2
+ cos (α1 − β2) cos

θ1

2
sin

θ2

2

)2

+ (a10, b10)

(
cos (α2 − β1) sin

θ1

2
cos

θ2

2
+ sin (α1 − β2) cos

θ1

2
sin

θ2

2

)2

+ (a11, b11)

(
cos (β1 + β2) sin

θ1

2
sin

θ2

2
− sin (α1 + α2) cos

θ1

2
cos

θ2

2

)2
. (12)

4. Problem of Classical Strategies in the EWL Scheme

The EWL scheme constitutes a generalization of the classical way of playing the game.
It is known that the EWL game becomes equivalent to the classical one by restricting the
unitary strategy sets of the players. In the case of a bimatrix game (2), the scheme

ΓEWL = ({1, 2}, (Di)i∈{1,2}, (vi)i∈{1,2}) (13)

is equivalent to (2) if
D1 = D2 = {U(θ, 0, 0) | θ ∈ [0, π]}. (14)

If the players choose U1(2 arccos
√

p, 0, 0), U2(2 arccos
√

q, 0, 0) ∈ {U(θ, 0, 0) | θ ∈
[0, π]}, then the resulting payoff vector is of the form

v(U1(θ1, α1, β1), U2(θ2, α2, β2))

= (a00, b00)pq + (a01, b01)p(1− q) + (a10, b10)(1− p)q + (a11, b11)(1− p)(1− q). (15)

This is the same as the payoff vector corresponding to a profile of classical mixed strategies(
[p(s1

0), (1− p)(s1
1)], [q(s

2
0), (1− q)(s2

1)]
)

. (16)

On the other hand, player 1 and player 2’s classical mixed strategies in the EWL
scheme can also be modeled by quantum operations

Cp(ρ) = p1ρ1+ (1− p)U(π, 0, 0)ρU†(π, 0, 0), Cq(ρ) = q1ρ1+ (1− q)U(π, 0, 0)ρU†(π, 0, 0), (17)

where ρ stands for a 2× 2 density matrix. In other words, playing 1 and U(π, 0, 0) with
probability p and 1− p by player 1, and q and 1− q by player 2 results also in (15). Both
ways (14) and (17) turn the EWL game into the classical one. However, the problem
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becomes more complex if at least one of the players has access to other unitary operations.
The following examples show that the limitation to the probability distributions over the
counterparts of classical pure strategies 1 and U(π, 0, 0) and considering the EWL game as
a 3× 3 bimatrix game lose some of the non-classical features of the EWL scheme.

Example 1. Let us consider the Matching Pennies game in terms of the EWL scheme. A common
bimatrix form of that game is as follows:

MP =

( s2
0 s2

1
s1

0 (1,−1) (−1, 1)
s1

1 (−1, 1) (1,−1)

)
. (18)

One can easily show that game (18) has the unique mixed Nash equilibrium (σ∗1 , σ∗2 ), where
σ∗1 = [(1/2)(s1

0), (1/2)(s1
1)] and σ∗2 = [(1/2)(s2

0), (1/2)(s2
1)]. Let us now extend game (18)

to include the strategy U(π/2, 0,−π/2) for each player. By substituting θ1 = θ2 = π/2,
α1 = α2 = 0 and β1 = β2 = −π/2 into (12), we get

v
(

U
(π

2
, 0,−π

2

)
, U
(π

2
, 0,−π

2

))
= (0, 0). (19)

The corresponding bimatrix is of the form


1 iX U

(
π
2 , 0,−π

2
)

1 (1,−1) (−1, 1) (0, 0)
iX (−1, 1) (1,−1) (0, 0)
U
(

π
2 , 0,−π

2
)

(0, 0) (0, 0) (0, 0)

. (20)

Among the Nash equilibria are the classical mixed Nash equilibrium

([(1/2)(1) + (1/2)(iX)], [(1/2)(1) + (1/2)(iX)]) (21)

and non-classical Nash equilibria(
U
(π

2
, 0,−π

2

)
, U
(π

2
, 0,−π

2

))
, (22)(

[(1/2)(1) + (1/2)(iX)], U
(π

2
, 0,−π

2

))
, (23)(

U
(π

2
, 0,−π

2

)
, [(1/2)(1) + (1/2)(iX)]

)
. (24)

Let us now consider the EWL scheme with unitary strategies

D1 = D2 =
{
{U(θ, 0, 0) : θ ∈ [0, π]} ∪U

(π

2
, 0,−π

2

)}
. (25)

Combining (12) with (25) yields

v1(U1 ⊗U2) =


cos θ1 cos θ2 if U1 ⊗U2 = U1(θ1, 0, 0)⊗U2(θ2, 0, 0),
− sin θ1 if U1 ⊗U2 = U1(θ1, 0, 0)⊗U2

(
π
2 , 0,−π

2
)
,

− sin θ2 if U1 ⊗U2 = U1
(

π
2 , 0,−π

2
)
⊗U2(θ2, 0, 0),

0 if U1 ⊗U2 = U1
(

π
2 , 0,−π

2
)
⊗U2

(
π
2 , 0,−π

2
)
,

(26)

and
v2(U1 ⊗U2) = −v1(U1 ⊗U2). (27)
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One can show that among (22)–(24), only strategy profile (23) is a Nash equilibrium in the
game determined by (25)–(27). In the case of both profiles (22) and (24), player 2 obtains the payoff
of 0, and she will get the payoff of 1 by choosing U(π/2, 0, 0),

v2

(
U
(π

2
, 0,−π

2

)
, U
(π

2
, 0, 0

))
= 1. (28)

In general, there is no pure Nash equilibrium in the game given by (25)–(27). Let us first
note that the strategy profile U(π/2, 0, 0)⊗U(π/2, 0, 0) is not a Nash equilibrium. Player 2 can
benefit by a unilateral deviation:

1 = v2

(
U
(π

2
, 0, 0

)
, U
(π

2
, 0,−π

2

))
> v2

(
U
(π

2
, 0, 0

)
, U
(π

2
, 0, 0

))
= 0. (29)

Since there is no other possible Nash equilibria in the set {U1(θ1, 0, 0) ⊗U2(θ2, 0, 0)}, a
strategy profile in the form U1(θ1, 0, 0)⊗U2(θ2, 0, 0) cannot be a Nash equilibrium in the set (25).

The last step is to show that neither U1(θ1, 0, 0) ⊗ U2
(

π
2 , 0,−π

2
)

nor U1
(

π
2 , 0,−π

2
)
⊗

U2(θ2, 0, 0) constitute a Nash equilibrium. Player 1’s best reply to the strategy U2(π/2, 0,−π/2)
is U1(0, 0, 0) or U1(π, 0, 0) when restricted to the set {U1(θ1, 0, 0) : θ1 ∈ [0, π]}. Then player
2’s best reply to U1(0, 0, 0) and U1(π, 0, 0) is U2(π, 0, 0) and U2(0, 0, 0), respectively. Therefore,
a strategy profile U1(θ1, 0, 0)⊗U2

(
π
2 , 0,−π

2
)

is not a Nash equilibrium. The same conclusion
can be drawn for U1

(
π
2 , 0,−π

2
)
⊗U2(θ2, 0, 0). This shows that the 3× 3 bimatrix form used to

present the EWL scheme is not equivalent to the original scheme.

Example 2. An equally interesting example is the Prisoner’s Dilemma game in the form studied
in [1]: ( s2

0 s2
1

s1
0 (3, 3) (0, 5)

s2
1 (5, 0) (1, 1)

)
. (30)

Let us extend the game in the same manner as (20). This gives


1 iX U2

(
π
2 , 0,−π

2
)

1 (3, 3) (0, 5) (4, 3
2 )

iX (5, 0) (1, 1) (4, 3
2 )

U1
(

π
2 , 0,−π

2
)

( 3
2 , 4) ( 3

2 , 4) ( 9
4 , 9

4 )

. (31)

Adding Ui(π/2, 0,−π/2) to the strategy sets of the players in game (30) results in two
non-classical equilibria

(U1(π/2, 0,−π/2), iX) and (iX, U2(π/2, 0,−π/2)). (32)

Game (31) is not equivalent to one defined by strategy sets (25). We find that the strategy
profiles (32) are no longer Nash equilibria in (25). We have

5 = v1

(
U1

(π

2
, 0, 0

)
, U2

(π

2
, 0,−π

2

))
> v1

(
iX, U2

(π

2
, 0,−π

2

))
= 4 (33)

and
5 = v2

(
U1

(π

2
, 0,−π

2

)
, U2

(π

2
, 0, 0

))
> v2

(
U1

(π

2
, 0,−π

2

)
, iX
)
= 4. (34)

The above examples demonstrate that adding a single unitary strategy to the bimatrix-
form game does not fully reflect non-classical features of the EWL scheme. The idea
of replacing strategy sets of the form {U(θ, 0, 0)} with {1, iX} written with the use of
bimatrix form works if strategy set of each player is restricted to the one parameter set.
Then a unitary strategy U(2 arccos

√
p, 0, 0) is outcome-equivalent to the mixed strategy

[p(1), (1− p)(iX)]. In general, when other unitary strategies are available, the equivalence
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does not hold. For example, since v1(1, U2(π/2, 0, π/2)) = v1(iX, U2(π/2, 0, π/2)) =
(a00 + a10)/2 for every bimatrix-form game (2), it follows that

v1

(
[p(1), (1− p)(iX)], U2

(π

2
, 0,

π

2

))
=

a00 + a10

2
. (35)

In other words, playing any classical mixed strategy against U2(π/2, 0, π/2) always re-
sults in the same payoff outcome. In the case of the strategy profile(
U1
(
2 arccos

√
p, 0, 0

)
, U2(π/2, 0, π/2)

)
, we have

v1

(
U1(2 arccos

√
p, 0, 0), U2

(π

2
, 0,

π

2

))
=

(
1
2
+
√

p
√

1− p
)

a00 +

(
1
2
−√p

√
1− p

)
a10. (36)

A quick look at Equation (36) shows the interference terms ±√p
√

1− p that are not
part of the payoff function (35). That is the reason why we obtain different results de-
pending on whether we use strategies of the form [p(1), (1− p)(iX)] or the one parameter
unitary operations extended with some type of two-parameter operator.

5. The EWL Scheme and the IBM Quantum Experience

In what follows, we provide the EWL approach implemented on the IBM quantum ex-
perience platform for strategy profiles (U1(π/2, 0,−π/2), U2(π/2, 0, 0)),
(U1(π/2, 0,−π/2),1) and (U1(π/2, 0,−π/2), iX). The quantum circuits are adapted
from [6]. First, we express unitary operators U1(π/2, 0,−π/2) and U2(π/2, 0, 0)) in terms
of the parameterization of unitary operators used in the IBM quantum circuit composer.
Recall that the gates provided by IBM are defined as follows:

UQC
3 (θ, φ, λ) =

(
cos θ

2 −eiλ sin θ
2

eiφ sin θ
2 ei(λ+φ) sin θ

2

)
, UQC

2 (φ, λ) = UQC
3

(π

2
, φ, λ

)
, UQC

1 (λ) = UQC
3 (0, 0, λ). (37)

Thus,
U
(π

2
, 0,−π

2

)
= UQC

2 (π, π), U
(π

2
, 0, 0

)
= UQC

2

(π

2
,−π

2

)
(38)

According to [6], the entangling operator J and the disentangling operator J† can be
expressed in the form

J = CNOT ·U2(π/2,−π/2) ·CNOT, J† = CNOT ·U2(−π/2, π/2) ·CNOT. (39)

The quantum circuit is presented in Figure 1.
Although, it generates small errors, the IBM quantum computer (ibmq_vigo) outputs

|01〉with probability close to one in the case of playing the strategy vector (U(π/2, 0,−π/2),
U(π/2, 0, 0)) or equivalently (UQC

2 (π, π), UQC
2 (π/2,−π/2)) (see Figure 2).

Figure 2. The histogram showing the result of the quantum measurement (backend: ibmq_vigo)
corresponding to (U(π/2, 0,−π/2), U(π/2, 0, 0)) in the EWL approach.



Entropy 2021, 23, 604 8 of 13

Comparing the histograms in Figure 2 with ones in Figures 3 and 4 shows that
U(π/2, 0, 0) has no counterpart in any probability distribution over 1 and X. As a re-
sult of playing 1 or X against U(π/2, 0,−π/2), the final state |Ψ〉 is |00〉 or |01〉 with
equal probability.

Figure 3. The histogram showing the result of the quantum measurement (backend: ibmq_vigo)
corresponding to (U(π/2, 0,−π/2),1) in the EWL approach.

Figure 4. The histogram showing the result of the quantum measurement (backend: ibmq_vigo)
corresponding to (U(π/2, 0,−π/2), X) in the EWL approach.

6. Payoff Region of the EWL Quantum Game

Another advantage that makes the difference between the classical game and the EWL
approach is possibility of obtaining payoff profiles which are in the complement of the
non-cooperative payoff region. The Prisoner’s Dilemma game (PD) examined repeatedly
with the use of the EWL scheme does not allow one to see that feature. The non-cooperative
payoff region in the PD game is equal to the cooperative one (see Figure 5).

1 2 3 4 5
Player 1

1

2

3

4

5

Player 2

Figure 5. Non-cooperative payoff region in the Prisoner’s Dilemma game that coincides with the
cooperative one.
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The players by using mixed strategies can obtain each payoff vector from the convex
hull of the pure-payoff vectors. In general, it is clear that Rpu ( Rnc ( Rco (see Definition 2).
As we show below, the extension of the classical strategies to unitary operators (9) makes
the sets Rpu, Rnc, Rco equal in the EWL scheme. The Battle of the Sexes game is a typical
example of inequality between the non-cooperative and cooperative payoff regions. Its
bimatrix form can be written as

BoS =

( s2
0 s2

1
s1

0 (4, 2) (0, 0)
s1

1 (0, 0) (2, 4)

)
. (40)

In this case, the cooperative payoff region is a convex polygon determined by points
(4, 2), (2, 4) and (0, 0), and there is no mixed strategy profile from ∆(S1)×∆(S2) that would
determine the payoff outcome (3,3). The non-cooperative and cooperative payoff regions
of (40) are shown in Figure 6.

1 2 3 4
Player 1

1

2

3

4

Player 2

1 2 3 4
Player 1

1

2

3

4

Player 2

Figure 6. Non-cooperative payoff region (left) and cooperative payoff region (right) of the Battle of
the Sexes game that coincides with the cooperative one.

The outcome (3, 3) can be easily achieved by the EWL scheme. From (12), it follows that

v
(

U1

(
0,

π

8

)
, U2

(
0,

π

8

))
=

1
2
((a00, b00) + (a11, b11)) = (3, 3). (41)

In general, the cooperative payoff region of any 2× 2 game can be already determined by
pure strategy profiles of the two-parameter unitary strategies. We will prove this fact by
using the well-known Carathéodory’s Theorem for convex hulls.

Theorem 1 (Carathéodory’s Theorem for convex hulls). Let A be a subset in Rd. Suppose
that x ∈ conv(A). Then there exists a subset B of A of cardinality at most d + 1 such that
x ∈ conv(B).

In our case, Carathéodory’s Theorem states that every payoff vector from
conv({(aij, bij) : i, j = 0, 1}) can be represented as a convex combination of at most three
payoff vectors from the pure-payoff region. That observation enables us to prove the
following proposition:

Proposition 1. The pure-payoff region in EWL approach

ΓEWL = ({1, 2}, (Ui(θ1, αi, 0))i∈{1,2}, (vi)i∈{1,2}) (42)

to a general 2× 2 game is equal to the cooperative payoff region, i.e., Rpu = Rnc = Rco.
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Proof. It is clear that the pure-payoff region of the classical game can be obtained in the
EWL game since (10) coincides with the payoff function of the classical game if the unitary
strategies are restricted to the set {U(0, 0, 0), U(π, 0, 0)}.

Let us consider 0 ≤ λ00, λ01, λ10, λ11 < 1 such that λ00 + λ01 + λ10 + λ11 = 1. Then
there are unitary strategy profiles that depend on λij and imply a general convex combina-
tion of any three pure-payoff profiles. Using (12) and assuming one of λij = 0, we obtain

u

(
U1

(
0,− arccos

√
λ01

1− λ00
, 0

)
, U2

(
2 arccos

√
λ00, arccos

√
λ01

1− λ00
, 0

))
= λ00(a00, b00) + λ01(a01, b01) + λ10(a10, b10). (43)

u

(
U1(0, 0, 0), U2

(
2 arccos

√
1− λ01, arccos

√
λ00

1− λ01
, 0

))
= λ00(a00, b00) + λ01(a01, b01) + λ11(a11, b11). (44)

u

(
U1

(
0,

π

2
, 0
)

, U2

(
2 arccos

√
1− λ10, arccos

√
λ11

1− λ10
, 0

))
= λ00(a00, b00) + λ10(a10, b10) + λ11(a11, b11). (45)

u

(
U1(π, 0, 0), U2

(
2 arccos

√
1− λ11, arccos

√
λ10

1− λ11
, 0

))
= λ01(a00, b00) + λ10(a10, b10) + λ11(a11, b11). (46)

It follows from Theorem 1 that any payoff profile from conv({(aij, bij) : i, j = 0, 1})
is achievable by the players’ pure strategies. In other words, the two-parameter pure
strategies in the EWL scheme imply the cooperative payoff region of the corresponding
2× 2 game.

7. The EWL Scheme in Relation to van Pike–Enk’s Arguments

According to van Enk–Pike [19], the games written in the form (20) and (31) should
not be seen as quantum games. They simply describe a 3× 3 bimatrix game resulting from
the addition of the third pure strategy to the original game. We showed in Section 4 that
bimatrix form cannot fully describe the EWL game since strategies of the form {U(θ, 0, 0) |
θ ∈ [0, π]} are not equivalent to probability distributions over 1 and U(π, 0, 0). As a
result, van Pike–Enk’s criticism, in fact, does not relate to the original EWL scheme (with
continuum of strategies) but merely to a 3× 3 bimatrix game with the payoffs calculated
by the EWL scheme.

Still, it was noted in [19,21] that adding of another strategy to the classical game
changes the rules of the game. Therefore, the outcome resulting from the new game cannot
be treated as a solution of the original game. Now, we are going to show that not every
extension of strategy sets of the players means changing the rules of the game, in particular,
one conducted by unitary strategies in the EWL scheme. A typical example is a mixed
extension of the game in which the players can choose probability distributions over their
own sets of pure strategies. Let us recall the formal definition of mixed extension of a
strategic-form game [22].

Definition 6. Let G = (N, (Si)i∈N) be a strategic-form game (1) with finite strategy sets. Denote
by S = S1 × S2 × · · · × Sn the set of pure strategy vectors. The mixed extension of G is the game

Γ = (N, (Σi)i∈N , (u′i)i∈N), (47)
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in which, for each i ∈ N, player i’s set of strategies is

Σi =

{
σi : Si → [0, 1] : ∑

si∈Si

σi(si) = 1

}
, (48)

and her payoff function is the function

u′i : Σ1 × Σ2 × · · · × Σn → R, (49)

which associates each strategy vector σ = (σ1, . . . , σn), σi ∈ Σi with the payoff

u′i(σ) = ∑
(s1,...,sn)∈S

ui(s1, . . . , sn)σ1(s1)σ2(s2) · · · σn(sn). (50)

Nash equilibrium is guaranteed in the mixed extension defined above [25]. Thus,
mixed strategies enable the players to obtain a rational outcome that is not achievable in
the set of pure strategy vectors. By using a mixed strategy, a player gets a better payoff in
terms of the expected payoff (50). Although, it must be assumed that the payoff functions
in G satisfy the von Neumann–Morgenstern axioms (see [22])—their payoff functions are
linear in probabilities, it has nothing to do with breaking the rules of the game G. The
result of the game G is always a pure strategy vector of G.

Similarly to the mixed extension, the EWL scheme can also be treated as an extension
of G. The game generated by (13) is outcome-equivalent to the mixed extension of a 2× 2
game if the unitary strategies are restricted to (14), and a wider range of unitary operators
makes (13) a nontrivial generalization of (47). Both extensions require using additional
resources to be implemented. One would require using some random device to play a
mixed strategy. It could be a coin or dice in the case of simple mixed strategies and a random
number generator in general. The unitary strategies, in turn, require using a quantum
device. It is also worth noting that Formulas (10) and (50) are just the expected payoff
functions. They are associated with specific probability distributions that are generated by
the player’s mixed strategies and the final state |Ψ〉. By choosing mixed or unitary strategy,
the players create a specific probability distribution over the pure outcomes. However, it is
worth emphasizing that a mixed extension as well as the EWL approach always result in a
pure strategy outcome of G. In the case of the EWL approach to a 2× 2 game, the result
of the quantum measurement on the final state (determined by the unitary strategies) is
one of the four payoff outcomes related to the four pure strategy vectors of the classical
game. As stated in [19], it would be perfect if the quantum scheme left the classical game
unchanged and solved it using quantum operations. In our view, the EWL scheme meets
this requirement.

Mixed and the EWL extensions of an n-person strategic-form game (with two-element
strategy sets for the players) are summarized in the following table to point out the
similarities of two ways of playing the game G.

Mixed extension Γ = (N, (Σi)i∈N , (u′i)i∈N) of a 2× 2× · · · × 2 game

N = {1, 2, . . . , n}
Σi =

{
σi :
{

si
0, si

1
}
→ [0, 1] : σi(si

0) + σi(si
1) = 1

}
u′i(σ1, σ2, . . . , σn) = ∑j1,...,jn∈{0,1} ui

(
s1

j1
, s2

j2
, . . . , sn

jn

)
σ1

(
s1

j1

)
σ2

(
s2

j2

)
· · · σn

(
sn

jn

)
The EWL extension ΓEWL = (N, (Di)i∈N , (vi)i∈N) of a 2× 2× · · · × 2 game

N = {1, 2, . . . , n}
Di ⊂ SU(2) = {U(θ, α, β) : θ ∈ [0, π], α, β ∈ [0, 2π)}
vi(U1, U2, . . . , Un) = ∑j1,...,jn∈{0,1} ui

(
s1

j1
, s2

j2
, . . . , sn

jn

)
|〈Ψ|j1, . . . , jn〉|2



Entropy 2021, 23, 604 12 of 13

To sum up, it is not obvious that playing the quantum game really changes the rules of
the game if we look at a unitary operator as an extension of a mixed strategy. If so, it might
as well state that using classical mixed strategies violate the rules of the game. The bimatrix
games 3× 3 in the form of (20) or (31) combine outcomes associated with classical pure
strategies with one unitary strategy profile determined by the expected payoff function.
This way differs significantly from the original scheme presented in [1] and cannot be used
as an argument against the EWL scheme.

8. Conclusions

The work [1] was one of the first papers that launched the quantum game theory. From
that moment on, the idea of [1] has been developed to cover other game theory problems
that go beyond simple 2× 2 games. The scheme introduced in [1] enables the players to
obtain the expected payoff outcomes that are often not available when the classical mixed
strategies are used. Still, there are doubts if a solution given by the EWL scheme is really of
the quantum nature. Among a few comments, it was postulated that the EWL approach to
a given game changes the rules of the game. For that reason, the solution provided by the
EWL game should not concern the classical game under study.

In our opinion, the form of the EWL scheme presented in [1] can be regarded as a
further generalization of the mixed extension of the game. In a particular case, the EWL
approach coincides with the mixed extension since the type of one-parameter unitary
operations can be viewed as a counterpart of a mixed strategy. Mixed and the EWL
extensions of a game have many features in common that support our view. They both
enable the players to obtain a specific probability mixtures of the outcomes and as a
result, they generate expected payoff outcomes far beyond the pure-payoff region. Non-
cooperative payoff region is associated with the mixed extension, and the full convex hull
of pure-payoff vectors (i.e., a cooperative payoff region) is available when the players play
the EWL extension of the game. At the same time, the result of the game from playing
mixed and unitary strategies is always an outcome from pure-payoff region. Another thing
is that both extensions have the same structure of strategic-form game. They are both
defined by a set of players, sets of players’ strategies and the expected payoff functions.

We think that the EWL scheme does not change the rules of the bimatrix game. As in
the case of mixed extension, the EWL extension allows the players to get new possibilities
for choosing strategies in the classical game.
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