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Abstract: We consider a quantum battery that is based on a two-level system coupled with a cavity
radiation by means of a two-photon interaction. Various figures of merit, such as stored energy,
average charging power, energy fluctuations, and extractable work are investigated, considering, as
possible initial conditions for the cavity, a Fock state, a coherent state, and a squeezed state. We show
that the first state leads to better performances for the battery. However, a coherent state with the
same average number of photons, even if it is affected by stronger fluctuations in the stored energy,
results in quite interesting performance, in particular since it allows for almost completely extracting
the stored energy as usable work at short enough times.

Keywords: quantum battery; two-photon Jaynes-Cummings model

1. Introduction

Quantum thermodynamics is a growing field of research that aims at extending
concepts, such as heat and work to the realm of quantum physics [1–9]. In this framework,
several conventional assumptions of classical thermodynamics should be reconsidered. In
particular, one needs to depart from the concept of thermodynamic equilibrium to properly
include quantum coherences or possible external drives acting on individual quantum
systems. In recent years, a very active branch of this new field of research focused on
the study of energy transfer and storage in quantum devices leading to the concept of
Quantum Battery (QB) [7,10,11].

Various strategies have been developed in order to exploit quantum features to out-
perform classical devices, in particular enhancing the charging power (the energy that is
stored in a given time interval) and the extractable work [10,12–22]. Theoretical propos-
als for possible actual implementations of QBs are often based on engineered two-level
systems (TLSs) such as trapped ions [23–25], superconducting qubits [26] or quantum
dot in semiconductors [27]. These platforms, which are usually exploited for qubit im-
plementations, can be used as QB and can be coupled to chargers of a different nature
able to coherently transfer energy into them. The proposed charging mechanisms range
from classical external drives [28–31] to a proper control of the interaction in an array of
TLSs [32–36].

In this respect, promising platforms are devices where a collection of TLSs is coupled
to a monochromatic cavity radiation in the same spirit of what has been realized in cavity
and circuit quantum electrodynamics [37,38]. Indeed, it has been shown that, for such kind
of QBs, an enhancement of the averaged charging power, which scales as

√
M, with M

being the total number of TLSs, can be achieved, due to the collective interaction among
the TLSs [39–42]. Interestingly, a similar scaling, compatible with theoretical predictions,
has been reported in a very recent experiment [43], demonstrating, for the first time, the
collective quantum advantage first discussed in Ref. [13].
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In addition, recent theoretical proposals have shown that it is possible to engineer, in
both trapped ions [44] and flux qubit systems [45], the suppression of the conventional
dipole coupling, linear in the quantum field radiation, in order to access the peculiar
phenomenologies, such as super-radiance and spectral collapse, which are associated to
the two-photon coupling (quadratic in the radiation field) [46–51]. These ideas have also
recently been considered in the context of QBs by some of us, showing that two-photon
coupling, once realized, can lead to an even greater (proportional to M instead of

√
M)

enhancement of the averaged charging power [52]. This analysis has been carried out
considering as initial state for the cavity radiation a Fock state where the number of photons
is exactly the double of the number of TLSs in such a way that, at resonance, all the radiation
energy is transferred to the QB (charging) and back (discharging). However, this form
for the initial state is quite ad hoc and not so easy to be implemented experimentally.
According to this, it is relevant to investigate also other possible initial states for the cavity
radiation, such as coherent states and squeezed states, which are easier to be realized from
an experimental point of view [37,53].

In the present paper, we address this aspect to achieve a full characterization of the
two-photon based charging mechanism. For the sake of clarity, we will consider the case
of a single TLS as the QB to be charged, avoiding other competing mechanisms that are
based on collective behaviour [28,33]. We will also adopt the so-called rotating-wave
approximation (RWA), in the same spirit of Ref. [54] for the single-photon case, which
allows for a simple analytical treatment. We will describe the charging of a QB investigating
different figures of merit. In particular, we will study the energy storage and associated
charging time. Moreover, we will consider the average charging power and the fluctuations
of the stored energy [29,52,55,56]. Finally, a discussion regarding the maximum extractable
work, namely the maximum fraction of the energy stored into the battery, which can be
actually extracted and used to further purposes, will be addressed. This quantity, which is
known in the literature as ergotropy [57], in general does not coincide with the total energy
that is stored in the QB due to quantum correlations [15,19,40]. This analysis has already
been carried out for a conventional single-photon coupling [40] identifying the Fock and
coherent state as the best choices for extracting almost all of the stored energy, but is still
lacking for a two-photon coupling.

All of these different aspects will be analyzed while taking various initial conditions
for the cavity states into account. In particular, we will consider a Fock state, a coherent
state, and a squeezed state with the same average number of photons as representative of
the more conventional quantum state for the cavity radiation. Our study confirms that a
properly designed Fock state is optimal for the functioning of the QB leading to maximal
stored energy, short charging time, and a good amount of extractable work. However,
interesting performances can also be found for a coherent state with the same averaged
number of photons. In particular, this state shows an important ratio between extractable
work and stored energy at short enough times. An opposite behaviour is observed for a
squeezed state whose performances are all around very poor. The present analysis could
give relevant hints for actual experimental implementations of these kind of QBs.

The paper is organized, as follows. In Section 2, we introduce the model of QB, where
a single TLS is coupled to a unique cavity mode via a two-photon interaction. Here, we
consider different initial states for the cavity such as a Fock state, a coherent state and
a squeezed state. Section 3 is devoted to the characterization of the QB for these three
different cavity states. In particular, we study the charging of the QB when considering the
stored energy and corresponding charging times, as well as the related charging power.
Moreover, we investigate the energy fluctuations and maximum work that can be extracted
from the QB. All of these figures of merit are relevant in view of future development of this
kind of QBs. In Section 4, we draw the conclusions of our work.
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2. Model

We consider a QB described as a single TLS coupled to the radiation of a cavity through
a two-photon coupling (quadratic in the electron field) with matter-radiation coupling λ.
This simple single cell can be replicated M times to form a QB that works in a parallel
charging configuration [39,54]. The theoretical possibility of engineering such a kind of cou-
pling in realistic devices has been recently discussed for trapped ions subject to bichromatic
driving [44] and for flux qubit coupled with a symmetric dc superconducting quantum
interference device (SQUID) [45]. The corresponding Hamiltonian can be written as

Ĥ2ph =
ωa

2
σ̂z + ωc â† â + θ(t)λ

(
â + â†

)2
σ̂x, (1)

where â (â†) are the annihilation (creation) operators of the cavity radiation, σ̂x, σ̂z are the
Pauli matrices, ωa the level spacing of the TLS, and ωc the frequency of the radiation in
the cavity. We underline that the TLS and cavity do not interact at t < 0 and we assume
that the two-photon interaction is switched on at time t ≥ 0, as indicated by the θ(t) step
function. According to this, it is possible to transfer energy from the cavity to the TLS and
observe the charging of the QB.

In the limit where the matter-radiation coupling λ satisfies λ � ωa, ωc, one can
consider the RWA of Equation (1) and describe the system in terms of the two-photon
Jaynes–Cummings model [52,58,59] with Hamiltonian being given by

Ĥ =
ωa

2
σ̂z + ωc â† â + θ(t)λ(â†2

σ̂− + â2σ̂+), (2)

where the first term is associated with QB, the second with the cavity micro-wave radiation
used as charger, and the last one is the two-photon interaction term in the RWA [44,45]
and with

σ̂± =
σ̂x ± iσ̂y

2
, (3)

where σ̂y is one of the Pauli matrices.
In the following, we will focus on the resonant case ωa = 2ωc (see Figure 1), where all

of the energies associated to the radiation can be transferred to the TLS and viceversa [60].
This condition guarantees an optimal functioning of the QB, which is not achieved in other
configurations of the device [52].

ωa

ωc ωc

|e⟩

|g⟩

Figure 1. Schematic representation of a QB where a TLS with level spacing ωa between its ground
(|g〉) and excited (|e〉) state interacts with a single cavity mode of frequency ωc via a two-photon
coupling in the resonant regime ωa = 2ωc.

The initial condition at time t = 0 for the total system is chosen as a tensor product state

|ψ(0)〉 = |g〉 ⊗∑
n

αn|n〉, (4)

where the first factor represents the ground state of the TLS, while the second characterizes
the charger with |n〉, a state with n photons in the cavity. We will consider, as paradigmatic
examples, a Fock (fixed number of photons), a coherent, and a squeezed state for the cavity.
Thus, we introduce the probability amplitudes αn, such that
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α
(F)
n = δn,N , (5)

α
(C)
n = e−

N
2

N
n
2

√
n!

, (6)

α
(S)
n =

1

(N + 1)
1
4

√
n!

n
2 !

(
1
2

√
N

N + 1

) n
2

, (7)

where the superscripts F, C, S denote the Fock, coherent, and squeezed state, respectively.
We underline that N represents exactly the number of photons for the Fock state, while
it is the average number N of photons for the other two states where fluctuations in the
photon numbers are present. Moreover, the probability amplitudes α

(S)
n are valid only for

even values of n and are zero otherwise.
It is worth mentioning that the QB+charger is a closed system. Interactions with possible

external environments can lead to energy relaxation of the TLS and the loss of photons in
the cavity. These processes can be characterized in terms of typical time scales tr and tγ

respectively [37,61–63]. According to this we need to restrict our analysis to times, such that
t � tr, tγ, in such a way to safely neglect the dissipation effects. However, we note that
these constraints are comparable with the ones that are required by quantum information
protocols [26]. Moreover, a protocol that is able to overcome the detrimental effects of energy
relaxation in TLS have been theoretically discussed very recently in Ref. [16].

3. Figures of Merit of the Quantum Battery

We now characterize the performances of a two-photon QB comparing the three cavity
states that were introduced in the previous Section.

In order to investigate the performance of the QB, it is necessary to study the time
evolution of the initial state in Equation (4). We observe that, over the basis given by the
states |g〉 ⊗ |n〉 and |e〉 ⊗ |n− 2〉 (n ≥ 2), with |e〉 excited state of the TLS, the Hamiltonian
in Equation (2) assumes the simple form

Ĥ(n) =


ωa

2
(n− 1) λ

√
n(n− 1)

λ
√

n(n− 1)
ωa

2
(n− 1)

 (8)

where the notation keeps track of the number of photons n and the dynamics remains
confined in a two-dimensional space. This 2× 2 matrix can be diagonalized in terms of the
eigenstates

|ψ(n)
± 〉 =

|g〉 ⊗ |n〉 ± |e〉 ⊗ |n− 2〉√
2

, (9)

with eigenvalues

E(n)
± =

ωa

2
(n− 1)± λ

√
n(n− 1). (10)

In terms of these states, one can rewrite Equation (4) as

|ψ(0)〉 = ∑
n

αn

(
|ψ(n)

+ 〉+ |ψ
(n)
− 〉√

2

)
, (11)

that evolves in time as

|ψ(t)〉 = e−iĤt|ψ(0)〉 = ∑
n

αne−i ωa
2 (n−1)t

 e+iλ
√

n(n−1)t|ψ(n)
− 〉+ e−iλ

√
n(n−1)t|ψ(n)

+ 〉√
2

. (12)
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It is instructive to also consider the time dependent behaviour of the reduced density
matrix that was obtained by tracing out the photon degrees of freedom when we consider
the initial state in Equation (11)

ρ̂TLS(t) = ∑
n
〈n|ρ̂(t)|n〉

= ∑
n

{[
pn sin2(λ

√
n(n− 1)t)|e〉〈e|+ pn cos2(λ

√
n(n− 1)t)|g〉〈g|

]
+ eiωat|g〉〈e|

[
i
√

pn+2 pn sin(λ
√
(n + 1)(n + 2)t) cos(λ

√
n(n− 1)t)

]
− e−iωat|e〉〈g|

[
i
√

pn+2 pn sin(λ
√
(n + 1)(n + 2)t) cos(λ

√
n(n− 1)t)

]
(13)

where pn = |αn|2 and
ρ̂(t) = |ψ(t)〉〈ψ(t)| (14)

is the total density matrix at time t with |ψ(t)〉 the state in Equation (12). Equation (13) can
be written in the conventional form using the Bloch vector. Being written in terms of the
identity matrix and the Pauli matrices, it reads [64,65]

ρ̂TLS(t) =
1
2
[
I+ u(t)σ̂x + v(t)σ̂y + w(t)σ̂z

]
. (15)

Here, starting from Equation (13) and recalling that

I ≡ |e〉〈e|+ |g〉〈g| (16)

σ̂x ≡ |g〉〈e|+ |e〉〈g| (17)

σ̂y ≡ i(|g〉〈e| − |e〉〈g|) (18)

σ̂z ≡ |e〉〈e| − |g〉〈g| (19)

we can obtain the expressions for the components u(t), v(t), and w(t)

u(t) = − sin (ωat)∑
n

√
pn pn+2 sin(λ

√
(n + 1)(n + 2)t) cos (λ

√
n(n− 1)t), (20)

v(t) = cos (ωat)∑
n

√
pn pn+2 sin(λ

√
(n + 1)(n + 2)t) cos (λ

√
n(n− 1)t), (21)

w(t) = −∑
n

pn cos (2λ
√

n(n− 1)t), (22)

Notice that, for the simple case of a Fock state, where the probability amplitude αn is
given by Equation (5), the above expression assumes the simple form

u(t) = v(t) = 0 w(t) = − cos (2λ
√

N(N − 1)t). (23)

Instead, the explicit form for u(t), v(t), and w(t) for the coherent and squeezed states
can be obtained by replacing the αn given in Equations (6) and (7) into Equations (20)–(22),
and cannot be further simplified.

3.1. Stored Energy and Average Charging Power

The energy stored in the QB at time t is given by [7,29,39,52,66]

E(t) =
[
〈ψ(t)|ĤQB|ψ(t)〉 − 〈ψ(0)|ĤQB|ψ(0)〉

]
, (24)

with
ĤQB =

ωa

2
σ̂z (25)
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the contribution to the total Hamiltonian in Equation (2) that is associated to the QB.
Inserting the time evolved state of the system [see Equation (12)] into Equation (24)

one has
E(t) = ωa ∑

n
pn sin2 (λ

√
n(n− 1)t), (26)

An important task in the context of QB is to store the maximum amount of energy in
the fastest time. In this perspective, we define the maximum of the stored energy as [52,54]

Emax = max
t

[E(t)] ≡ E(tE), (27)

where tE is the time at which the maximum occurs. In the case of a Fock state (α(F)
n = δn,N),

it is possible to analytically find the value of t(F)
E imposing the condition

sin2(λ
√

n(n− 1)t) = 1. (28)

Consequently the value of the maxima of the energy occurs when

t(F)
E =

(
k + 1

2

)
π

λ
√

n(n− 1)
. (29)

where k ∈ Z indicates which maximum is considered. Instead, in the following, for the
coherent and squeezed state, the charging time tE is obtained numerically.

In Figure 2, we report the behavior of the energy E(t) (see Equation (26)) in units of
ωa as a function of time for the three different initial states of the cavity and for an average
number of photons N = 8.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. (Color on-line) Behaviour of the stored energy E(t) as a function of time for a Fock state
(blue full curve), a coherent state (green dashed curve), and a squeezed state (red dash-dotted curve)
with an average number of photons N = 8.

Here, one can see that a complete charging is only reached if the cavity is in a Fock
state (E(F)

max = ωa). However, a coherent state with the same average number of photons
(N = 8 in the considered case) can also reach a quite large fraction of the maximal stored
energy (the first maximum is E(C)

max ≈ 0.76ωa). This aspect can be particularly relevant for
the actual experimental realization of this kind of QB due to the fact that a coherent state is
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usually easier to realize in a cavity with respect to a well defined Fock state [53]. Conversely,
the squeezed state only reaches a very poor maximum charging E(S)

max ≈ 0.52ωa.
Moreover, the minimal charging times for the Fock and coherent state are almost com-

parable and both are faster with respect to the squeezed state. Indeed, from Equation (29),
we have that λt(F)

E ≈ 0.21, while λt(C)E ≈ 0.19. Instead, the maximum of the energy of the

squeezed state is achieved for the longer time λt(S)E ≈ 1.53. It is also worth pointing out that,
for a given quantum state of the charger, the charging times in the two-photon interaction
model are usually shorter than the corresponding ones for a conventional dipolar single-
photon coupling with the same average value of photons [39,52,54]. In fact, as reported in
Ref. [54], the energy for a single photon process is given by E1ph(t) = ∑n pn sin2(λ

√
nt),

meaning that the time at which the maximum of the energy is reached scales as 1/
√

n.
Instead, in the two-photon case, it scales as 1/

√
n(n− 1), leading to a charging time, which

is
√

n− 1 times faster fixing all other parameters.
From the previous discussion, one can infer that the Fock state is the best choice for the

initial state of the charger, in order to store energy into a QB, in agreement with Ref. [54].
Conversely, the squeezed one is the less efficient, due to both the longer charging time and
smaller maximum stored energy when compared to the other ones. Notice that the Fock
states still show the best charging performances in terms of stored energy and charging
times also in comparison with other states of the general form in Equation (4).

The charging behaviour can be better understood by looking at the evolution of the
TLS state on the Bloch sphere. In Figure 3, we show the path that is followed by the TLS
state on the Bloch sphere for the three different cavity states, up to the first maximum of
the stored energy. Notice that, here, the |g〉 and the |e〉 states are respectively represented
by the south and north pole.

(a)(a) (b)(b)

(c)(c)

Figure 3. (Color on-line) Time evolution of the quantum state of the TLS, up to the first maximum
of the energy in Equation (26), in the Bloch sphere for a Fock state (a), a coherent state (b), and a
squeezed state (c) with an average number of photons N = 8. The other parameters are: ωa/λ = 200.
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As discussed above, we initialize the TLS in the ground state. Here, we can observe
that, only for the Fock state, the TLS state reaches the excited state, corresponding to the
complete charging of the QB, while, for the coherent and the squeezed states, this never
happens and the path of the state vector on the Bloch sphere is much more complicated. It
is worth pointing out the fact that more involved initial states for the TLS, such as coherent
superpositions of ground and excited state, are also characterized by complicated evolution
in the Bloch sphere.

Another relevant figure of merit is the average charging power, which is defined
as [7,13,39,66]

P(t) =
E(t)

t
. (30)

Regarding the energy, also in this case we are interested in achieving the maximum
value of the charging power in the fastest possible time. Therefore, one needs to consider
the maximum charging power [39,52,54]

Pmax = max
t

[P(t)] ≡ P(tP), (31)

where tP represents the time at which the maximum occurs.
In Figure 4, we report the behaviour of P(t) in Equation (30) as a function of time for

the three considered initial states of the cavity. Additionally, in this case, one finds that this
quantity is maximal for the Fock state (P(F)

max ≈ 5.42λωa), while progressively decreasing for
the coherent state (P(C)

max ≈ 4.86λωa) and the squeezed state (P(S)
max ≈ 3.58λωa), respectively.

However, the two former curves are quite similar in terms of the achieved maximum
value and the corresponding times at which it occurs are very close (λt(F)

P ≈ 0.16 and

λt(C)P ≈ 0.13). Different is the situation for the squeezed state that, in spite of the fact

that the maximal averaged charging power is reached in a shorter time λt(S)P ≈ 0.04,
shows a smaller value of the averaged charging power, as a consequence of the smaller
stored energy.

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Figure 4. (Color on-line) Behaviour of the average charging power P(t) as a function of time for
a Fock state (blue full curve), a coherent state (green dashed curve), and a squeezed state (red
dotted-dashed curve) with an average number of photons N = 8.
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3.2. Energy Fluctuations

In order to have a complete characterization of the QB, we now evaluate the quan-
tum fluctuations that are associated to the stored energy, since they can induce detrimental
effects on the charging performances [29,52,55]. We discuss the stability of the charging
process in terms of the fluctuations of the stored energy at equal times, as represented by the
correlator [29,52,55]

Ξ(t) =

√
〈ψ(0)|

[
ĤQB(t)− ĤQB(0)

]2|ψ(0)〉 − [〈ψ(0)|(ĤQB(t)− ĤQB(0)
)
|ψ(0)〉

]2
=

√
E(t)[ωa − E(t)], (32)

with |ψ(0)〉 the initial state in Equation (11) and ĤQB(t) the TLS Hamiltonian evolved in
time in the Heisenberg representation according to Ĥ.

In Figure 5, we show the evolution of Ξ(t) for the three initial states of the cavity. In
the following, we are interested in studying the value of the correlator at time tE, where
the stored energy has its maximum, to understand how it affects the functionality of the
QB. We then define

Ξ(tE) ≡ Ξ̄. (33)

Here, it clearly emerges that the Fock state has no energy fluctuations in correspon-
dence of the maximum of the charging energy (Ξ̄(F) = 0), as also reported in Ref. [52]. This
can be understood from Equation (32) and it is a consequence of the fact that, at time tE,
the quantum state of the system (QB+charger) is separable (|ψ(tE)〉 = |e〉 ⊗ |n− 2〉). This
is not true for both the coherent and the squeezed states that show relevant fluctuations
in the stored energy. Because neither of these states achieve Emax = ωa, we will never
observe Ξ̄ = 0. In fact, for the coherent state, where the maximum energy was higher, we
obtain Ξ̄(C) ≈ 0.43ωa, while, for the squeezed state, which is even worse in terms of energy
storage, we have Ξ̄(S) ≈ 0.49ωa.

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Figure 5. (Color on-line) Behaviour of the stored energy fluctuations Ξ(t) as a function of time
for a Fock state (blue full curve), a coherent state (green dashed curve), and a squeezed state (red
dotted-dashed curve) with an average number of photons N = 8.

Again, this confirms that the Fock state appears as the most convenient cavity state to
build a good QB. Indeed, this particular initial state is not subject to stored energy fluctuations.
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3.3. Ergotropy

Another relevant quantity to look at to determine the efficiency of a QB is the so-called
ergotropy [10,57]. It consists in the maximal stored energy that can be converted into
usable work. It can be extracted from the QB at a given time t of its evolution (charging).
In general, this quantity is different from the stored energy due to the fact that part of
the energy may be locked into correlations and, therefore, cannot be extracted for further
purposes [67]. A general derivation of this quantity starts from the Hamiltonian of the QB,
written as [10]

ĤQB = ∑
n

εn|εn〉〈εn| (34)

with the energy eigenvalues ordered, such that εn < εn+1 and with |εn〉 associated eigen-
vectors, as well as the density matrix at a given time

ρ̂TLS(t) = ∑
n

rn(t)|rn(t)〉〈rn(t)| (35)

ordered, such that rn > rn+1 and with |rn〉 eigenvectors. According to this, the work done
on the system after a time t is given by

W(t) = Tr{ρTLS(t)ĤQB} − Tr{ρTLS(0)ĤQB}. (36)

The maximum work that can be extracted from the battery after a time t, called
ergotropy, is defined as E = max(−W). Exploiting Equations (34) and (35), the ergotropy
can be written as [57]

E(t) = ∑
j,k

rj(t)εk

(
|〈rj(t)|εk〉|2 − δjk

)
. (37)

It is worth pointing out that E = 0 when the initial state of the system is passive [10].
Moreover, in general, the maximum extractable work Eth can be obtained when the final
state of the system is thermal, i. e. ρTLS(t) = e−βĤQB /Z (with β the inverse temperature
of the system and Z = Tr{e−βĤQB}). Subsequently, the bound on the maximum and
minimum extractable work is given by 0 ≤ E ≤ Eth [57].

We now want to find the explicit form of the ergotropy for our system. To do so, we
need to diagonalize the density matrix of the TLS in Equation (13). Its eigenvalues are

rs(t) =
1 + (−1)s

√
1− 4 det ρ̂TLS(t)

2
, (38)

where s = 0, 1. Moreover, the eigenvalues of ĤQB in Equation (25) are εs = (−1)sωa/2.
Consequently, starting from Equation (37), the ergotropy at time t can be written as

E(t) = E(t)− ∑
s=0,1

rs(t)εs = E(t)− ωa

2

[
1−

√
1− 4 det ρ̂TLS(t)

]
. (39)

Figure 6 shows its time-evolution. Here, one has a qualitatively similar behaviour
with respect to the one that is observed for the stored energy. We observe that only the
Fock state reaches the maximum of the ergotropy Emax = ωa. This occurs at a time t(F)

E ,
where the energy has its maxima and the state of the TLS is pure, confirming the relevant
performances of this cavity state.

To better quantify the actual fraction of extractable energy, we now evaluate the ratio
between the ergotropy and stored energy, as given by

η(t) ≡ E(t)
E(t)

= 1− ωa

2E(t)

[
1−

√
1− 4 det ρ̂TLS(t)

]
. (40)
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Figure 6. (Color on-line) Behaviour of the ergotropy E(t) as a function of time for a Fock state (blue
full curve), a coherent state (green dashed curve), and a squeezed state (red dash-dotted curve) with
average number of photons N = 8.

In Figure 7, we compare the behavior of the ratio η for the three considered initial
states as a function of time. As one can observe, at quite short times the coherent state
allows an almost complete extraction of the energy as usable work. However, in this region,
the energy that is stored in the system can be quite small [see Figure 2]. For the Fock state
it is possible to completely extract the stored energy only for narrow time windows in
correspondence of t(F)

E , with the advantage that the stored energy approaches or is equal

to the maximum value E(F)
max = ωa. Finally, the squeezed state reaches (together with the

coherent state) a unitary value of the ratio only at long enough times, where again the
energy stored in the QB is very limited and possible dissipative effects could came into play.
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Figure 7. (Color on-line) Behaviour of the ratio η(t) as a function of time for a Fock state (blue full
curve), a coherent state (green dashed curve), and a squeezed state (red dash-dotted curve) with
average number of photons N = 8.
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This result is a consequence of the nature of the three considered states. In fact, as
also stated in Ref. [40], the more there is a mixing between the TLS and the photonic part,
the less energy we can extract, since the entanglement between the QB and charger has a
negative impact on the possibility to extract work.

4. Conclusions

We have characterized various figures of merit for a quantum battery given by a qubit,
namely a two-level system, coupled with a cavity radiation through a two-photon coupling
(quadratic in the quantum electromagnetic field). As possible initial conditions for the
quantum radiation in the cavity, we have inspected a Fock state, a coherent state, and
squeezed state. According to our analysis, the Fock state emerges as the ideal candidate for
optimizing the performances of the quantum battery, being the only state able to reach a
complete charging of the quantum battery, in short times and without showing fluctuations.
Quite remarkably, this kind of state also allows for completely extracting its maximal
stored energy. A coherent state with the same average number of photons also shows quite
interesting performances, in particular for what concerns the fraction of extractable work at
short enough times, even if it is affected by fluctuations in the stored energy. This is not true
for a squeezed state whose performances are very poor, which makes it the worst state for
implementing a quantum battery. Indeed, it can only store a fraction of the optimal energy
and it is affected by very strong fluctuations. The present analysis gives important hints
towards the possible implementations of quantum batteries coupled to cavity radiation.
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