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Abstract: In the context of social media, large amounts of headshot photos are taken everyday.
Unfortunately, in addition to laborious editing and modification, creating a visually compelling
photographic masterpiece for sharing requires advanced professional skills, which are difficult for
ordinary Internet users. Though there are many algorithms automatically and globally transferring
the style from one image to another, they fail to respect the semantics of the scene and are unable to
allow users to merely transfer the attributes of one or two face organs in the foreground region leaving
the background region unchanged. To overcome this problem, we developed a novel framework for
semantically meaningful local face attribute transfer, which can flexibly transfer the local attribute of
a face organ from the reference image to a semantically equivalent organ in the input image, while
preserving the background. Our method involves warping the reference photo to match the shape,
pose, location, and expression of the input image. The fusion of the warped reference image and
input image is then taken as the initialized image for a neural style transfer algorithm. Our method
achieves better performance in terms of inception score (3.81) and Fréchet inception distance (80.31),
which is about 10% higher than those of competitors, indicating that our framework is capable of
producing high-quality and photorealistic attribute transfer results. Both theoretical findings and
experimental results are provided to demonstrate the efficacy of the proposed framework, reveal its
superiority over other state-of-the-art alternatives.

Keywords: face attribute transfer; image warping; image fusion; facial landmark detection

1. Introduction

Sharing headshot photos taken by portable devices on networking sites is a new social
form [1]. To produce a quality photographic work, laborious editing and modification of
photos by well-trained photographers is needed. Unfortunately, most Internet users have
not mastered the required professional skills, and one small mistake will ruin the whole
work when editing a photo [2]. Hence, an automatic and interactive face photo editing
algorithm is needed to avoid the unnecessary waste of time and effort. Ideally, if a reference
headshot portrait is provided, say the target visual attribute that a user expects to obtain by
editing their own face photo is clearly exhibited, we can intuitively and effortlessly transfer
the visual attribute from a reference face photo to the photo taken by a user.

Recently, many neural-style transfer algorithms for globally transferring the artistic
style from an image to another have been proposed [3–10]. However, existing global
algorithms struggle to consider the semantics of the local face organs during the transfer
process, for instance, the target attributes of eyes from the reference image may be wrongly
transferred to hairs. Luan et al. [11] incorporated the semantic labeling of both the input
image and the reference image into the style transfer algorithm to ensure that the transfer
only occurs between two regions having the same semantic label. With the guidance of
a semantic map, Luan et al. [11] can successfully avoided the spillover problem where
the style of a region in the reference image spills over into a mismatched region in the
input image. However, a fatal limitation of [11] is that it fails to solely render the semantic
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content in the foreground subregion instead of the whole image. In most cases, users may
generally focus on the foreground, i.e., the human face in a headshot portrait, regardless of
the appearance of the background; they only focus on if it is reasonable. More importantly,
the background of headshot portraits is often quite diverse, leading to the background of
the input and reference face photo not containing the semantically corresponding objects.
For example, the background may be a seaside with sunshine and sand, skyscrapers in
the city, or simply an all-white image. Directly copying the appearance of an object in the
background of the reference image to a semantically unrelated object in the background of
the input image will distort the spatial structures and cause painting-like effects. Therefore,
it is important to develop an automatic algorithm to render the foreground region without
affecting the background.

In this study, we aimed to build an efficient framework to allow users to simply edit
the style of one or two face organs in the foreground while preserving the background.
Figure 1 demonstrates that our framework is capable of ensuring that the attribute transfer
only happens between semantically equivalent organs while the background remains
unchanged. Here, we summarize the challenges in local face attribute transfer:

• Accurately and faithfully transferring the attribute from the reference headshot pho-
tography to the semantically-equivalent regions in the user’s own face photo;

• Avoid an unnatural and artificial transition between the foreground with the new
attribute and the background with the original attribute to ensure the results resemble
the photos directly taken by users, instead of a crude composition of some regions in
the input and reference;

• Providing an interactive method for users to determine which regions are foreground
and which are background.

To respect the semantics of local face organs, similar to [11], we introduce the semantic
map of both the input and reference headshot photo to guide the attribute transfer process.
Semantic channels and classes can be either annotated by users who aim to control the
semantic correspondence between the input and reference, or learned by a face parsing
and semantic segmentation network. We add a new channel/class, called background,
to the semantic map, which corresponds to the region expected to remain unchanged.
The semantic map is allowed to be annotated at a coarse level, as long as it is able to
represent the semantically corresponding subregions between the input and reference
images. However, it is still challenging for an algorithm to iteratively update a white-noise
image to a desired result with local properties satisfied. Therefore, we propose a novel
strategy to initialize the image, which involves warping the reference image to match the
shape, pose, location, and expression of the input image using a thin plate spline. Our
contributions can be summarized as follows:

• We introduce the semantic map of both the input and reference images for local face
attribute transfer to produce a visually pleasing result using a semantically meaningful
fashion. Equipped with the semantic map, we successfully achieve locally semantic-
level attribute transfer (e.g., mouth-to-mouth), sufficiently improving the accuracy of
the stylistic match.

• We add an additional background channel into our semantic map to indicate the
background region required to be maintained the same as the input image. We also
provide an effective initialization strategy and propose a novel term, a preservation
term, to flexibly handle the particular demand that merely manipulates the attribute
of the foreground region, while preserving the background region.

• We conduct extensive experiments to reveal the efficacy of our design, and demon-
strate its advantages over other state-of-the-art methods.
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(a) Input (b) Reference (c) Result

Figure 1. The attribute is transferred from a reference portrait (b) to an input image (a). Our technique
is local and flexible, only altering the attribute of the foreground (in this case, the foreground
regions include the eyes, mouth, and face skin) while maintaining the background unchanged. First,
landmark detection is performed on the input and reference image. Then, the reference image is
warped to match the input image. Finally, the fusion of the input image and warped reference image
is taken as the initialization of the neural style transfer algorithm to create the output. Image courtesy
of [2] (Link: https://people.csail.mit.edu/yichangshih/portrait_web/ accessed on 14 May 2021).
Images are best viewed in color.

2. State of the Art
2.1. Global Neural Style Transfer

Image style transfer is a research hotspot with considerable commercial potential,
and has been widely studied by industry and academia. In the past four to five years,
researchers have proposed a variety of style-transfer methods, which can be divided into
traditional methods and deep-learning methods. This section introduces the representative
works of these two categories.

For a long time, many impressive artworks painted by famous artists have inspired
computer vision researchers to explore how to automatically create an appealing master-
piece. The earliest attempt arguably traces back to non-photorealistic rendering [12,13],
in which the main limitation is the design for a particular style. Recently, Ref. [14] defined a
new problem called image analogies to synthesize a new B′ from B according to the given
pair A′ and A, which allows users to simply provide an exemplar and produce a synthesis
result similar to it. Men et al. [15] proposed a common texture transfer framework that
regards texture transfer as an image inpainting problem, and produces the target image
according to the original image and the semantic map. Specifically, this method first warps
the original image according to the semantic map of the original image and target image
to obtain the prior target image, then inpaints the warped image using PatchMatch to
obtain the final result. However, the weakness of these two methods is that they solely use
low-level features to inform the style transfer process.

In addition to the above-mentioned traditional approaches, since Gatys et al. [3]
proposed using CNNs for neural style transfer, researchers have increasingly focused on
this research field, and a large number of studies using deep learning for style transfer is
published every year [1], which has boosted the performance of neural style transfer. As the
pioneering work of this category, the algorithm proposed by [3] uses pre-trained VGG16 [16]
to extract the content and style features, and iteratively updates an image randomly
initialized by white noise to minimize the content and style losses. Johnson et al. [4]
further proposed a novel network architecture consisting of a transform network and a
loss network to accelerate the processing speed. The loss network is frozen during training,
and the transform network is trained using a style image and multiple content images.
In the testing phase, only a feed-forward process is needed. Stylebank [5] introduces the
StyleBank layer between the encoder and decoder. The StyleBank layer contains multiple
FilterBanks, and a FilterBank corresponds to a style, which helps to handle multiple styles
in one model. Shen et al. [9] developed an algorithm for training a meta network to
generate the parameters of another transform network for arbitrary style transfer. In the

https://people.csail.mit.edu/yichangshih/portrait_web/
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testing phase, one can simply take an arbitrary style image as the input to the meta network
to obtain the parameters of the transform network, then the transform network processes
a content image using the generated parameters to produce the final style transfer result.
Gu et al. [17] designed a novel loss term to combine the advantages of both parametric
and non-parametric methods. Gu et al.’s [17] method can preserve the richness of style
rendering, and it can improve the faithfulness of the stylistic match. Huang et al. [10]
attempted to perform neural style transfer for videos. To constrain the consistency between
different frames, in addition to the content and style loss on each frame, the method [10]
predicts the frame at time t in a video from the frame at t− 1 using optical flow, and designs
a new temporal loss to calculate the Euclidean distance between the ground truth and the
predicted frame at time t in a video.

Though achieving visually pleasing results, the above-mentioned neural style transfer
approaches ignore the semantics of the scene due to their global nature, and are unable
to transfer specific styles like makeup style [18], face style [19], photography style [2],
and comic style [20].

2.2. Face Attribute Manipulation

Face attribute manipulation is the process of editing face attributes such as age, light-
ing, expression, and identity. Early works of face attribute manipulation were carefully
designed for one particular attribute. For example, the work of [21] overcame the difficulty
where adequate aligned data are lacking for the same person at different ages, and managed
to take a photo of a little child as the input and generated multiple results at different ages
by properly altering the pose, expression, and illumination. Blanz et al. [22] proposed an
approach for processing the face shown in an image or a video, which does not heavily
depend on the data of different person’s attributes. SHBMM [23] integrates spherical
harmonics into a morphable model framework to represent a face under arbitrary lighting
conditions using three low-dimensional vectors (shape parameters, spherical harmonic
basis parameters, and illumination coefficients); even the geometry and albedo of the face
are unknown, so the method is robust not only to extreme lighting conditions, but also
to partial occlusions. Yang et al. [24] corrected an undesirable expression in a face photo
by transferring the facial expression from another image, similar to [25]. To avoid semanti-
cally unnatural composites, Ref. [24] presents a 2D flow field to naturally warp the target
face by projecting the constructed 3D shapes back to 2D.

In comparison with the recent development of generative adversarial networks, dif-
ferent facial attributes are allowed to be handled by changing the training data. Typically,
facial attribute manipulation can be regarded as an image-to-image translation problem,
which aims at mapping images from a source domain to a target domain. Different facial
attributes belong to different domains. An early attempt at image-to-image translation
by Isola et al. [26] uses conditional GANs to learn mappings between the two domains.
The content preservation is supervised by the paired data. However, in real-world sit-
uations, acquiring paired datasets is time consuming and laborious. To alleviate this
problem, inspired by the concept of cycle consistency, cycleGAN [27], DualGAN [28], and
DiscoGAN [29] can be trained without paired datasets. Afterward, many works [19,30–32]
further extended the translation between the two domains to cross multiple domains in
a single model. Though the effectiveness of these GAN-based approaches has been veri-
fied by various applications, their main drawback is their instability in training and the
difficulty of interpretation.

Deep feature interpolation [33] is able to avoid the limitations of generative adversarial
nets, which alters the latent code of a face image learned by a shallow CNN to update its
attributes. Cong et al. [34] further alleviated the problems in [33] of the noisy estimation
of latent code and the high computational burden. Inspired by CapsuleNet [35], they
parsed a face image into multiple smaller parts to divide a high-level attribute, such as
expression, age, or sex, into multiple semantic components. The main weakness of these
two deep feature interpolation methods is that the numerical latent code is not intuitive,
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and it does not contain the visual and spatial information of the attribute. In other words,
the numerical latent code is unable to spatially reflect the visual look or appearance of each
subregion in the input image.

Different from the above-mentioned face attribute manipulation approaches, we aimed
to transfer the visual attribute from one face image to another without needing to explicitly
define the type of attribute such as the expression, age, or identity. In other words, users
can simply copy the visual appearance of a reference image, such as the color, texture,
and style, to another image, to ensure the processed result is similar to the reference, which
is a more intuitive and straightforward method compared with numerical latent code. Our
framework is flexible enough to handle several different face images and does not require
a time-consuming and unstable training procedure.

3. Methodology

Our goal was to transfer the visual attribute from the reference headshot photo
F to the input photo O guided by the semantic map BF and BO of the reference and
input, respectively. The identity of a person should be maintained during the attribute
transfer process. We start by obtaining the facial landmark of both the input and reference,
the advantage of which is that the facial landmark points of two different face images are
already registered, without needing to establish a dense correspondence between them
using an off-the-shelf point registration method. We then warp the reference photo using
a thin plate spline according to the detected facial landmark points to match the shape,
pose, and position of the input photo. The warped reference photo is then fused with
the input photo. Finally, the fusion image is taken as the initialized image of the neural
style transfer algorithm with our newly proposed preservation term as the objective to be
optimized to produce the final face attribute transfer result. The blueprint of our framework
is schematically illustrated in Figure 2.

Figure 2. The outline of our framework.

3.1. Facial Landmark Detection

Facial landmark detection involves marking the vital parts of a human face with
key points in the face image, which has been widely used in pose estimation [36,37], face
alignment [38], expression recognition [39,40], and face location [41]. Facial landmarks
contain rich semantic information such as human eyes, nose, hair, and mouth, which
can help a neural network to transfer facial attributes between semantically equivalent
subregions. In addition, using the same model to detect different face images, the registered
landmark points can be obtained, which can be directly used as the key points of image
warping, without needing to apply other point registration algorithms to establish a dense
correspondence between the key points of different images. Based on the above reasons,
we adopted the pre-trained RCT model [42] to detect facial landmarks, which detects a
total of 68 points as the prior information for later process steps. Some facial landmark
detection results of the RCT model are shown in Figure 3.
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Figure 3. Some examples of facial landmark detection. The total number of landmark points detected
by RCT [42] is 68.

3.2. Thin Plate Spline

Thin plate spline, proposed by [43], is a non rigid image warping technology. In this
method, given some registered control points in two images, one image is warped so that
its control points coincide with the control points of the other image. An example of image
warping by thin plate spline is shown in Figure 4. For the input photo and the reference
headshot portrait with different shapes, poses, positions, and facial expressions, thin plate
spline can be used to warp the reference face photo to match the input photo with the facial
key points provided.

(a) Input (b) Reference (c) Semantic map of (a)

(d) Semantic map of (b) (e) Warped reference (f) Fusion result

Figure 4. The results of image warping and fusion. (c,d) The semantic maps of (a,b), respectively.
Left eye, right eye, mouth, face skin, hair, and background are labeled in yellow, white, red, blue,
green, and black in the semantic map, respectively. (e) The result of warping (b) to match (a) by
thin plate spline; (f) the image fusion result. In this case, hair is also classified as the background to
be maintained.

Let LO := [o1, o2, ..., oN ]
T ∈ RN×2 and LF := [ f1, f2, ..., fN ]

T ∈ RN×2 denote the 2D
coordinates of the facial landmark points detected from the input image and reference
image, respectively. Thin plate spline can then be expressed as:

ok := Φ( fk) := [Φx( fk), Φy( fk)]
T

with Φx( fk) := ax + bT
x fk + ωT

x S( fk)

Φy( fk) := ay + bT
y fk + ωT

y S( fk)

(1)



Entropy 2021, 23, 615 7 of 16

where N = 68 is the total number of facial landmark points detected by RCT [42]; Φx(•)
and Φy(•) represent the interpolation function with respect to the x-axis and y-axis in two-
dimension coordinates, respectively; and S( fk) ∈ RN×1 is a column vector used to calculate
the distance between fk and the other N landmark points of an image. The element of S( fk)
in row i is σ(|| fk − fi||1); σ is the radial basis function whose formulation is σ(r) := r2logr.

To solve the exact solution of Φ(•), we need to separately solve the parameters of
Φx(•) and Φy(•). Taking Φx(•) as an example, because the number of parameters to be
solved is N+3, as the number of given measurements is N, we need to introduce three extra
constraints to solve ax ∈ R1×1, bx ∈ R2×1, and ωx ∈ RN×1 in Φx(•). The three additional
constraints are:

N

∑
k=1

ωx,k = 0

N

∑
k=1

ωx,k f x
k = 0

N

∑
k=1

ωx,k f y
k = 0

(2)

where ωx,k denotes the kth element of the column vector ωx; fk ∈ R2×1 represents the 2D co-
ordinates of the kth facial landmark point detected from the input image; f x

k and f y
k denote

the x-coordinate and y-coordinate of the kth landmark point, respectively. The formulation
of Φy(•) is similar to Φx(•), so we do not repeat it again.

After introducing the above three constraints, the parameters of Φx(•) and Φy(•) can
be determined by solving the following equation:S(LF) 1N LF

1T
N 0 0

LT
F 0 0

ωx ωy
ax ay
bx by

 =

Lx
O Ly

O
0 0
0 0

 (3)

where Lx
O ∈ RN×1 and Ly

O ∈ RN×1 denote the x-axis and y-axis of the facial landmark
points detected from the input image, respectively; 1N ∈ RN×1 is an all-one vector column;
and S(LF) ∈ RN×N represents the distance between any two facial landmark points.
The element of S(LF) in the ith row and jth column is σ(|| fi − f j||1).

When the optimal parameters of Φ(•) are solved, which are a∗x, b∗x , and ω∗x for the
x-axis; and a∗y , b∗y , and ω∗y for y-axis, we need to calculate the distance between each pixel
in the reference image and its all landmark points by the radial basis function to obtain
S(PF) ∈ RM×N , where PF ∈ RM×2 is the coordinates of all pixels in the reference image
and M is the number of pixels. The new coordinates of the pixels in the warped reference
image are therefore obtained by:Px

F̂
Py

F̂
0 0
0 0

 :=

S(PF) 1M PF
1T

M 0 0
PT

F 0 0


ω∗x ω∗y

a∗x a∗y
b∗x b∗y

 (4)

where Px
F̂

and Py
F̂

are the new x- and y-coordinate of all pixels in the warped reference
image F̂. We map each pixel in original reference image F to its new position represented
by PF̂ := [Px

F̂
, Py

F̂
] := [ f̂1, f̂2, ..., f̂M]T ∈ RM×2 to produce the warped reference image F̂. If a

new coordinate f̂k, corresponding to the pixel located at fk in the original reference image
F, exceeds the range of the image size, the pixel located at fk in the warped reference image
is set to zero if f̂i 6= fk, ∀1 ≤ i ≤ M.

3.3. Image Fusion

Having the warped reference image F̂, we can initialize the image for neural style
transfer by fusing the warped reference image with the input image, instead of randomly
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initializing the image by white noise. Specifically, the first step is to determine which facial
organs need to be edited. The regions where attributes do not need to be changed are
labeled as background in the semantic map, then the background regions in the input
image O and the foreground regions in the warped reference image F̂ are fused by the
formulation described below:

U(i, j) :=
{

O(i, j) O(i, j) is background ||F̂(i, j) = 0,
F̂(i, j) else.

(5)

where i and j indicate the pixel at the ith row and jth column of an image, respectively; ||
denotes the or operation. We can infer from (5) that the pixel in the ith row and jth column
in the input image is assigned to the pixel in same position in the fused image U if the
corresponding label is background, or the pixel in same position in the warped reference
image is zero. In other cases, the pixel in the warped reference image is assigned to the
pixel in the same position in U. An example of image fusion is shown in Figure 4.

3.4. Optimization

We take the fused image U as the initialization of the image for the neural style transfer
algorithm. Let I := U denote the image for neural style transfer and, as in [3], we perform
gradient descent on I to minimize the optimization objective. Our objectives consist of
a content term, a style term, and a newly proposed term called the preservation term.
The overall objective is formulated as:

L := λconLcon + λstyLsty + λpreLpre (6)

where λcon, λsty, and λpre are the weights for balancing the different terms. During training,
we alternatively optimize our preservation term, and the sum of the content and style terms.

The content term desires I and O to be as close as possible. We follow [3,4] to measure
the distance between high-level features extracted from the pre-trained VGG16 instead of
the pixel-wise reconstruction, the formulation of which is:

Lcon := ||Ψγ(I)−Ψγ(O)||22 (7)

where Ψγ(•) ∈ RNγ×Dγ refers to the vectorized feature map of a VGG layer, Nγ is the
number of feature maps, and Dγ is the length of a vectorized feature map in the γth layer.
With the content term, the identity of I is preserved, whereas other attributes such as
texture and color are allowed to be changed.

The style term allows users to control the attributes by providing a reference photo.
The original style term proposed by [3] is expressed as:

Lsty :=
Γ

∑
γ

||Gγ(I)− Gγ(F)||22 (8)

where Gγ is the Gram matrix in the γth VGG layer, which is defined as Gγ(•) := Ψγ(•)Ψγ(•)T ∈
RNγ×Nγ .

However, most existing neural style transfer algorithms globally transfer the style to
the whole input image, which ignores the semantics of each local object because the Gram
matrix for the original style term is computed over the entire feature map. To mitigate this
problem, inspired by [11], we introduce the semantic map as the additional information
and reformulate the style term as:

Lsty :=
Γ

∑
γ

C

∑
c=1
||Gγ,c(I)− Gγ,c(F)||22 (9)
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where Gγ,c(•) := Ψ̂γ,c(•)Ψ̂γ,c(•)T, Ψ̂γ,c(I) := BO,c ◦ Ψγ(I), and Ψ̂γ(F) := BF,c ◦ Ψγ(F),
◦ denotes the Hadamard product; C is the total number of channels or classes in the
semantic map, except for the background class; and c is the index of each channel or class
in the foreground.

The preservation term is used to maintain the background region of O into style
transfer result I. The formulation of th preservation term is:

Lpre := ||I ◦ BO,g −O ◦ BO,g||1 (10)

where BO,g represents the background channel g in the semantic map. Different from the
content term, our preservation term forces the pixels of output image I to exactly match
the pixels of the input image O, since the background is not expected to be changed.

4. Experimental Validation

Our algorithm was implemented in PyTorch. All the experiments were carried out
on a machine with a GeForce RTX 1060Ti GPU and an Intel Core i7-8700 3.20 GHZ CPU.
The optimizer implemented the L-BFGS algorithm, and the images were all resized to
512 × 512 pixels. The weights were set to λcon := 3, λsty := 20, and λpre := 1. Our code
is available at https://github.com/ForawardStar/FaceAttributeTransfer accessed on 14
May 2021.

4.1. Evaluation Metrics

We evaluated our results using two quantitative metrics: inception score (IS) and
Fréchet inception distance (FID).

4.1.1. Inception Score

The inception score [44] is a widely-adopted metric for quantitatively measuring the
visual quality of generated images, the name of which was inspired from the classification
network proposed by [45], called InceptionNet. The inception score measures the generated
images from two aspects: clarity and diversity. The principle behind the IS is that for a
clear image I, the probability P(C|I) that I belongs to a specific class C should be very
large, while the probability of belonging to other classes should be very small, since a clear
image can be certainly and easily classified to a class but a blurred image cannot. If the
patterns of the generated images are diverse, the probability distribution P(C) of all the
classes should be uniform, which is different from the distribution of P(C|I). Inception
score is therefore the KL divergence of P(C|I) and P(C). The higher the inception score,
the clearer and more diverse the generated images.

4.1.2. Fréchet Inception Distance

The IS only considers the generated samples, and thus cannot explicitly reflect the
distance between the real and generated data. Thus, we further adopted the Fréchet
inception distance [46] to measure the divergence between our results and real photos.
The lower the Fréchet inception distance, the more the distributions of real photos and our
photorealistic rendering results overlap.

4.2. Comparison with Other State-of-the-Art Works

We compare the visual effects of face attribute transfer with other state-of-the-art
methods in this section. The competitors include:

The neural algorithm of artistic style, proposed by Gatys et al. [3], is the pioneering
work of neural style transfer. This method adopt the representations derived from convolu-
tional neural networks (CNNs) to extract hight-level image information, and iteratively
optimizes each input image to match the representations of a reference image. We call this
work NST in the following for simplicity.

BN statistics matching, proposed by Li et al. [6], regards the neural style transfer as a
special domain adaptation problem. To find evidence supporting this viewpoint, inspired

https://github.com/ForawardStar/FaceAttributeTransfer
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by the observation that the batch normalization (BN) layer reflects the distributions of
different domains, Ref. [6] designed a new style loss by aligning the BN statistics to replace
the original Gram-matrix-based style loss [3], which requires less computation and can
yield visually promising style transfer results.

WCT, proposed by Li et al. [7], can generalize to arbitrary unseen styles and attributes
without needing to be explicitly trained on predefined styles. To achieve this, the method
transforms the content features using classic whitening and coloring transforms (WCTs)
with regard to the style features.

AvatarNet, proposed by Sheng et al. [8], renders multi-scale styles from an arbitrary
reference in one feed-forward process by embedding a patch-based feature manipulation
module called style decorator into a reconstruction network to fuse multi-scale style
features, which shows much faster speed than WCT [7].

Deep photo style transfer, proposed by Luan et al. [11] to perform photographic
style transfer, mitigates two main weaknesses of previous techniques: the painting-like
effects and the content-mismatch problem. Similar to our approach, this work introduces
guidance to the procedure of style transfer based on the semantic segmentation of both
inputs and exemplars. We call this work DPST in the following for simplicity.

For the competitors mentioned above, DPST is the only local method that uses the
semantic map to constrain the transfer process to only occur between semantically identical
regions. NST, BN, WCT, and AvatarNet are all global, so do not apply the semantic map
concept. The codes of competitors we used were all provided by the authors. Figure 5
shows the visual results of the comparison of our proposed method (the regions except for
the eyes, nose, mouth, and face skin are labeled as background) with other state-of-the-art
methods. It can be observed that for the global methods, NST and BN lack the richness and
diversity of the attribute pattern due to the greedy optimization they use, and their opti-
mization procedures are unstable and prone to getting stuck in local minima. Though WCT
significantly promotes the richness and faithfulness of the style and attribute, it tends to
over-distort the image content and draws unseen patterns. Compared with WCT, Avatar-
Net is capable of producing more natural results. However, AvatarNet and other global
competitors still suffer from some common limitations. In particular, in addition to causing
painting-like effects (the transfer result looks like a painting instead of a photograph), these
method fail to avoid undesirable transfers between semantically unrelated regions. That
is, the global style transfer methods simply transfer the overall style from the reference
to the whole input, instead of mapping the style of a local object to another semantically
equivalent one (e.g., mouth-to-mouth and eyes-to-eyes), which can cause the attribute
of an organ to spill over into the rest of the face photo. Though DPST is able to respect
the semantics of objects, it is inferior to our method in terms of producing photographic
outputs. Specifically, as indicated by the red arrows in the sixth column in Figure 5, some
local structures in the results of DPST are distorted and some painting-like artifacts appear,
which should not occur in the photos taken by users. In addition, all the global and local
competitors fail to solely transfer the attributes of the face organs in the foreground, while
strictly maintaining other attributes (the attributes of the background region) the same as
the original input image. In comparison, our method provides advantages compared with
the above-mentioned methods. Firstly, our framework considers the semantics of each face
organ, and our results are more faithful to the attribute in the reference image, including
the texture, color, and illumination. Secondly, compared with DPST, our method better
produces photographic attribute transfer effects. Thirdly, only our method has the ability to
only transfer the attributes of one or two face organs, making it superior to other methods.
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Input/Reference NST [3] BN [6] WCT [7] AvatarNet [8] DPST [11] Ours

Figure 5. Visual comparison of face attribute transfer with other state-of-the-art methods.

To quantitatively verify the effectiveness of our framework, we further conducted
experiments on the Helen face dataset [47], which contains 2330 face images and the
corresponding manually annotated semantic maps. We processed the Helen face dataset
with 5 extra headshot portraits from database provided by [2] as the references. That is, each
compared model produced 11,650 images, on which the inception score and the Fréchet
inception distance were computed. Table 1 shows that our framework outperformed its
competitors in both of these metrics, demonstrating that our results are of better quality
(clarity and diversity) and are closer to the distribution in the real photos.
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Table 1. Quantitative comparison with the state-of-the-art methods. For the Fréchet inception
distance, a lower value indicates better performance. For the inception score, the higher the better.

Metric
Method NST BN WCT AvatarNet DPST Ours

IS ↑ 3.10 3.02 3.16 3.19 3.76 3.81
FID ↓ 112.24 108.46 98.87 103.52 86.52 80.31

4.3. Flexibility Verification

To verify the flexibility of our framework, we further conducted two experiments.
The first one was to only edit the attribute of a specific organ. We used the images in
the first and second columns shown in Figure 6 as the input and reference, respectively.
For transferring the attribute of a specific organ, we set the regions except this organ as the
background in the semantic map. Taking editing the eyes as the attribute as an example,
the regions except the eyes, including the mouth, face skin, hair, and other regions, were all
labelled as background in the semantic map of both the input and reference images. Then,
we processed the input image using our framework to produce the results of only changing
the eyes attribute. The visual results produced by our method on separately transferring
the attributes of eyes, mouth, and face skin from one reference image are shown in Figure
6. It can be seen that our framework is able to successfully alter the attribute of one specific
face organ without affecting other organs, and allow users to flexibly determine which face
organ to change and which to maintain by editing the semantic map.

Input Reference Eyes Mouth Face skin

Figure 6. Additional visual results on separately transferring the attributes of eyes, mouth, and face skin from the same
reference image.
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In addition, one may want to take two or more reference images and produce results
simultaneously containing the attributes from these references in a controllable fashion.
As the results of editing a specific organ can be viewed as the input images again, we can
iteratively transfer the attribute of different organs from different reference images. Thus,
our second experiment was to iteratively alter the attribute of different organs in the order
of mouth, hair, face skin, and eyes from multiple reference images. Specifically, we first
transferred the mouth attributes from the reference images shown in the second column
of Figure 7 using the strategy adopted in the first experiment. Then, we transferred the
attribute of hair from the reference images in the third column to the previously processed
results. This procedure was repeated until the last attribute (eyes) was treated. The results
are shown in Figure 7. As can be seen, by combining the attributes of multiple images,
the visual results can be richer and more diverse.

Input Mouth reference Hair reference Face skin reference Eyes reference Result

Figure 7. The results of transferring the facial attributes from multiple reference images to the same input images. The right-
most column shows the results obtained by transferring the attributes of mouth, hair, face skin, and eyes from the 2nd
column to the 5th column, respectively.

4.4. Ablation Analysis

We analyzed the effects of three different strategies: (1) the content term Lcon being
omitted during training; (2) the image for neural style transfer being randomly initialized
by white noise; (3) the preservation term Lpre being omitted during training. As can be
clearly observed in Figure 8, removing the content term Lcon cannot reasonably preserve
the basic structure of the human face, whereas removing our newly proposed preservation
term Lpre leads to the attributes of the large organs spilling over into the rest of the image,
e.g., the background regions around the neck in Figure 8e taking the attributes of face skin.
Furthermore, we tested the effect of performing gradient descent on an image randomly
initialized by white noise. The corresponding result is depicted in Figure 8d. It can be seen
that directly updating a white noise image leads to the degradation of the faithfulness of
the stylistic match.
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(a) Input (b) Reference (c) w/o Lcon

(d) Random initialization (e) w/o Lpre (f) Ours

Figure 8. Effectiveness analysis of different strategies. (c,e) The results when neglecting Lcon and
Lpre, respectively; (d) the result of randomly initializing the image by white noise.

5. Conclusions

In this paper, we proposed a framework to perform local face attribute transfer
considering the semantic of each face organ, which locally transfers the face attribute
from the reference headshot photo to the user’s own photo with the semantic map as
guidance. The first step of our overall pipeline is to detect the facial landmark of both the
input image and the reference image, then warp the reference image to match the pose,
shape, position, and the expression of the input image using thin plate spline. To provide a
more accurate initialized image for attribute transfer, we proposed a novel image fusion
strategy to fuse the input image and the warped reference image. Finally, the fused result
is taken as the initialized image for face attribute transfer and iteratively updated until the
overall objective decreases to a certain range, or the iteration step reaches the maximum
value set by the users. Our framework can flexibly handle the need for the attributes of
face organs in the foreground to be changed while the rest is maintained the same as the
original input image. We conducted extensive experiments to evaluate the performance of
our framework, which revealed the efficacy of our design and its superiority over other
state-of-the-art alternatives.
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