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Abstract: To prevent disasters and to control and supervise crowds, automated video surveillance
has become indispensable. In today’s complex and crowded environments, manual surveillance and
monitoring systems are inefficient, labor intensive, and unwieldy. Automated video surveillance
systems offer promising solutions, but challenges remain. One of the major challenges is the extraction
of true foregrounds of pixels representing humans only. Furthermore, to accurately understand and
interpret crowd behavior, human crowd behavior (HCB) systems require robust feature extraction
methods, along with powerful and reliable decision-making classifiers. In this paper, we describe our
approach to these issues by presenting a novel Particles Force Model for multi-person tracking, a
vigorous fusion of global and local descriptors, along with a robust improved entropy classifier for
detecting and interpreting crowd behavior. In the proposed model, necessary preprocessing steps
are followed by the application of a first distance algorithm for the removal of background clutter;
true-foreground elements are then extracted via a Particles Force Model. The detected human forms
are then counted by labeling and performing cluster estimation, using a K-nearest neighbors search
algorithm. After that, the location of all the human silhouettes is fixed and, using the Jaccard similarity
index and normalized cross-correlation as a cost function, multi-person tracking is performed. For
HCB detection, we introduced human crowd contour extraction as a global feature and a particles
gradient motion (PGD) descriptor, along with geometrical and speeded up robust features (SURF)
for local features. After features were extracted, we applied bat optimization for optimal features,
which also works as a pre-classifier. Finally, we introduced a robust improved entropy classifier
for decision making and automated crowd behavior detection in smart surveillance systems. We
evaluated the performance of our proposed system on a publicly available benchmark PETS2009 and
UMN dataset. Experimental results show that our system performed better compared to existing
well-known state-of-the-art methods by achieving higher accuracy rates. The proposed system can
be deployed to great benefit in numerous public places, such as airports, shopping malls, city centers,
and train stations to control, supervise, and protect crowds.

Keywords: bat optimization; human crowd behavior (HCB); improved entropy (IE); Jaccard similar-
ity; multi-person counting; particles gradient motion (PGM); speeded up robust features (SURF)

1. Introduction

Multi-person tracking is currently one of the most essential and challenging research
topics in the computer vision community [1–9]. Because of the common availability of high-
quality low-cost video cameras and considering the inefficiency of manual surveillance and

Entropy 2021, 23, 628. https://doi.org/10.3390/e23050628 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7121-495X
https://orcid.org/0000-0002-6613-7435
https://orcid.org/0000-0003-2590-9600
https://www.mdpi.com/article/10.3390/e23050628?type=check_update&version=1
https://doi.org/10.3390/e23050628
https://doi.org/10.3390/e23050628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050628
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 628 2 of 26

monitoring systems, automated video surveillance is now essential for today’s crowded and
complex environments. To monitor, control, and protect crowds, accurate information about
numbers plays a vital role in operational and security efficiencies [10–16]. The counting and
tracking of many persons is a challenging problem [17–25] due to occlusions, the constant
displacement of people, different perspectives and behaviors, varying illumination levels,
and because, as the crowd gets bigger, the allocation of pixels per person decreases.

A primary concern in surveillance and monitoring systems is to identify human crowd
behaviors and supervise the crowd to prevent disasters and unforeseen events [26–34].
The analysis of human behavior in crowded scenes is one of the most important and
challenging areas in current research [35–43]. Traditional visual surveillance systems that
depend purely on manpower to analyze videos is inefficient because of the enormous
number of cameras and screens that require monitoring, human fatigue due to time spent
on lengthy monitoring periods, paucity of essential fore-knowledge and training in what
to look for, and also because of the colossal amount of video data that is generated per day.
Such issues necessitate an automated visual surveillance system that can reliably detect,
isolate, analyze, identify, and alert responders to unusual events in real time. Automated
surveillance systems seek to detect human behaviors automatically in crowded scenes, and
it has many potential applications, such as security, care of the elderly and infirm, traffic
monitoring, inspection tasks, military applications, robotic vision, sports analysis, video
surveillance, and pedestrian traffic monitoring [44–52].

In this research article, we propose a robust new particles-based approach for multi-
person counting and tracking, which addresses the problematic fact that, as the density
of a crowd increases, the number of pixels allocated per human decreases. By using our
particles-based approach, we were able to count and track multiple persons in crowded
scenes and efficiently deal with occlusions, arbitrary movements, and overlaps. We also
propose a new approach for crowd behavior detection using an improved entropy classifier
based on the fusion of global and local descriptors extraction. First of all, we applied
pre-processing steps on extracted video frames for noise removal, edge detection, and
contrast adjustment, then human/non-human detection was performed using multi-level
thresholding and morphological operations. We applied a distance algorithm for human
silhouette extraction. After that, our work involved two facets: (i) multi-people tracking
and (ii) crowd behavior detection. In the multi-person tracking phase, we first verified the
extracted silhouettes by a particles force model, then we converted extracted foreground
objects into particles, and, using physics phenomena of the mutually interacting particles
force model, non-human objects were discarded. As every extracted human silhouette is a
collection of particles, by treating groups of particles that make one silhouette as a cluster,
we performed labeling and cluster estimation using a K-nearest neighbors search algorithm
to count the persons. We then fixed the human silhouettes with a unique integer ID, and,
using normalized cross correlation as a cost function and the Jaccard similarity index, multi-
person tracking was performed. However, for crowd behavior detection, we used a fusion
of global and local descriptors, that is, after foreground extraction, we extracted a human
crowd contour as a global descriptor and a particles gradient motion (PGM) descriptor,
along with geometric and speeded up robust features (SURF) as local descriptors. Using
this fusion of global and local descriptors, bat optimization was then applied for optimal
descriptors. Finally, by using Shannon’s information entropy theory [53], we introduced an
improved entropy classifier to detect crowd behavior.

Experimental results show that our proposed system performed better compared to
existing well-known state-of-the-art methods. The proposed system has huge potential
applications, such as crowd density estimation, security, care of the elderly and vulnerable,
sports analysis, inspection tasks, military applications, robotic vision, video surveillance,
and pedestrian traffic monitoring. The major contributions of this paper can be highlighted
as follows:
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1. We propose a new particles force model for human silhouettes verification, which is
a necessary step for accurate counting and tracking of multiple persons in crowded
scenes.

2. We developed a novel particles gradient motion local descriptor and human crowd
contour as a global descriptor, while the fusion of global and local features was used
for crowd behavior detection.

3. We designed an improved entropy classifier to analyze contextual information and
classify crowd behavior in a more efficient manner.

4. We evaluated the performance of our proposed multi-person tracking approach on
a publicly available benchmark PETS2009 dataset while crowd behavior detection
performance was evaluated on the publicly available benchmark UMN dataset and
the proposed method was fully validated for efficacy, surpassing other state-of-the-art
methods, including deep learning.

The remaining structure of this paper was arranged as follows: Section 2 describes
related work. A detailed overview of the proposed model for multi-person tracking and
crowd behavior detection is mentioned in Section 3, which includes preprocessing, human
silhouettes extraction, the particles force model, multi-person counting, multi-person
tracking, global and local features extraction, bat optimization, and an improved entropy
classifier. In Section 4, we evaluate the performance of our proposed approach on a publicly
available benchmark dataset and give a detailed comparison of our proposed approach
with other state-of-the-art methods. Lastly, in Section 5, we sum up the paper and outline
future directions.

2. Related Work

During the last few years, several algorithms and systems have been developed by
different researchers for crowd counting, tracking, and human behavior detection [54–62].
Here, we divide the related work into two parts, namely, human crowd behavior detection
systems and multi-person counting and tracking systems.

2.1. Crowd Behavior Detection Systems

Many contributions have been proposed to describe crowd behavior using various
models [63–69]. Crowd behavior detection is a challenging problem due to the arbitrary
movements of individuals and groups, partial or full occlusions, different outlooks and
behaviors, posture changes, and composite backgrounds [70–76]. To detect human behav-
iors automatically in crowded areas, S. Wu et al. in [77] constructed a density function of
optical flow based on class-conditional probability and described the motion of crowds
using divergent centers and potential destinations so that anomalies can be detected on
the basis of a Bayesian framework. However, the system is not effective for arbitrary
movements or overlaps. S. Choudhary et al. in [78] proposed a SIFT feature extraction
technique, along with a Genetic Algorithm for optimal feature extraction; anomalies were
detected by checking feature set movement behaviors. Their proposed system has a very
high computational processing demand. Direkoglu et al. in [79] used a one-class SVM,
along with features based on optical flow to detect crowd behavior; their system is limited
by the accuracy limitations of optical flow estimation. W. G. Aguilar et al. in [80] intro-
duced a moved-pixels density-based statistical modeling approach for detecting abnormal
crowd behavior. This system has low computational cost, but the efficiency decreases
with increasing complexity of the situation being monitored, e.g., serious occlusions. A.
Shehzed et al. in [81] first detected humans and then the gaussian smoothing technique
was used to detect anomalous behavior; however, the accuracy of the system decreases
with illumination changes and occlusions because thresholding is used for detection. W.
Ren et al. in [82] introduced a behavior entropy model for detecting abnormal crowd
behavior using spatio-temporal information, along with behavior certainty of pixels, but
the system is vulnerable to certain misclassifications due to interclass similarities. G. Wang
et al. in [83] addressed the crowd behavior detection problem by using the pyramid Lucas-
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Kanade optical flow [84] method based on location estimation of adjacent flow; however,
the proposed method is not effective for an unstructured crowd. R Mehran et al. in [85]
placed a grid of particles on the image and introduced a social force model for detecting
crowd behavior. Bellomo, N. et al. in [86] pursued two specific objectives: the derivation
of a general mathematical structure based on appropriate developments of the kinetic
theory suitable for capturing the main features of crowd dynamics and the derivation of
macroscopic equations from the underlying mesoscopic description. Colombo, R.M. et al.
in [87] dealt with macroscopic modelling of crowd movements, particularly how non-local
interactions are influenced by walls, obstacles, and exits. An ad hoc numerical algorithm,
along with heuristic evaluation of its convergence, was also provided. Khan, S.D. et al.
in [88] proposed scale estimation network SENet and head detection network. The SENet
takes the input image and predicts the distribution of scales (in terms of histogram) of all
heads in the input image, which are later on classified by a detection network.

2.2. Multi-Person Counting and Tracking Systems

True foreground extraction, i.e., human pixels, is only one of the primary steps for
accurate counting and tracking of humans in crowded scenes [89–93]. Several approaches
and systems have been introduced by many researchers for multi-person counting and
tracking. In [94], S. Choudri et al. proposed a pixels-based people counting model using the
fusion of a pixel map-based algorithm along with human detection to count only human
classified pixels. They applied a depth map, image segmentation, and a human presence
map that was updated with a human mask for the purpose of counting people; however,
the system has misclassification problems due to interclass similarities. H. Chen et al.
in [95] proposed a new color and intensity patch segmentation approach for tracking and
detection of human body parts and for the full body. They applied fusion of color space
segmentations for the detection of body parts and for the full body. For tracking, based on
the velocity of a target, they adaptively selected the track gate size. A target’s likely forward
position was predicted based on the target’s previous velocity and direction. The proposed
algorithm achieved satisfactory results only when the count of peoples was limited in the
view, i.e., efficiency decreases as the crowd increases. In [96], J. Garcia et al. introduced
a head tracking-based directional people counter. Using several circular patterns and
preprocessing steps, people’s heads were detected. For the tracking application, a Kalman
filter was used, and counting was achieved on the bases of head detection and tracking.
The effectiveness of the proposed algorithm decreases during serious occlusions, arbitrary
movements, and overlaps. M. Vinod et al. in [97] introduced object tracking and counting
using new morphological techniques. The frame-difference technique, followed by mor-
phological processing and region growing, was used for counting people. Moving objects
were extracted by determining their movements, and then tracking was performed using
color features. As the illumination of the scene changed, the efficiency of the proposed
algorithm decreased. G. Liu et al. in [98] proposed a tracker based on a correlation filter.
Kalman filter applications were used for tracking. They designed a tracker that detects
numerous positions and alternate templates. However, the system was not efficient in
dealing with complex situations, such as occlusions and random movements. E. Ristani
et al. in [99] used deep learning to track multi-persons. Using CNN, they extracted features
and then introduced a weighted triple loss strategy to assign weights during training. Their
system was computationally complex, and a huge dataset was essential for training. H.
Xu et al. in [100] located humans by their shoulders and heads, and, for tracking, they
used trajectory analysis and the Kalman filter, but the system was not effective for arbitrary
movements or overlaps.

3. Proposed System Methodology

This section elaborates our proposed methodology for multi-person tracking and
crowd behavior detection. We propose a robust multi-person tracking system based on
a particles force model and human crowd behavior detection system using an improved



Entropy 2021, 23, 628 5 of 26

entropy classifier with spatio-temporal and particles gradient motion descriptors. In
the proposed system, the first step is the preprocessing of extracted video frames from
a static camera. Secondly, object detection is transacted using multi-level thresholding,
morphological operations, and labeling. Thirdly, for human silhouette extraction, a distance
algorithm is applied, and non-human filtering is performed on all extracted labeled objects.
At this stage, we administered our work into two streams: the first was for multi-person
counting and tracking, where we first performed a human silhouette verification step by
converting extracted objects into particles and a robust particles force model was introduced
for human silhouette verification. In the next step, after verification of human silhouettes,
as all verified human silhouettes are a collection of particles, by treating each group of
particles as a cluster we performed labeling and cluster estimation using a K-nearest
neighbors searching algorithm for multi-person counting. After that, for multi-person
tracking, the position of each detected human silhouette was then located and locked by
assigning an integer ID for temporally fixing each human silhouette in the full video, and
detected fixed humans were tracked using a Jaccard Similarity Index. However, in the
second facet, for crowd behavior detection, the extracted foreground objects were passed
through a feature extraction step and multiple distinguishable global and local features
were extracted from every frame. After that, all the extracted features were standardized
using the bat optimization algorithm. Lastly, in the classification phase, an improved
entropy classifier was proposed for detection of crowd behavior. Figure 1 depicts the
synoptic schematics of our proposed system.
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tion system.

3.1. Pre-Processing

During image pre-processing, color frames were extracted from a static video camera
E = [f 1,f 2,f 3, . . . , fZ], where Z is the total number of frames. These color images were then
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passed through a Laplacian filter to reduce the noise and sharpen the edges. A Laplacian
filter was applied using Equation (1):

∇2 f =
∂2 f
∂2x

+
∂2 f
∂2y

(1)

where ∇2 f is the 2nd order derivative for obtaining the filtered mask. However, a pure
Laplacian filter did not produce an enhanced image, thus, to achieve the sharpened
enhanced image, we subtracted the Laplacian outcome from the original image using
Equation (2):

g(x, y) = f (x, y)−
[
∇2 f

]
(2)

where the g(x, y) is the sharpened image and f (x, y) is the input image. After obtaining the
sharpened image g(x, y), histogram equalization was performed on the sharpened image
in order to adjust the contrast of an image using Equation (3):

sk = T(rk) = (L− 1)∑k
j=0 pr

(
rj
)

k= 0, 1, 2, . . . , L− 1 (3)

where variable r denotes the intensities of an input image to be processed. As usual,
we assumed that r is in the range [0 L − 1], with r = 0 representing black and r = L − 1
representing white, while s represents the output intensity level after intensity mapping for
every pixel in the input image, having intensity r. However, pr(r) is the probability density
function (PDF) of r, where the subscript on p were used to indicate that it was a PDF of r.
Thus, a processed (output) image was achieved using Equation (3) by mapping each pixel
in the input image with intensity rk into a corresponding pixel with level sk in the output
image, as shown in Figure 2.
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3.2. Human Silhouettes Extraction

After obtaining the preprocessed frames, we performed human/non-human detection
by performing multi-level thresholding using Equation (4), as depicted in Figure 3c.

th(x, y) =
{

1 if l(x, y) > t1, t2, t3
0 otherwise

(4)



Entropy 2021, 23, 628 7 of 26

where th(x, y) is the threshold image and t1, t2, t3 are the applied thresholds that are defined
by Otsu’s procedure. In order to extract more useful information, the resultant binary
image was inverted using a point processing operation that subtracts every pixel of an
image from the maximum level of the image, as shown in Equation (5).

C(x, y) = 1− th(x, y) (5)

where C(x, y) is the inverted image, as shown in Figure 3d, and th(x, y) is the binary image
with a maximum level of 1. After obtaining the human/non-human binary foreground
frames, we performed morphological operations to remove imperfections in the inverted
image C. For the removal of small unwanted objects, erosion was performed, and then,
to fill small holes while preserving the size and shape of objects, morphological closing
was performed. Every object in image C was first eroded using erosion as represented in
Equation (6) and then dilated using Equation (7), after which the dilated image was eroded
again using the disk-shaped structuring element, as shown in Equation (8).

m(x, y) =
{

1 if S fits C
0 otherwise

(6)

m(x, y) =
{

1 if S hits C
0 otherwise

(7)

Mo = (C 	 S)((C⊕ S)	 S) (8)

where C represents the input inverted image and S is the disk-shaped structuring element
used for erosion and dilation, while Mo is the resultant image. The erosion of C by S
is denoted as (C 	 S); however, the dilation of C by S is denoted as (C⊕ S). After
morphological operations, all the objects in the image were grouped and labeled, which
helped in extracting and uniquely analyzing every object that was required for human
silhouette extraction.
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After human/non-human detection, for human silhouette extraction, we calculated
the center and extreme points of each of the labeled objects of Mo, then we extracted each
object one by one, and the distance from center to two extreme points was calculated
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for every object for non-human filtering, as shown in Figure 4. The same procedure was
adopted for the frames from frame 1 to frame Z.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 26 
 

 

 
Figure 4. Human silhouette extraction. (a) Distance algorithm from the center to two extreme 
points for every object, (b) single silhouette extracted uniquely through labeling, along with its 
distance graph, and (c) a single non-silhouette, along with its distance graph. 

After calculating the distances, those objects whose distances were greater than the 
set threshold were discarded using Equation (9), and only silhouettes resembling humans 
were retained. 

Eh = ቄ0   if  𝑑ଵ > 𝑇 ∩ 𝑑ଶ > T1                  otherwise  (9)

where the distance from the center to one extreme point is denoted by 𝑑ଵ, the center to 
the other extreme point distance is represented by 𝑑ଶ, T is the set threshold and Eh is the 
resultant image. After human silhouette extraction, most of the non-human objects were 
discarded by the distance algorithm; however, some non-human objects that resembled 
human objects remained. 

3.3. Multi-Person Tracking 
For accurate human tracking, the extraction of the true foreground, i.e., human pixels 

only, is a primary step. Thus, after application of the distance algorithm (mentioned in 
Section 3.2) for multi-person tracking, we performed the human silhouette verification 
step using the particles force model, and then the multi-person counting and tracking 
steps were executed. 

3.3.1. Human Silhouettes Verification: Particles Force Model 
We present a robust particles force model for human silhouette verification. First of 

all, every extracted labeled silhouette was converted into particles, as shown in Figure 5a. 
We treated all pixels as fluid particles, thus, every extracted silhouette was a collection of 
many particles, as depicted in the magnified view in Figure 5b. Therefore, in our designed 
method, each silhouette was represented by a set of particles Q = [𝑝ଵ, 𝑝ଶ, 𝑝ଷ, …, 𝑝ே], where 
N is the total number of particles in one silhouette. 
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After calculating the distances, those objects whose distances were greater than the
set threshold were discarded using Equation (9), and only silhouettes resembling humans
were retained.

Eh =

{
0 if d1 > T ∩ d2 > T
1 otherwise

(9)

where the distance from the center to one extreme point is denoted by d1, the center to
the other extreme point distance is represented by d2, T is the set threshold and Eh is the
resultant image. After human silhouette extraction, most of the non-human objects were
discarded by the distance algorithm; however, some non-human objects that resembled
human objects remained.

3.3. Multi-Person Tracking

For accurate human tracking, the extraction of the true foreground, i.e., human pixels
only, is a primary step. Thus, after application of the distance algorithm (mentioned in
Section 3.2) for multi-person tracking, we performed the human silhouette verification step
using the particles force model, and then the multi-person counting and tracking steps
were executed.

3.3.1. Human Silhouettes Verification: Particles Force Model

We present a robust particles force model for human silhouette verification. First of
all, every extracted labeled silhouette was converted into particles, as shown in Figure 5a.
We treated all pixels as fluid particles, thus, every extracted silhouette was a collection of
many particles, as depicted in the magnified view in Figure 5b. Therefore, in our designed
method, each silhouette was represented by a set of particles Q = [p1, p2, p3, . . . , pN],
where N is the total number of particles in one silhouette.
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We know from physics that, in solids, particles do not have enough kinetic energy to
overcome the strong forces of attraction, called bonds, which attract the particles toward
each other. Using this physics phenomenon, we found the force of attraction between
particles of every extracted silhouette, as shown in Figure 6:
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For simplicity, we found the force of attraction between only two mutually interacting
particles using Equation (10) in all frames from 1 to Z.

Fi =
p1 p2

r2 (10)

where i is in the range [1 E] with E, representing the maximum number of silhouettes per
frame, while Fi is the force of attraction between particle p1 and p2 of the ith silhouette and
r2 is the square of Euclidian distance between particles p1 and p2. After calculating the force
between particles of every silhouette in all video frames, we discarded those silhouettes
whose force of attraction was static in frame t and frame t + 1 using Equation (11):

Hs =

{
1 if dFi

dt > 0
0 otherwise

(11)
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where dFi
dt represents the change in attraction force between particles of every ith silhouette,

with respect to time between frames t to t + 1. After application of the particles force model,
we only retained human silhouettes in each frame, as depicted in Figure 7:
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3.3.2. Multi-Person Counting

After extraction of the verified human silhouettes, to count these detected humans
silhouettes, which consist of a set of particles, we performed cluster estimation. Since
every silhouette is a collection of particles, the group of particles that makes one silhouette
was treated as one cluster, and, by using the K-nearest neighbor search algorithm, cluster
estimation was performed on every frame, as depicted in Figure 8:
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After that, we labeled clusters in all frames, as shown in Equation (12), and, to make
them appear visually, we drew green bounding boxes around each cluster. Thus, by
performing cluster estimation and labeling, we counted all the extracted human silhouettes,
as shown in Figure 9:

Ic = Lm pN (12)

where pN is the total number of particles in one cluster (the total number of particles in
each cluster varies from cluster to cluster and the number of clusters in each frame varies
from frame to frame), while Lm represents the label of cluster m and Ic is the resultant
extracted labeled cluster that was treated as one silhouette and was considered in counting.
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3.3.3. Multi-Person Tracking

The goal of person tracking is to establish correspondence between individuals across
frames. Thus, to establish correspondence between persons in frame t and frame t + 1, we
calculated the position and velocity of every detected human silhouette in all frames. In
our model, we assumed that people can enter or leave the scene, thus, for temporally fixing
of all humans across frames, the position of each human silhouette was located and locked
by assigning a unique integer ID, which was fixed to that particular silhouette in all frames.
The states of all the predicted persons in frame Ft were stored in a structure and matched
with the states of frame Ft + 1, while the detected fixed human silhouettes were tracked
using the Jaccard similarity index.

St = ∑n
i=1 ILi (13)

While using data association and cross-correlation as a cost function, detected and
predicted persons were associated in consecutive frames, as represented in Figure 10. The
root steps involved in multi-person tracking are illustrated in Figure 11.
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3.4. Crowd Behavior Detection

Understanding that accurate crowd behavior requires robust global and local feature
extraction [101–103], along with a potent decision-making classifier, for crowd behavior
detection after applying the distance algorithm (mentioned in Section 3.3), the extracted
silhouettes were passed through the feature extraction step and multiple distinguishable
global and local features were extracted for every frame. Next, bat optimization was applied
for optimal feature extraction and decisions were made by the improved entropy classifier.

3.4.1. Global-Local Descriptors

For the global-local descriptor, we used a fusion of global and local image properties.
In global features, we described the visual content of the whole image and we had the
ability to represent an image with a single vector. Here, we extracted the crowd contour as
a global feature. For local features, we used our newly proposed particles gradient motion
features, geometric features, and speeded up robust feature (SURF) [104]. For local features,
we extracted interest points and represented them as a set of vectors that respond more
vigorously to clutter and occlusions.

Initially, in global features, we found the center of each human and considered all the
humans in the scene as a vertex; this can be denoted as P = {P1, P2, . . . , Pn|Pi = (Xi, Yi)},
where P represents the whole human crowd in the scene, considered as a set of vertices, and
(Xi, Yi) are the coordinates of the ith human. We considered only those humans that were
at the extreme points and joined them with a line, forming the biggest graph, covering all
extreme vertices, as shown in Figure 12. The graph represented the human crowd contour,
and thus, the variations in the shape of a graph threw a flash on variations in the outer
area of the human crowd, i.e., on global changes. To measure the variations in the crowd
contour, we compared the contour temporally by integrating over all of the pixels of the
contour. In general, we defined the (p, q) moment of a contour as in Equation (14):

mp,q = ∑n
x ∑n

y I(x, y)xpyq (14)

where I(x, y) is the intensity of the pixels in coordinate (x, y). Here, p is the x-order and q
is the y-order, whereby, order means the power to which the corresponding component
is taken in the sum just displayed. The summation is over all of the pixels of the contour
boundary (denoted by n in the equation). It then follows immediately that, if p and q are
both equal to 0, then the m0,0 moment is actually just the length in pixels of the contour. The
moment computation just described gives some rudimentary characteristics of a contour
that can be used to compare two contours.
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In the SURF descriptor [105], we computed distinctive invariant local features, which
detected the interest points and elaborate features that depict some invariance to image
noise, rotation, direction, scaling, and changes in illumination. Using SURF, we computed
75 local points for every human silhouette in an image, and thus, for every frame, we had
1050 SURF descriptors in a set of vectors, as shown in Figure 13:

Entropy 2021, 23, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 12. Extraction of human crowd contour as a global feature. 

In the SURF descriptor [105], we computed distinctive invariant local features, which 
detected the interest points and elaborate features that depict some invariance to image 
noise, rotation, direction, scaling, and changes in illumination. Using SURF, we computed 
75 local points for every human silhouette in an image, and thus, for every frame, we had 
1050 SURF descriptors in a set of vectors, as shown in Figure 13: 

(a) (b) 

Figure 13. (a) SURF features for all human silhouettes and (b) magnified view of SURF features for 
two human silhouettes. 

In geometric local features, we first identified the skeleton joints of every human sil-
houette in each frame using a skeleton model, and then, by considering skeleton joints as 
vertices, we drew poly-shapes and triangles with three or four vertices. By using the left 
arm, neck, left shoulder, and torso, a left polygon wing was drawn and filled with a color. 
Similarly, a right polygon wing was drawn and filled with different colors using the right 
arm, neck, torso, and right shoulder. Additionally, the torso area, lower area, left shoulder 
triangles, and right shoulder triangles were drawn, as depicted in Figure 14. The areas 
enclosed under these polygons were analyzed frame by frame, and on the basis of angle 
differences and area size, normal and abnormal behaviors of human crowds were de-
tected. Algorithm 1 depicts the overall procedure used for the extraction of the strongest 
body points for human silhouettes. 

   
(a) (b) 

Figure 14. (a) Geometric features for all human silhouettes. (b) Magnified view of geometric fea-
tures for two human silhouettes. 

Figure 13. (a) SURF features for all human silhouettes and (b) magnified view of SURF features for
two human silhouettes.

In geometric local features, we first identified the skeleton joints of every human
silhouette in each frame using a skeleton model, and then, by considering skeleton joints
as vertices, we drew poly-shapes and triangles with three or four vertices. By using the
left arm, neck, left shoulder, and torso, a left polygon wing was drawn and filled with a
color. Similarly, a right polygon wing was drawn and filled with different colors using
the right arm, neck, torso, and right shoulder. Additionally, the torso area, lower area, left
shoulder triangles, and right shoulder triangles were drawn, as depicted in Figure 14. The
areas enclosed under these polygons were analyzed frame by frame, and on the basis of
angle differences and area size, normal and abnormal behaviors of human crowds were
detected. Algorithm 1 depicts the overall procedure used for the extraction of the strongest
body points for human silhouettes.
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In particles gradient motion (PGM), we first converted every human silhouette into
particles and then only those particles that were on the human contour were considered,
and their interaction force was calculated. Generally, every pedestrian in a crowd has a
desired direction and velocity vi

d, calculated using Equation (16). However, in crowded
scenes, because of the presence of multiple persons, individual movements are limited, and
the actual velocity of each pedestrian vi is different from their respective expected motion.
The actual velocity of particles is calculated using Equation (15).

vi = Favg(xi, yi) (15)
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where Favg(xi, yi) is the ith particle average optical flow in the coordinate (xi, yi). We
calculated the desired velocity vi

d of particles as:

vi
d= (1− wi) F(xi, yi)+ wiFavg(xi, yi) (16)

where F(xi, yi) represents ith particle optical flow with coordinates (xi, yi) and wi is the
panic weight parameter. The pedestrian i displays vanity behaviors as wi→ 0 and collective
behaviors as wi → 1. Linear interpolation was used for the enumeration of efficient optical
flow and the adequate average flow field of particles. Thus, on the basis of the actual
velocity and the desired velocity, we can calculate the interaction force using Equation (17):

Fint =
1
T

(
vi

d − vi)–
dvi
dt

(17)

where Fint is the resultant interaction force, as represented in Figure 15 and T is the
relaxation parameter. When the interaction force of particles was greater than the set
threshold, it was detected as an abnormal event; otherwise, it was considered to be normal.

Algorithm 1 Extract strongest body points for human silhouettes

Input: I: Extracted Human Silhouettes
Output: Strongest body points, i.e., head, shoulders, legs, arms, hips
/* for each connected component, extract body points.
B = bwboundaries(binary_image);
lbl = bwlabel(binary_image);
CC2 = bwconncomp(lbl);
L52 = labelmatrix(CC2);
for objectidx2 = 1:CC2.NumObjects
individualsilheouts2 = bsxfun(@times, closezn, L52 == objectidx2);
[labeledImage2,numberofBlobs2] = bwlabel(individualsilheouts2,4);
end
Aa = individualsilheouts2;
/* Defining a upper, middlle and lower portion for each individual silheouts */
th = thershold;
rps = regionprops(Aa,’Boundingbox’, ‘Area’);
for k = 1 to length(rps) do
w = rps(k). Boundingbox
if height > th and width > th then
upper_region = struct(‘x’,w(1), ‘y’, w(2), ‘width’,w(3), ‘height’, w(4)/5); /* head */
middle_region = struct(‘x’,w(1), ‘y’, w(2) + w(4)/4, ‘width’,w(3), ‘height’, w(4)/4); /* arms */
lower_region = struct(‘x’,w(1), ‘y’, w(2) + w(4)/2, ‘width’,w(3), ‘height’, w(4)/2); /* legs */
j = j+1;
s(j) = w;
end
end
top = [x,max_y]:left = [min_x,y]:bottom = [x,min_y]:right = [max_x,y];
% label the head region%
Head =top pixels of upper region
Right Shoulder = Bottom right pixels of upper region
Left Shoulder = Bottom left pixels of upper region
Right arm = Right Pixels of middle region
Left arm = Left Pixels of middle region
Right foot = Bottom right pixels of lower region
Left foot = Bottom left pixels of lower region
return Head, Shoulders, arms, foots
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3.4.2. Event Optimization: Bat Optimization

Optimization is a process by which the optimal solutions of a problem that satisfies
and objective function are accessed [106–109]. Yang, in [110], introduced an optimization
algorithm inspired by a property of bats, known as echolocation. Echolocation is a type of
sonar that enables bats to fly and hunt in the dark. The bat optimization (BO) algorithm is
composed of multiple variables of a given problem. Using the echolocation capability, bats
can detect obstacles in the way and the distance, orientation, type, size, and even the speed
of their prey.

BO has multiple agents depicting the parameters of the layout dilemma, as any other
metaheuristic mechanism. From real-valued vectors, the initial population is randomly
generated with number N and dimension d by considering lower and upper boundaries
using Equation (18):

Xij = Xmin + ϕ(Xmax − Xmin) (18)

where Xmax and Xmin are higher and lesser boundaries for dimension j, respectively, j =
1, 2, . . ., d, i = 1, 2, . . . , and N and ϕ ranged from 0 to 1 is a randomly generated value.
After population initialization, we calculated the fitness function and stored the local and
the global best. We evaluated the fitness values of all humans, and, on the basis of their
movements, new local and global best solutions were obtained; all the humans had velocity
Vit affected by a predefined frequency fi, and finally, their new position Xit was located
temporally, as described in the following Equations:

fi = fmin + β( fmax − fmin) (19)

Vit = Vit−1 + (Xit − X ∗) fi (20)

Xit = Xit−1 + Vit (21)

where fi is the frequency of the ith human, fmin and fmax are lower and higher frequency
values, respectively, β represents a randomly generated value, and, after comparison of all
solutions, X∗ illustrates achieved global best location (solution). Figure 16 depicts the flow
chart of the algorithm and Figure 17 represents optimization results.
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3.4.3. Improved Entropy Classifier

Using Shannon’s information entropy theory [53] to describe the degree of uncertainty,
we proposed an improved entropy classifier for the detection of human crowd behavior.
First of all, we standardized all the features using Equation (22):

Xij
∗ =

Xij −min
{

Xj
}

max
{

Xj
}
−min

{
Xj
} (22)
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where Xij
∗ is the value of the j-th feature for i-th human. j = 1, 2, . . . , m, i = 1, 2, . . . , n, while

n is the count of humans and m represents the count of features. After that, the weight of
j-th feature for i-th human was calculated using Equation (23):

qij =
Xij
∗

∑n
i=1 Xij

∗ (23)

Thus, the information entropy of each feature was calculated using Equation (24):

ej = −k ∑n
i=1

(
qij × lnqij

)
(24)

where k = 1
ln m . After calculating the information entropy, we then calculated the difference

coefficient and maximum ratio of the difference coefficient using Equations (25) and (26):

dj = 1− ej (25)

D =
max

(
dj
)

min
(
dj
) , (j = 1, 2, . . . , m) (26)

After calculating D, we then built up the scale ratio chart 1–9 using Equation (27):

R =
a−1

√
D
a

(27)

where a depicts the highest scale-value worked as an adjustment coefficient by calculating
the power (a − 1). The D is allocated to the mapping values from 1 to 9 in the above
Equation. After that, from scale 1–9, mapped values were calculated, and judgment matrix
R was established with elements rij, respectively, using Equation (28):

rij =
di
dj

,
(
di > dj

)
(28)

The obtained judgment matrix satisfied the consistency test because the elements rij
demonstrated the ratio of difference coefficient of two features.

Thus, the consistent weights Wj for each feature were then calculated using an ana-
lytical hierarchy process. After that, information entropy was again calculated for each
feature, using these weights by utilizing Equation (24). The crowd behavior entropy of the
whole system was the summary of all entropies. In this way, for every frame, the entropy
value was calculated and utilized as a template. For a small entropy value less than the
defined threshold, the behavior was predicted as normal; however, for entropy values
higher than the set threshold, the behavior was presumed to be abnormal. A flow chart of
the proposed improved entropy classifier is shown in Figure 18. Figure 19 depicts results
over event classes.
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4. Performance Evaluation

In this section, we evaluated the performance of our proposed system. We conducted
experiments on two publicly available benchmark datasets to evaluate the accuracy and
performance of our proposed model. The PETS2009 dataset was used to evaluate the
accuracy of multi-person tracking and the UMN dataset was used to evaluate the accuracy
of crowd behavior detection. We started by briefly describing the datasets used, and
then the experimental results were discussed. Finally, we showed the mean accuracy of
our proposed system. We also compared our proposed model with other state-of-the-art
multi-person tracking and crowd behavior detection systems.

4.1. Datasets Description
4.1.1. PETS2009 Dataset

To evaluate different video surveillance challenges, we used PETS2009, one of the
publicly available benchmark datasets. The challenges included the S1 dataset for counting
persons in a low-density crowd, the S2 dataset for detecting and tracking persons in
medium-density crowds, and the S3 dataset for tracking and estimating the number of
persons in a high-density crowd. Some sample frames of different synchronized views
from PETS2009 dataset are depicted in Figure 20.
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4.1.2. UMN Dataset

To evaluate different video surveillance challenges for crowd behavior detection,
UMN is one of the publicly available benchmark datasets. The UMN dataset consists of
three different scenes, specifically, two outdoor and one indoor, with videos of 11 various
panic scenarios. For the detection of abnormal behavior of a crowd, the UMN dataset is
one of the best datasets that is publicly available. There were two outdoor scenes: the
lawn scene, consisting of two scenarios with 1453 frames, and the Plaza scene, with three
scenarios that had 2142 frames. There were six scenarios in the indoor scene, with 4144
frames. Sample frames of different scenarios of the UMN dataset are shown in Figure 21.
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4.2. Experimental Settings and Results

We performed all the experiments on MATLAB, and the hardware system had a 64-bit
intel core-i3 2.5 GHz CPU and 6 GB of RAM. Three experimental measures were used to
evaluate the performance of the system: (1) mean accuracy of multi-person tracking, (2) the
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accuracy of human crowd behavior detection, and (3) comparisons between our proposed
new system with other current and well-known systems. Experimental results showed that
our proposed system produces a higher accuracy rate over existing systems.

4.2.1. Experiment 1: Multi-Person Tracking over the PETS2009 Dataset

Experimental results and mean accuracy of our proposed multi-person counting and
tracking model on a publicly available PETS2009 dataset are shown in Tables 1 and 2. The
ground truth was obtained by counting the number of persons in every sequence, where
one sequence contained 20 frames. Table 1 depicts the mean accuracy of our proposed
multi-person counting system on the first 30 sequences. As shown, the mean accuracy of
our proposed model was 89.80%.

Table 1. Multi-person counting accuracy over the PETS2009 dataset.

Sequence No (Frame = 20) Actual Count Predicted Count Accuracy

6 3 3 100
12 4 4 100
18 5 4 80
24 6 5 83.33
30 7 6 85.71

Mean Accuracy = 89.80%

Table 2. Multi-person tracking accuracy over PETS2009 dataset.

Sequence No (Frame = 20) Successful Failure Accuracy

6 3 0 100
12 4 0 100
18 4 1 80
24 5 1 83.33
30 5 2 71.43

Mean Accuracy = 86.95%

Table 2 presents the mean accuracy of our proposed multi-person tracking system.
The actual number of humans is the same as for Table 1, while column 2 represents the
successful tracking rate of our proposed particles force model and column 3 depicts the
failure case. The mean accuracy of our proposed model for multiple person tracking
was 86.95%.

4.2.2. Experiment 2: Human Crowd Behavior Detection over the UMN Dataset

Experimental results using the confusion matrix and the mean accuracy of our pro-
posed HCB model on the publicly available UMN dataset are shown in Table 3. The way to
evaluate algorithms is to run them throughout a test sequence with initialization from the
ground truth position in the first frame.

Table 3. Confusion matrix, showing mean accuracy for human crowd behavior detection on the
UMN dataset.

Events Normal Abnormal

Normal 88 12

Abnormal 16 84

Mean Accuracy of Event Detection = 86.06%
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4.2.3. Experiment 3: Multi-Person Tracking and HCB Detection Comparisons with
State-of-the-Art Methods

We compared our proposed system with other well-known multi-person tracking
and human crowd behavior detection methods. As depicted, our system performed
better compared to existing well-known state-of-the-art methods. Table 4 shows that, in
comparison to other state-of-the-art methods, our proposed system achieved an admirable
accuracy rate of 86.06% for crowd behavior detection, which is higher than the accuracy of
the force field model (FF) (81.04%) and the social force model (SF) (85.09%). The accuracy
of other methods under the same evaluation settings was taken from [77,79].

Table 4. Comparison of the proposed approach with other state-of-the-art methods for human crowd
behavior detection on the UMN dataset.

Indoor/Outdoor Scenes Force Field Model Social Force Model Proposed Method

Scene 1 88.69 84.41 87.43
Scene 2 80.00 82.35 83.21
Scene 3 77.92 90.83 90.63

Overall accuracy 81.04% 85.09% 86.06%

Table 5 presents the comparison of our proposed system with other state-of-the-art
systems for multi-person counting. Experiment results show that our proposed system
achieved a higher accuracy rate of 89.8% over existing methods.

Table 5. Comparison of proposed approach with state-of-the-art multi-person counting methods.

Methods Counting Accuracy (%)

Pixel-map based algorithm [94] 83.6
Sparsity-driven [111] 86.3

Head Shoulder based detection [100] 86.7
Skin Detection [81] 88.7
Proposed method 89.8

In Table 6, comparisons of multi-person tracking with other state-of-the-art methods
show that our proposed system achieved a higher accuracy rate of 86.9% over existing
methods.

Table 6. Comparison of the proposed approach with state-of-the-art multi-person tracking methods.

Methods Tracking Accuracy (%)

Flow Linear Programming [112] 78.8
DDPMO [113] 81.3

Appearance model [114] 83.0
Proposed method 86.9

5. Conclusions

In this paper, we proposed a new robust approach for crowd counting. We introduced
and tested tracking and human behavior detection using the idea of a mutually interacting
particles force model and an improved entropy classifier with spatio-temporal and particles
gradient motion descriptors. Through detailed experiments, we proved the ability of the
method to efficiently count, track, and detect the behavior of multiple persons efficiently in
crowded scenes. The performance of our new tracking system decreases marginally with
increasing numbers of persons in the scene. This is mainly due to full occlusions that occur
in the test videos. We achieved promising results on the publicly available benchmark
PETS2009 dataset, with an accuracy of 89.80% for multi-person counting and 86.95% for
person tracking, as shown in Tables 1 and 2. However, for HCB detection, we achieved
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promising results on the publicly available benchmark UMN dataset, with an accuracy
of 86.06%, as shown in Table 3. Our future work will focus on some occlusion reasoning
methods to further tackle the occlusion problems. We will also extend our work to multiple
scene detection. We are interested in recognition of different scenes, such as sport scenes,
fight scenes, robbery scenes, traffic scenes, and action scenes.
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