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Abstract: H-type motion platform with linear motors is widely used in two-degrees-of-freedom
motion systems, and one-direction dual motors need to be precisely controlled with strict synchro-
nization for high precision performance. In this paper, a synchronous control method based on model
decoupling is proposed. The dynamic model of an H-type air floating motion platform is established
and one direction control using two motors with position dependency coupling is decoupled and
converted into independent position and rotation controls, separately. For the low damping second-
order oscillation system of the rotation control loop, a new fractional order biquad filtering method
is proposed to generate an antiresonance peak to improve the phase and control gain of the open
loop system, which can ensure system stability and quick attenuation for external disturbances. In
the multiple-degree-of-freedom decoupled control loops, a systematic feedback controller design
methodology is proposed to satisfy the given frequency domain design specifications; a feed-forward
control strategy is also applied to compensate the disturbance torque caused by the platform motion.
The simulation and experimental results demonstrate that the proposed synchronization control
method is effective, and achieves better disturbance rejection performance than the existing optimal
cancellation filtering method and biquad filtering method.

Keywords: H-type linear motor air floating motion platform; Dynamic modeling; Synchronous
control; Feed-forward control; Fractional order biquad filter

1. Introduction

H-type air floating motion platform can realize two degrees of freedom large stroke
precise positioning motion and is widely applied in lithography silicon wafer stage, preci-
sion measuring equipment, and laser drilling equipment [1–3]. The platform is directly
driven by the linear motor and supported and guided by the air floating guideway, which
has the advantages of symmetrical structure and large overall stiffness. One direction of
H-type motion platform is driven by a single motor, and the other direction is driven by
double motors, which can provide larger driving force. The position of the double motors
needs to be precisely synchronously controlled, otherwise, the positioning accuracy in two
degrees of freedom cannot be guaranteed, and the poor synchronization accuracy will lead
to a stuck guide rail.

There are several existing synchronization control methods. The parallel control
method is to build two independent control loops with the same reference position, and the
synchronization accuracy of the dual motors is determined by the position tracking accu-
racy of the two loops [4,5]. In the master-slave control method, there are two independent
master and slave loops. The feedback position of the master loop is taken as the reference
position of the slave loop, and the synchronization accuracy is determined by the control
performance of the slave loop [6]. In the cross-coupling control method, a synchronous
error controller is introduced into the parallel control, which generates control signals
with the position difference of the dual motors to realize synchronous control [7–11]. The
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disturbance observer is introduced into the loop to realize synchronous control [12,13]. The
Lagrangian dynamic model of the H-type motion platform is established, which converts
the position of the double motors into the position and angle around the middle point of
the beam for control [14]. In these control methods, the position coupling between the
dual motors connected by the beam of the H-type motion platform is not considered, the
controller is difficult to design, and the system stability cannot be guaranteed [15]. To solve
this problem, a control method based on coordinate decoupling is proposed. According
to the dynamic model of the H-type motion platform, the position of the two motors is
converted into the position and rotation angle at the centroid of the entire component to
realize the position tracking and synchronous error control. The two degrees of freedom
of position and rotation are naturally decoupled, which is conducive to designing the
controller. This decoupling method is used to control the position of the dual motor driven
linear slider, but no moving part is on the beam [15]. The feed-forward control is introduced
to improve the position tracking accuracy based on the decoupled model [16], but the
research on introducing feed-forward control into the rotation control loop to improve the
synchronization accuracy is scarce. Sliding mode control is introduced into the decoupled
three-degrees-of-freedom model to realize the precise contour control of the platform [17].
For the platform with moving parts, the thrust of the double motors is distributed to control
the position at the centroid of the entire component [18]. The movement of the components
on the beam is considered, and the adaptive method is adopted to realize the position and
angle control [19–21].

The rotation model of H-type air floating motion platform is a second-order oscil-
lation system with low damping. There is a resonance peak in the amplitude-frequency
characteristic curve, and the corresponding phase decreases rapidly from 0◦ to −180◦. The
control gain needs to be designed very small to make the gain margin of the system greater
than 0, but the control performance cannot be guaranteed. For the low damping oscillation
system, the tuned mass damping module can be used to increase the damping of the
system [22], so as to attenuate the resonance peak and reduce the phase change speed. The
mass, stiffness, and damping of the module need to be designed according to the original
system parameters. For the system with low frequency mechanical resonance, there are
resonance and antiresonance peaks in the Bode diagram of open-loop transfer function.
The low pass filter, notch filter, and biquad filter are applied to reduce the amplitude at the
resonance peak to improve the gain margin of the system [23]. The matched biquad filter
can completely eliminate the resonance and antiresonance peaks, but it is sensitive to the
changes of plant parameters and the disturbance rejection performance is poor. For the
low damping oscillation system, it is difficult to guarantee the tracking performance and
disturbance rejection performance of the closed-loop system simultaneously.

In this paper, a synchronous control method based on coordinate decoupling with
feedback and feed-forward control is proposed for H-type motion platform, and a fractional
order biquad filter is introduced into the low damping second-order oscillation system to
achieve good tracking and disturbance rejection performance simultaneously.

The main contributions of this paper are as follows, (1) The X, Y, and Rz directions
dynamic models of H-type air floating motion platform are established, and a synchronous
control method based on coordinate decoupling is proposed, which transforms the position
control of the direction with two motors into X position and Rz rotation control, and
the Rz torque feed-forward control based on the established model is also applied to
reduce the synchronization error caused by the platform motion. (2) For the low damping
second-order oscillation system in Rz rotation control, a fractional order biquad filter with
antiresonance peak is proposed, which can ensure the desired tracking and disturbance
rejection performance of the system, simultaneously. (3) A systematic feedback control
design method with the given design specifications are proposed for the X, Y, and Rz control
loops. The optimal order of the fractional order biquad filter is obtained by minimizing the
peak value of the process sensitive transfer function. Simulation and experimental results
show that the proposed control method is effective and can achieve better disturbance
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rejection performance than the existing optimal cancellation filtering method and biquad
filtering method. The difference between this paper and the previous work are: (1) after
decoupling modeling of the air bearing platform, this paper points out the low damping
oscillation characteristics of the rotation control loop, and the existence of the resonance
peak, makes the controller difficult to design. (2) Compared with the cancellation filtering
method, a new non-cancellation filtering method is proposed to realize the synchronization
control, and a fractional order filter is introduced to improve the disturbance rejection
performance of the system. (3) Compared with the existing synchronous feedback control
method, the feed-forward control is added to compensate for the synchronous disturbance
torque caused by the platform motion.

The paper is organized as follows. In Section 2, the dynamic model of the H-type
air floating motion platform is established, and the Rz disturbance torque caused by the
platform motion is modeled. Then the synchronous control method based on model
decoupling is proposed, the feedback and feed-forward controllers in X, Y, and Rz control
loops are designed. In Section 3, the proposed synchronization control method is verified
in simulation and experiment. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Dynamic Modeling of H-Type Air Floating Motion Platform

An H-type air floating motion platform is shown in Figure 1. The platform is driven by
two motors in X-direction, and the positions of the X1 and X2 components are measured by
two grating rulers, seperately. X1 and X2 components are connected by the beam, and the
Y component is sheathed on the outside of the beam to realize the X-direction movement.
The Y component is driven by a single linear motor, and the grating ruler measures the
position to realize the Y-direction movement. In the X and Y directions, the air floating
guideway is used for supporting and guiding, which eliminates the friction and provides
the vertical and horizontal stiffness and damping to ensure the overall structural stiffness
of the system. In order to control the platform, it is necessary to obtain the transfer function
of the control plant from the control force to the feedback position. Next, the dynamic
model of the platform is established.

Figure 1. H-type air floating motion platform.

The schematic diagram of H-type motion platform is shown in Figure 2, the XY
coordinate system takes the midpoint of the stroke as the origin, and the system parameters
are shown in Table 1.
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Figure 2. The structure diagram of H-type motion platform.

Table 1. The parameters of the motion platform.

Symbol Value Description

mx 54.90 kg Mass of X moving component
my 25.05 kg Mass of Y moving component
m 79.95 kg Mass of the entire moving component

JXz 7.224 kgm2 The rotational inertia of the X component around the Z-axis at its centroid
JYz 0.296 kgm2 The rotational inertia of the Y component around the Z-axis at its centroid

Jz0 7.520 kgm2 When the Y component is in the middle of the stroke, the rotational inertia of the entire
moving component around the Z-axis at its centroid

kxH 30.0 × 106 N/m Equivalent stiffness of X horizontal air floating guideway
cxH 1000 Ns/m Equivalent damping of X horizontal air floating guideway
dxH 0.187 m The distance between the action points of X horizontal air floating force along X-direction
kyH 17.0 × 106 N/m Equivalent stiffness of Y horizontal air floating guideway
cyH 400 Ns/m Equivalent damping of Y horizontal air floating guideway
dyH 0.245 m The distance between the action points of Y horizontal air floating force along Y-direction
dm 1.09 m The distance between X1 and X2 motors along Y-direction
dr 1.012 m The distance between X1 and X2 reading heads along Y direction

xyc 0.0018 m The distance between the centroid of Y component and the centroid of the entire component
along X direction

xxc −0.001 m The distance between the centroid of X component and the centroid of the entire component
along X direction

xFyc −0.024 m The distance between Y motor and the centroid of the entire component along X direction
K f x1 220 N/A X1 motor thrust constant
K f x2 220 N/A X2 motor thrust constant
K f x 220 N/A X-direction thrust constant
K f θ 220 N/A Rz thrust constant
K f y 230 N/A Y motor thrust constant

τ 0.0015 s System delay time

Parameters Varying With the Position of Y Component

dm1 = dm
2 +

my
mx+my

y(t) The distance between X1 motor and the centroid of the entire component along Y direction

dm2 = dm
2 −

my
mx+my

y(t) The distance between X2 motor and the centroid of the entire component along Y direction

dr1 = dr
2 +

my
mx+my

y(t)
The distance between X1 reading head and the centroid of the entire component along

Y direction

dr2 = dr
2 −

my
mx+my

y(t)
The distance between X2 reading head and the centroid of the entire component along

Y direction

yxc = −
my

mx+my
y(t)

The distance between the centroid of X component and the centroid of the entire component
along Y direction

yyc =
mx

mx+my
y(t) The distance between the centroid of Y component and the centroid of the entire component

along Y direction

The Measured Feedback Parameters

y Position measured by Y reading head
x1 Position measured by X1 reading head
x2 Position measured by X2 reading head
xc Position of the centroid of the entire component along X direction
θz Angle of the entire component around the Z-axis at its centroid
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2.1.1. Y-direction Dynamic Model

As shown in Figure 3, the Y component moves along the Y-direction under the Y motor
force Fy, and its absolute position is yy. The X component moves along the Y-direction
under the Y motor stator reaction force −Fy, and its absolute position is yx.

Figure 3. Y component moves along Y-direction.

The dynamic equation is:

my
..
yy(t) = Fy(t) = K f y·iy(t− τ), (1)

mx
..
yx(t) + 4cxH

.
yx(t) + 4kxHyx(t) = −Fy(t). (2)

Since the feedback position y is the position of the Y component relative to the beam,
i.e., y = yy − yx, the transfer function between y and Y motor current iy is obtained:

y(s)
iy(s)

=
K f y

mys2

(
mx + my

)
s2 + 4cxHs + 4kxH

mxs2 + 4cxHs + 4kxH
e−τs. (3)

2.1.2. X-direction Dynamic Model

As shown in Figure 4, the entire moving components move along X-direction under
the X motors force, and the position of X component is xx. The Y component moves under
the Y horizontal air floating force Fxy−xm, and its position is xy.

Figure 4. The platform moves along X-direction.

The dynamic equation is:

my
..
xy(t) = Fxy−xm(t), (4)

mx
..
xx(t) = Fx(t) + Fyx−xm(t), (5)

where, Fxy−xm(t) = 4cyH
( .
xx(t)−

.
xy(t)

)
+ 4kyH

(
xx(t)− xy(t)

)
, Fyx−xm is the air floating

reaction force of Y component on beam. Fx1 is the X1 motor force, Fx2 is the X2 motor force,
and Fx is the total force of the two motors,

Fx(t) = Fx1(t) + Fx2(t) = K f x1 ·ix1(t− τ) + K f x2 ·ix2(t− τ). (6)
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Since the rotation angle of the entire moving component around the Z-axis is small,
the position xx at the centroid of the X component is considered the same as the position xc
at the centroid of the entire moving component, that is, xx ≈ xc. The relationship between
xc and the measured position x1, x2 is as follows,

xc(t) =
dr2(t)

dr
x1(t) +

dr1(t)
dr

x2(t). (7)

The transfer function between xc and Fx is obtained from Equations (4) and (5),

xc(s)
Fx(s)

=
1
dr

dr2x1(s) + dr1x2(s)
K f x1 ·ix1(s)e−τs + K f x2 ·ix2(s)e−τs =

1(
mx + my

)
s2

mys2 + 4cyHs + 4kyH
mxmy

mx+my
s2 + 4cyHs + 4kyH

. (8)

2.1.3. Rz Dynamic Model

According to Figure 4, the entire moving component will rotate around the Z-axis at
the centroid under the X1 and X2 motors force.

JYz
..
θyz(t) = Txy−xr(t), (9)

JXz
..
θxz(t) + cxHdx H2

.
θxz(t) + kxHdx H2θxz(t) = Tθ(t) + Tyx−xr(t) , (10)

where, Txy−xr is the torque produced by the rotation of X component relative to Y compo-

nent, Txy−xr(t) = cyHdy H2
( .

θxz(t)−
.
θyz(t)

)
+ kyHdyH2

(
θxz(t)− θyz(t)

)
, and Tyx−xr is the

reaction torque. Tθ is the torque of the X1 and X2 motors force on the centroid:

Tθ(t) = K f x1 ·ix1(t− τ)·dm1(t)− K f x2 ·ix2(t− τ)·dm2(t), (11)

Although dm1, dm2 will change with the movement of Y component, they are not in
the control loop and will not be affected by the system delay. θxz can be regarded as the
angle of the entire moving component around Z-axis, that is, θz ≈ θxz. θz can be calculated
by the two measured positions x1 and x2,

θz(t) =
x1(t)− x2(t)

dr
. (12)

Since JYz is smaller than JXz in the experimental system, JYz
2 can be approximately

0 in the simplified calculation. The transfer function between θz and Tθ can be obtained
as follows,

θz(s)
Tθ(s)

= 1
dr

x1(s)−x2(s)
K f x1

·ix1 (s)e
−τs ·dm1(s)−K f x2

·ix2 (s)e
−τs ·dm2(s)

=
JYzs2+cyHdyH2 s+kyHdyH2 (

JXzs2 + cxHdx H2s + kxHdx H2)(JYzs2 + cyHdyH2s + kyHdyH2)
+JYzs2( cyHdy H2s + kyHdy H2) 

=
JYzs2+cyHdy H2s+kyHdy H2 (JXzs2 + JYzs2 + cxHdx H2s + kxHdx H2)(JYzs2 + cyHdyH2s + kyHdy H2)
−JYzs2 JYzs2


≈ 1

JXzs2+JYzs2+cxHdx H2s+kxHdx H2

(13)

2.1.4. The Disturbance Torque Model in Rz from X Moves

According to Figure 4, when the platform moves along the X-direction and the Y
component is not located in the middle of the beam, the air floating reaction force −Fxy−xm
of the Y component on the beam and the inertia force of the X component do not pass
through the centroid of the entire component, resulting in the disturbance torque in Rz.
Assuming that the disturbance torque is Td−xm, the opposite driving torque −Td−xm is
introduced into the control loop to act on the X component to remain the angle of the X
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component at 0. When the X component does not rotate, the torque of beam to Y component
is 0 and Y component will not rotate. The dynamic equation of X component is:

− Td−xm(t) + Tx1−xm(t) + Tx2−xm(t) = 0, (14)

where, Tx1−xm is the torque of inertia force of X component on the centroid of the entire
component, Tx1−xm(t) = mx

..
xx(t)·yxc(t). Tx2−xm is the torque of −Fxy−xm on the centroid

of the entire component. Then, the disturbance torque is obtained as,

θz(t) =
x1(t)− x2(t)

dr
. (15)

2.1.5. The Disturbance Torque Model in Rz from Y Moves

According to Figure 3, when the Y component moves along the Y-direction, the
eccentric drive in X-direction will produce the disturbance torque in Rz. Assuming that
the disturbance torque is Td−ym, the opposite driving torque −Td−ym is introduced into the
control loop to act on the X component to remain the angle of the X component at 0. The
dynamic equation of Y component is

JYz
..
θyz(t) = Ty1−ym(t) + Ty2−ym(t) + Ty3−ym(t) , (16)

where, Ty1−ym is the torque of Y motor force on the centroid of the entire component,
Ty1−ym(t) = Fy(t)xFyc. Ty2−ym is the torque of the inertia force of Y component on the centroid
of the entire component, Ty2−ym(t) = −my

..
yy(t)xyc. Ty3−ym is the air floating torque of the

beam to Y component, Ty3−ym(t) = cyHdy H2
( .

θxz(t)−
.
θyz(t)

)
+ kyHdy H2(θxz(t)− θyz(t)

)
.

Since θxz(t) = 0, then Ty3−ym(t) = −cyHdy H2
.
θyz(t)− kyHdy H2θyz(t).

After introducing −Td−ym, the angle of the X component is 0, the dynamic equation of
X component is:

−Td−ym(t) + Tx1−ym(t) + Tx2−ym(t) + Tx3−ym(t) = 0 , (17)

where Tx1−ym is the torque of the Y motor stator reaction force on the centroid of the entire
component, Tx1−ym(t) = −Fy(t)xFyc. Tx2−ym is the torque of inertia force of X component

on the centroid of the entire component, Tx2−ym(t) = mx
..
yx(t)xxc = − Fy(t)mx xxcs2

mxs2+4cxHs+4kxH
.

Tx3−ym is the air floating torque of Y component to the beam, Tx3−ym(t) = −Ty3−ym(t).
Then the disturbance torque is obtained as,

Td−ym(s) = −Fy(s)( mxs2

mxs2+4cxHs+4kxH
xxc +

JYzs2

JYzs2+cyHdy H2s+kyHdy H2 xFyc+

cyHdy H2s+kyHdy H2

JYzs2+cyHdy H2s+kyHdy H2 xyc)
. (18)

2.2. Synchronous Control Method Based on Model Decoupling

The Y and X directions of H-type motion platform are naturally decoupled and can be
controlled separately. The Y control plant is the transfer function from Y feedback position
to Y control current, as shown in Equation (3).

In the X and Rz direction dynamic modeling, it can be seen from Equations (8) and
(13) that the two measured positions x1 and x2 are coupled with each other due to the
beam connection. If x1 and x2 are controlled directly, the transfer functions from ix1 to
x1 and from ix2 to x2 can not be obtained, and the controller is difficult to design. Since
the X position xc and the Rz angle θz at the centroid are two naturally decoupled and
independent degrees of freedom, this paper transforms the two positions x1 and x2 into
the position xc and the angle θz for control. It can be seen from Equations (8) and (13)
that the transfer functions from xc to Fx and from θz to Tθ are clear. Based on these, two
controllers can be designed to realize the X position control and the Rz rotation control,
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and the reference angle in Rz loop is 0 to realize the synchronous motion control of the
dual motors.

In order to realize the position and rotation control, the X thrust constant K f x and the

Rz thrust constant K f θ are established, and design K f x = K f θ =
K f x1

+K f x2
2 . According to

Equations (6) and (11), the X force Fx and Rz torque Tθ are:

Fx(t) = K f x1 ·ix1(t− τ) + K f x2 ·ix2(t− τ) = K f x·ix(t− τ), (19)

Tθ(t) = K f x1 ·ix1(t− τ)·dm1(t)− K f x2 ·ix2(t− τ)·dm2(t) = K f θ ·iθ(t− τ) . (20)

The position control signal ix and rotation control signal iθ need to be converted into
the control signals ix1 and ix2 to drive the dual motors.

[
ix1(t)
ix2(t)

]
=

1
dm

 K f x ·dm2(t+τ)
K f x1

K f θ

K f x1
K f x ·dm1(t+τ)

K f x2
− K f θ

K f x2

[ ix
iθ

]
, (21)

where the time-varying signals dm1 and dm2 are advanced to compensate the delay effect,
so as to ensure that the resultant force of the two motors can pass through the centroid of
the entire component when the Y component moves.

In order to realize the closed-loop control, the two measured positions x1 and x2 need
to be converted into the position xc and the angle θz and fed back to the two control loops,
respectively. According to Equations (7) and (12), the conversion between xc, θz and x1, x2
can be obtained as [

xc(t)
θz(t)

]
=

1
dr

[
dr2(t) dr1(t)

1 −1

][
x1(t)
x2(t)

]
. (22)

According to Equations (8), (13) and (19), (20), the X and Rz control plants are ob-
tained as

Px(s) =
xc(s)
ix(s)

=
K f x(

mx + my
)
s2

mys2 + 4cyHs + 4kyH
mxmy

mx+my
s2 + 4cyHs + 4kyH

e−τs, (23)

Pθ(s) =
θz(s)
iθ(s)

=
K f θ

(JXz + JYz)s2 + cxHdx H2s + kxHdx H2 . (24)

The control system of the H-type motion platform is established as Figure 5.
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Figure 5. The block diagram of the platform control system.

2.2.1. Rz Controller Design
Rz Control Plant

It can be seen from Equation (24) that the Rz control plant is a second-order oscillation
system with time delay and it can be transformed into the following equation,

Pθ(s) = θz(s)
iθ(s)

=
K f θ

Jzs2+cxHdx H2s+kxHdx H2 e−τs

=
K f θ

kxHdx H2
(2π fn−θ)

2

s2+2ζθ2π fn−θ s+(2π fn−θ)
2 e−τs

, (25)

where, Jz = JXz + JYz = JXz0 + JYz0 +
mxmy

mx+my
y2, fn−θ = 1

2π

√
kxHdx H2

Jz
, ζθ = cxHdxH

2
√

JzkxH
. Due to

the low damping of the air floating guideway, there is a resonance peak in its amplitude-
frequency curve, and the phase-frequency curve decreases 180◦ rapidly near the natural
frequency, then the phase-frequency curve of the open-loop transfer function is prone
to have a −180◦ phase crossover point. The controller gain should be designed small
enough to ensure that the peak is below 0 dB and the system has gain margin. In the
existing literature, the biquad filter is introduced to eliminate the peaks and troughs in the
open-loop transfer function, which makes the open-loop transfer function smooth, but the
disturbance rejection performance of the system is very poor [23].

A fractional biquad filter [24] is introduced into the system and its transfer function is:

Cbiq−θ =
fn2−biq−θ

2

fn1−biq−θ
2

s2 + 2ζ1−biq−θ2π fn1−biq−θs +
(

2π fn1−biq−θ

)2

s2 + 2ζ2−biq−θ2π fn2−biq−θsr +
(

2π fn2−biq−θ

)2 . (26)

The difference between this filter and the biquad filter is that an adjustable order r is
introduced into the s term of the denominator polynomial, which can be regarded as the
combination of the second-order differential term and the fractional second-order low-pass
filter [25]. In order to make the fractional second-order low-pass filter meet the standard
form of the second-order low-pass filter, that is, the logarithmic amplitude frequency

characteristic at the natural frequency is −3 dB [26], design ζ2−biq−θ =
(2π fn2−biq−θ)

1−r

√
2

,
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where fn2−biq−θ is the natural frequency and determined according to the position of
high frequency noise in the Bode diagram of the control plant in the experimental system.
Design ζ1−biq−θ = ζθ in the molecular polynomial, there is a trough in Cbiq−θ and its
waveform is the same as the resonance peak of the control plant. Design fn1−biq−θ as an
adjustable parameter and fn1−biq−θ < fn−θ . The filtered control plant is:

Pθ−fl(s) = Pθ(s)Cbiq−θ(s)

=
K f θ

kxHdx H2
fn−θ

2

fn1−biq−θ
2

s2+2ζ1−biq−θ2π fn1−biq−θ s+(2π fn1−biq−θ)
2

s2+2ζθ2π fn−θ s+(2π fn−θ)
2 ·

(2π fn2−biq−θ)
2

s2+2ζ2−biq−θ2π fn2−biq−θ sr+(2π fn2−biq−θ)
2 e−τs

, (27)

and is a combination of the biquad filter and the fractional second-order low-pass filter.
There is a trough and a peak in its amplitude-frequency curve, and the trough is located
on the left side of the peak. Its phase-frequency curve first increases and then decreases at
fn−θ and there is no −180◦ phase crossover point. Therefore, the amplitude of the peak
does not need to be limited below 0 dB, and the system gain can be improved.

Rz Feedback Controller Design

The Rz feedback controller is a PI controller, CPI−θ = kp−θ

(
1 + 2π fi−θ

s

)
, kp−θ is the

controller gain and fi−θ is the integration frequency. Under the condition that the order
r of Cbiq−θ is given in advance, the system has three adjustable parameters kp−θ , fi−θ

and fn1−biq−θ , which can satisfy three frequency domain design specifications. When the
design specifications are gain crossover frequency fc, phase margin ϕm, and gain margin
hm, the open-loop transmission function Go(s) = CPI(s)·Pθ−fl(s) of the system can meet
the following constraints [27,28].

1. The phase margin at the gain crossover frequency fc is ϕm.

∠Go(j2π fc) = ∠CPI−θ(j2π fc) +∠Pθ−fl(j2π fc) = −π + ϕm . (28)

2. The amplitude at the gain crossover frequency fc is 1.

|Go(j2π fc)| = |CPI−θ(j2π fc)Pθ−fl(j2π fc)| = 1 . (29)

3. The phase at the phase crossover frequency fx is −π.

∠Go(j2π fx) = ∠CPI−θ(j2π fx) +∠Pθ−fl(j2π fx) = −π. (30)

4. The gain margin at the phase crossover frequency fx is hm.

|Go(j2π fx)| = |CPI−θ(j2π fx)Pθ−fl(j2π fx)| = 10−
hm
20 . (31)

From Equation (28), we can obtain,

fi−θ = − fc tan(ϕm − Aθ). (32)

where, Aθ = ∠Cbiq−θ(j2π fc) +∠Pθ(j2π fc) .
From Equation (29), we can obtain,

kp−θ =
fc

Bθ ·
√

fi−θ
2 + fc2

. (33)

where, Bθ =
∣∣∣Cbiq−θ(j2π fc)

∣∣∣·|Pθ(j2π fc)| .
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From Equation (30), we can obtain,

fi−θ = fx tan(Dθ). (34)

where, Dθ = ∠Cbiq−θ(j2π fx) +∠Pθ(j2π fx) .
From Equation (31), we can obtain,

kp−θ =
fx10−

hm
20

Eθ ·
√

fi−θ
2 + fx2

. (35)

where, Eθ =
∣∣∣Cbiq−θ(j2π fx)

∣∣∣·|Pθ(j2π fx)| .
By substituting Equation (32) into (33), the explicit expression of kp−θ with respect to

fn1−biq−θ can be obtained,

kp−θ =
1

Bθ ·
√

tan2(ϕm − Aθ) + 1
. (36)

By substituting Equation (32) into (33), the equation of fx and fn1−biq−θ can be obtained,

fx tan(Dθ) = − fc tan(ϕm − Aθ). (37)

By substituting Equations (32) and (36) into (35), the other equation of fx and fn1−biq−θ

can be obtained,

1

Bθ ·
√

tan2(ϕm − Aθ) + 1
=

fx10−
hm
20

Eθ ·
√
( fc tan(ϕm − Aθ))

2 + fx2
. (38)

It is difficult to obtain the analytical solutions of fx and fn1−biq−θ as Equations (37)
and (38) are complicated. Graphical methods can be used to find the intersection of two
equations, and the implicit plots function “ezplot” in MATLAB can be used to draw the
curves of the two equations to find the intersection, that is, the solution of the equations.
Then, fx and fn1−biq−θ can be obtained. fi−θ can be obtained by substituting fn1−biq−θ into
Equation (32). kp−θ can be obtained by substituting fn1−biq−θ into Equation (36). To sum
up, kp−θ , fi−θ , and fn1−biq−θ can be determined.

Rz Feed-Forward Controller Design

In order to realize the synchronous movement of the X-direction double motors, the
Rz reference input is 0. It is unnecessary to introduce the feed-forward control with input
compensation. According to Sections 2.1.4 and 2.1.5, when the platform moves along the
X and Y directions, the Rz will be affected by the disturbance torque, the feed-forward
control with disturbance compensation can be introduced to reduce the angle error, and
the feed-forward torque model is opposite to the disturbance torque model.

When the platform moves along the Y-direction, the disturbance torque model is
shown in Equation (18), in which the feed-forward force Fy can be obtained by Equation (3),
then the feed-forward controller is designed as,

Cdff−ym−θ(s) = 1
K f θ

mxs2+4cxHs+4kxH
(mx+my)s2+4cxHs+4kxH

mys2eτs· mxs2

mxs2+4cxHs+4kxH
xxc +

JYzs2

JYzs2+cyHdyH2s+kyHdyH2 xFyc

+
cyHdyH

2s+kyHdyH
2

JYzs2+cyHdyH2s+kyHdyH2 xyc

 (39)
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The feed-forward current signal to be introduced into the Rz control loop is

idff−ym−θ(s) = yrefCdff−ym−θ(s) = 1
K f θ

mxs2+4cxHs+4kxH
(mx+my)s2+4cxHs+4kxH

myayeτs· mxs2

mxs2+4cxHs+4kxH
xxc +

JYzs2

JYzs2+cyHdyH2s+kyHdyH2 xFyc

+
cyHdyH

2s+kyHdyH
2

JYzs2+cyHdyH2s+kyHdyH2 xyc

 (40)

When the platform moves along the X-direction, the disturbance torque is shown in
Equation (15). In order to compensate for the time-delay in the system, the feed-forward
compensation torque can be calculated by the route planned in advance in the XY direction,
and the feed-forward controller is designed as,

Cdff−xm−θ(s) =
1

K f θ

mxmy
2s4(

mys2 + 4cyHs + 4kyH
)(

mx + my
) eτs. (41)

The feed-forward current signal to be introduced into the Rz control loop is:

idff−xm−θ(s) = xrefyrefCdff−xm−θ(s)

= 1
K f θ

mxmy
2s2

(mys2+4cyHs+4kyH)(mx+my)
(ax(s)·eτs)·(yref(s)·eτs)

. (42)

2.2.2. X and Y Controller Design

It can be seen from Equation (22) that the X control plant is a Resonance-Antiresonance
model [29] with time delay and it can be transformed into the following equation,

Px(s) = xc(s)
ix(s)

=
K f x

(mx+my)s2

mys2+4cyHs+4kyH
mxmy

mx+my s2+4cyHs+4kyH
e−τs

= 1
kxs2

fr−x
2

far−x2
s2+2ζar−x2π far−xs+(2π far−x)

2

s2+2ζr−x2π fr−xs+(2π fr−x)
2 e−τs

, (43)

where, far−x = 1
π

√
kyH
my

, ζar−x =
cyH√
mykyH

, fr−x = 1
π

√
kyH(mx+my)

mxmy
, ζar−y = cyH

√
(mx+my)
kyHmxmy

,

kx =
mx+my

K f x
. The biquad filter is introduced in the control loop to match and cancel the

resonance and antiresonance term, Cbiq−x =
fn2−biq−x

2

fn1−biq−x
2

s2+2ζ1−biq−x2π fn1−biq−xs+(2π fn1−biq−x)
2

s2+2ζ2−biq−x2π fn2−biq−xs+(2π fn2−biq−x)
2

and design fn1−biq−x = fr−x, ζ1−biq−x = ζr−x, fn2−biq−x = far−x and ζ2−biq−x = ζar−x.
The second-order low-pass filter is introduced in the loop to suppress the high-frequency

noise, Clp2−x =
(2π fn−lp2−x)

2

s2+2ζlp2−x2π fn−lp2−xs+(2π fn−lp2−x)
2 , ζlp2−x = 0.707 and fn−lp2−x is determined

according to the position of high frequency noise in the experimental system. The filtered
control plant is

Px−fl(s) =
1

kxs2

(
2π fn−lp2−x

)2

s2 + 2ζlp2−x2π fn−lp2−xs +
(

2π fn−lp2−x

)2 e−τs. (44)

The X feedback controller is the PID controller, CPID−x = kp−x

(
1 + 2π fi−x

s + s
2π fd−x

)
.

kp−x is the controller gain, fi−x is the integration frequency, and fd−x is the differential
frequency. Since there are three control parameters, the open-loop transfer function of
the system can meet three design specifications. When the design specifications are gain
crossover frequency fc, phase margin ϕm, and gain margin hm, the calculation method of
control parameters in X-direction is shown in the Appendix A..

The system implements the point-to-point motion in X-direction and the reference
position xref is a fourth-order planning path. The feed-forward control with input com-
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pensation is introduced to improve the position tracking accuracy, and the feed-forward
controller is the inverse model of the X control plant,

Cff−x(s) =

mxmy
mx+my

s2 + 4cyHs + 4kyH

mys2 + 4cyHs + 4kyH

mx + my

K f x
s2eτs. (45)

The feed-forward current signal of X loop can be calculated by using the acceleration
signal planned in advance [30].

iff−x(s) = xrefCff−x(s) =

mxmy
mx+my

s2 + 4cyHs + 4kyH

mys2 + 4cyHs + 4kyH

mx + my

K f x
arefeτs. (46)

It can be seen from Equation (3) that the Y control plant Py is the same as Px in form
and it can be transformed into the following equation,

Py(s) = y(s)
iy(s)

=
K f y

mys2
(mx+my)s2+4cxHs+4kxH

mxs2+4cxHs+4kxH
e−τs

= 1
kys2

fr−y
2

far−y2
s2+2ζar−y2π far−ys+(2π far−y)

2

s2+2ζr−y2π fr−ys+(2π fr−y)
2 e−τs

. (47)

where, far−y = 1
π

√
kxH

mx+my
, ζar−y = cxH√

(mx+my)kxH
, fr−y = 1

π

√
kxH
mx

, ζar−y = cxH√
mxkxH

,

ky =
my
K f y

. Then the biquad filter and second-order low-pass filter are used for filtering, and
the Y feedback controller is the PID controller. Under the same design specifications, the
feedback control parameters can be determined according to the design method in the
Appendix A.. The feed-forward control with input compensation is introduced into the Y
loop, and the feed-forward controller is:

Cff−y(s) =
mxs2 + 4cxHs + 4kxH(

mx + my
)
s2 + 4cxHs + 4kxH

my

K f y
s2eτs. (48)

The feed-forward current signal can be calculated by using the acceleration signal
planned in advance.

iff−y(s) = yrefCff−y(s) =
mxs2 + 4cxHs + 4kxH(

mx + my
)
s2 + 4cxHs + 4kxH

my

K f y
arefeτs. (49)

3. Results
3.1. Simulation Illustration

In this section, Sim-Mechanics is used to build the mechanical model of an H-type
motion platform to verify the proposed synchronization control method. Sim-Mechanics
is a mechanical simulation module in MATLAB Simulink. It can establish the rigid body
model of the mechanical system to realize electromechanical co-simulation with the control
module in Simulink. The simulation runs in a Simulink environment with a fixed step
size. In order to show the advantages of the proposed method in disturbance rejection
performance, the control effect of the proposed mismatched filtering method is compared
with the matched filtering method in the literature. The control effect of the proposed
fractional order biquad filter method is compared with that of the integer order biquad
filter method to show the advantage of the fractional order filter.

As shown in Figure 6, the mechanical model is constructed according to the exper-
imental parameters in Table 1, and the control system is built in Simulink. The control
period is 5.0 × 10−4 s.
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Figure 6. The Sim-Mechanics mechanical model in the simulation.

3.1.1. Simulation of Feedback Control Effect

The Bode diagram of the Rz control plant is shown in Figure 7; there is a resonance
peak in the amplitude-frequency characteristic curve, and the phase decreases rapidly from
0◦ to −180◦ at the resonance frequency. When the Y component is located in the middle
and one side of the beam, the plants are shown as the black and blue line, respectively. The
frequency of the resonance peak of the blue line is 1 Hz lower than the black line, because
when the Y component deviates from the middle position, the rotational inertia of the
entire moving component increases.

Figure 7. The Bode diagram of the Rz control plant in the simulation.

The design specifications are fc = 10 Hz, ϕm = 82◦, and hm = 10 dB. Design fn2−biq−θ

= 300 Hz. The control parameters are calculated based on the control plant when the Y
component is in the middle position. With the order r = 1, the parameters kp−θ , fi−θ , and
fn1−biq−θ are calculated according to the method described in Rz Control Plant. As shown
in Figure 8a, the values of fx and fn1−biq−θ can be obtained from the the intersection point of
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Equations (37) and (38), fx =109.935 Hz and fn1−biq−θ =38.659 Hz. fn1−biq−θ is substituted
into Equation (32) to get fi−θ =808.683 Hz. fn1−biq−θ is substituted into Equation (36) to
get kp−θ =75545.3. The parameters of Rz feedback controller are determined. On this
basis, in order to obtain the maximum amplitude of the process sensitive transfer function
Gps−θ = Pθ/(1 + Go), the frequency fpsm at the peak point of Gps−θ should be calculated.
Since the derivative of

∣∣Gps−θ

∣∣ at fpsm is zero, the equation about fpsm can be obtained
as Equation (50). As shown in Figure 8b, the value of fpsm can be obtained from the
intersection point of Equation (50) and 0 axis, fpsm = 70.504 Hz. Then the logarithmic
amplitude at the peak point can be obtained as Gpsm−θ = –121.43 dB.

d
∣∣Gps−θ

∣∣
d f

∣∣∣∣∣
f= fpsm

= 0. (50)

Figure 8. fx, fn1−biq−θ , and fpsm are determined by graphical method. (a) fx versus fn1−biq−θ ;
(b) The solution of the equation of fpsm.

The control parameters and the peak value of the process sensitive transfer function
are calculated under different orders, and the results are shown in Table 2. For comparison,
when the order r = 1, fn1−biq−θ is designed to match the natural frequency fn−θ of the
control plant based on the method of the literature, the process sensitive transfer function
gets the peak value at fn−θ , and the data is in the last row of the table. It can be seen that
the system has the best disturbance rejection performance when the order is 0.7. Compared
with the fixed integer order biquad filter, the introduction of fractional order provides
another degree of freedom for parameter tuning, and the order can be selected to achieve
better disturbance rejection performance. Figure 9 are the Bode diagrams of the open-loop,
close-loop, and process sensitive transfer functions of the theoretical continuous model with
r = 1.0 and r = 0.7, and r = 1.0, fn1−biq−θ = fn−θ , the solid line is the Sim-Mechanics model
and the dashed line is the theoretical model. There are errors between the simulated model
and the theoretical open-loop Bode diagrams. The specification errors of the proposed
method with r = 1.0 and r = 0.7 are shown in Table 3 and the design specifications of Rz
simulated model are satisfied. The reasons for the error are analyzed as follows: (1) The
discretization of the continuous model results in errors. In the theoretical model, the
controller parameters are calculated and the open-loop Bode diagram is drawn based on
the continuous dynamic model and feedback controller model. In the simulated model,
the control plant is the discretized model after zero-order-hold discretization, the feedback
controller is the discretized model after Tustin discretization, and the fractional term sr

is discretized by the impulse response invariant discretization method. There are errors
between the Bode diagrams of continuous and discretized models. (2) The existence of
unmodeled factors in the control plant will also cause errors. In the mechanical model of
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simulation, the force acting point of the Y motor does not coincide with its centroid along
the X and Z directions, which leads to eccentric driving and causes antiresonance and
resonance peaks in the high frequency part. This factor is not considered in the Y-direction
theoretical dynamic model, which leads to the deviation of the high frequency part of the
open-loop Bode diagram between the simulated and theoretical model. In the X and Rz
directions, the force acting point of the X motor does not coincide with the centroid of X
moving component along Y and Z directions, which leads to the error of the simulated and
theoretical model.

Table 2. Calculation results of the control parameters.

r kp-θ fi-θ (Hz) fn1-biq-θ (Hz) Gpsm-θ (dB)

1.0 75,545.300 808.683 38.659 −121.430
0.8 324,727.973 199.790 32.481 −127.462
0.7 494,237.255 135.381 32.382 −128.250
0.6 681,282.334 101.793 34.039 −127.392
1.0 75,545.300 808.683 fn1−biq−θ = fn−θ −99.270

Figure 9. Rz open-loop, close-loop, and process sensitive Bode diagram in the simulation. (a) The open-loop Bode diagram;
(b) The close-loop Bode diagram; (c) The process sensitive Bode diagram.
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Table 3. The specification error between the Rz simulated and theoretical open-loop Bode diagrams.

r Specification Theoretical Model Simulated Model Absolute Error

1.0

Gain crossover
frequency 10.254 Hz 10.254 Hz 0.0

Phase margin 81.799◦ 81.843◦ 0.044◦

Gain margin 9.990 dB 10.108 dB 0.118 dB

0.7

Gain crossover
frequency 10.254 Hz 10.254 Hz 0.0

Phase margin 81.855◦ 82.006◦ 0.151◦

Gain margin 9.996 dB 10.024 dB 0.028 dB

In the control method of the literature, fn1−biq−θ = fn−θ , the trough in the filter and
the peak in the plant match and cancel each other. As shown in Figure 9a, the amplitude-
frequency and phase-frequency curves of the open-loop transfer function are smooth, and
the system has enough gain margin and phase margin to ensure stability. As shown in
Figure 9c, there is a peak in the process sensitive transfer function at the peak frequency of
the plant. The reason is that Gps−θ is the combination of the plant Pθ and the sensitivity
transfer function Gs−θ = 1/(1 + Go). Since there is a peak in Pθ , and Go is a smooth curve
and 1 + Go is also a smooth curve, there will be a peak in the combination of Pθ and Gs−θ ,
and the attenuation ability of the system to the disturbance input in front of the control
plant is weak, so the system has poor disturbance rejection performance.

In the proposed Rz control method, as shown in Figure 9a, the open-loop amplitude
frequency curve is not smooth due to the existence of trough and peak. The troughs are on
the left side of the peak and there are three 0 dB gain crossover points, but the phase near
the natural frequency of the plant is greatly improved. Under the design specifications,
the phase margins at the three gain crossover points are sufficient, and the gain margin at
the phase crossover point is 10 dB, so the system stability can be guaranteed. As shown in
Figure 9c, the peak value of the process sensitive transfer function in the proposed method
is obviously smaller than the method of the literature. The reason is that there is a peak at
the natural frequency of the plant in Go, and its logarithmic amplitude is greater than 0dB,
which can attenuate the peak value of Pθ in Gps−θ , so the attenuation ability of the system
to the disturbance input in front of the control plant is improved.

The three groups of control parameters are applied to the Rz loop in the simulation
model, and the step input response and step disturbance response diagrams are shown in
Figure 10a,b. From the step input response curve, it can be seen that the response curve
of the trough and peak cancellation filtering method of the literature is relatively smooth
and without overshoot. There are fluctuations and overshoots in the proposed method,
and the fluctuations and overshoots of the fractional order biquad filter are smaller than
those of the integer order filter. From the step disturbance response curve, it can be seen
that the peak value of the disturbance is the largest and the oscillation time is longer
in the method of the literature. The proposed control method can quickly attenuate the
fluctuation caused by the disturbance. Compared with integer order, the peak value of
fractional order disturbance response is smaller and the fluctuation is less. The proposed
fractional order filtering method has better disturbance rejection performance. To sum up,
the step response effect of the method in the literature is better than that of the proposed
method, but its disturbance rejection performance is worse than the proposed method.
Since the reference input in Rz loop is 0 and remains unchanged, the system requires
higher disturbance rejection performance, so the proposed method is more suitable for the
synchronous control of the dual motors.
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Figure 10. Rz step input and disturbance response in the simulation. (a) Step input response; (b) Step
disturbance response.

The Bode diagram of the X control plant is shown in Figure 11a, when the Y com-
ponent is located in the middle and one side of the beam, the plants are shown as the
black and blue lines respectively, which are basically the same, since the change of the Y
component position will not affect the mass of the entire component and the X control plant
will not change. The design specifications are fc = 36 Hz, ϕm = 40◦, and hm = 10 dB. De-
sign fn−lp2−x = 600 Hz, the feedback controller parameters are calculated according to the
method described in Appendix A.. Calculate kp−x from Equation (A12), kp−x = 7.296 × 106.
The intersection point of Equation (A13) and axis 0 is found by graphic method and
the phase crossover frequency is obtained, fx = 110.051 Hz. Then calculate fd−x from
Equation (A14), fd−x = 14.663 Hz. Then fd−x is substituted into Equation (A18) to get
fi−x = 3.991 Hz. The X open-loop Bode diagram is shown in Figure 11b, the black line is the
Sim-Mechanics model, and the blue dashed line is the theoretical model. The specification
errors between the X simulated and theoretical open-loop Bode diagrams are shown in
Table 4 and the design specifications of the X simulated model are satisfied.

Figure 11. The X control plant and open-loop Bode diagram in the simulation. (a) The control plant
Bode diagram; (b) The open-loop Bode diagram.
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Table 4. The specification error between the X simulated and theoretical open-loop Bode diagrams.

Specification Theoretical Model Simulated Model Absolute Error

Gain crossover frequency 36.115 Hz 36.115 Hz 0.0
Phase margin 39.974◦ 39.609◦ 0.365◦

Gain margin 10.080 dB 9.957 dB 0.123 dB

In the Sim-Mechanics model, the Bode diagram of the Y control plant is shown in
Figure 12a. The design specifications are same with X-direction, design fn−lp2−y = 600 Hz
and the PID controller parameters are calculated, kp−y = 2.187 × 106, fi−y = 3.991 Hz, and
fd−y = 14.663 Hz. The open-loop Bode diagram of the system is shown in Figure 12b, the
black line is the Sim-Mechanics model, and the blue dashed line is the theoretical model.
The specification errors between the Y simulated and theoretical open-loop Bode diagrams
are shown in Table 5 and the design specifications of Y simulated model are satisfied.

Figure 12. The Y control plant and open-loop Bode diagram in the simulation. (a) The control plant
Bode diagram; (b) The open-loop Bode diagram.

Table 5. The specification error between the Y simulated and theoretical open-loop Bode diagrams.

Specification Theoretical Model Simulated Model Absolute Error

Gain crossover frequency 36.115 Hz 36.115 Hz 0.0
Phase margin 39.974◦ 40.003◦ 0.029◦

Gain margin 10.080 dB 9.582 dB 0.498 dB

3.1.2. Simulation of Feed-Forward Control Effect

The Y reference position yref is a fourth-order point-to-point motion path, the peak
values of position, velocity, acceleration, jerk, and spasm are 0.13 m, 0.25 m/s, 5.0 m/s2,
1000.0 m/s3, and 10,000.0 m/s4. The Y tracking error is shown in Figure 13. The black line is
the position tracking error under the feedback control, and the peak value is 1.898 × 10−4 m.
The blue line is the position tracking error after introducing the feed-forward control
according to Equation (49), and the peak error is 1.536 × 10−7 m. The tracking accuracy is
greatly improved, which indicates that the Y feed-forward control model is correct.
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Figure 13. Comparison of Y position errors with and without feed-forward control in the simulation.

The X reference position xref is a fourth-order point-to-point motion path, the peak
values of position, velocity, acceleration, jerk, and spasm are 0.15 m, 0.25 m/s, 5.0 m/s2,
1000.0 m/s3, and 10000.0 m/s4. The X tracking error is shown in Figure 14. The black line is
the position tracking error under the feedback control, and the peak value is 1.899 × 10−4 m.
The blue line is the position tracking error after introducing the feed-forward control
according to Equation (46), and the peak error is 2.838 × 10−7 m. The tracking accuracy is
greatly improved, which indicates that the X feed-forward control model is correct.

Figure 14. Comparison of X position errors with and without feed-forward control in the simulation.

In the Rz loop, the proposed control method with r = 0.7 in the fractional order filter
is applied. The platform executes point-to-point motion in X and Y directions, and the Rz
feed-forward compensation method of disturbance torque is verified.

1. X component is stationary and Y component moves.

As shown in Figure 15, the black line is the Rz angle error under the feedback control,
which shows that the Y component motion will cause the synchronization error, and the
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peak error is 1.195 × 10−8 rad. The red line is the Rz angle error with torque feed-forward
control according to Equation (40), which can reduce the synchronization error caused by
the disturbance torque, and the peak error is 2.381 × 10−9 rad. The synchronization error
is significantly reduced, which proves that the Rz torque feed-forward is effective when Y
component moves.

Figure 15. When X component is stationary and Y component moves, the Rz angle error with and
without feed-forward control in the simulation.

2. X component moves and Y component is stationary.

The Y component is stationary in the middle position of the beam, and the Rz angle
error under the feedback control is shown as the black line in Figure 16a, and the angle
error is almost zero. It can be seen that when Y component is in the middle position, the X
component motion will not cause the angle error. When the Y component is located at one
side position of the beam, the Rz angle error under the feedback control is shown as the
black line in Figure 16b, and the peak error is 4.180× 10−8 rad. It can be seen that when the
Y component is not located in the middle position, the X component motion will cause the
angle error, which is consistent with the disturbance torque model mentioned above. The
red line is the Rz angle error with torque feed-forward control according to Equation (42),
and the peak error is 1.140 × 10−8 rad. The synchronization error is significantly reduced,
which proves that the Rz torque feed-forward is effective when the X component moves.

Figure 16. When X component moves, the Rz angle error with and without feed-forward control in
the simulation. (a) Y component is stationary in the middle position of the beam; (b) Y component is
stationary in the one side position of the beam.
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3.2. Experimental Verification and Analisys of Results
3.2.1. Experimental Setup

In this section, the proposed synchronization control method is verified on the H-type
air floating motion platform. The experimental setup is shown in Figure 1. The controller
is equipped with a real-time network card supporting EtherCAT communication. The
controller communicates with the three motor drivers through EtherCAT bus to drive
the motors, and the position signal is measured by the grating ruler and fed back to
the controller to realize the closed-loop control. The RELM grating ruler is used in the
platform and the overall accuracy is achieved ±1 um. The grating pitch is 20 um and
the resolution after subdivision is 4.883 nm. The system software includes a monitoring
software (Twincat 3.0 Scope View) and a real-time control software (Twincat 3.0 eXtended
Automation Engineering). The control algorithm is implemented by using C/C++ code-
based modules and the sampling period is 5.0 × 10−4 s.

3.2.2. Experimental Verification of Feedback Control Effect

In the experimental system, the Bode diagram of the Rz control plant is shown in
Figure 17a, when the Y component position is 0.0 and 0.12 m, the plants are shown as
the black and blue line, respectively. The frequency of the resonance peak of the blue
line is 1 Hz lower than the black line, because when the Y component deviates from the
middle position, the rotational inertia of the entire moving component increases. The Rz
feedback control parameters are determined by the method of the simulation model to
satisfy the same design specification. Figure 17b–d are the Bode diagrams of the open-loop,
close-loop, and process sensitive transfer functions with r = 1.0 and r = 0.7, and r = 1.0,
fn1−biq−θ = fn−θ . In Figure 17b. The solid line is the experimental model and the dashed
line is the theoretical model. The specification errors in proposed method with r = 1.0
and r = 0.7 are shown in Table 6. It can be seen that the dashed line satisfies the design
specifications. Due to the discrete implementation of the continuous transfer function and
other unmodeled factors, the gain margin of the experimental model deviates from the
theoretical model in the high frequency part, but the stability of the system is not affected.

The three groups of control parameters are applied to the Rz loop of the experimental
system, and the step input response and step disturbance response diagrams are shown in
Figure 18a,b. From the step input response curve, it can be seen that the response curve
of the trough and peak cancellation filtering method of the literature is relatively smooth
and without overshoot. There are fluctuations and overshoots in the proposed method,
and the fluctuations and overshoots of the fractional order biquad filter are smaller than
those of the integer order filter. From the step disturbance response curve, it can be seen
that the peak value of the disturbance response is the largest and the oscillation time is the
longest in the method of the literature. The proposed control method can quickly attenuate
the fluctuation caused by the disturbance. Compared with integer order, the peak value of
disturbance response is smaller and the fluctuation is less in the proposed fractional order
filtering method. The proposed fractional order filtering method has better disturbance
rejection performance. To sum up, the step response effect of the method in the literature is
better than that of the proposed method, but its disturbance rejection performance is worse
than the proposed method. Since the Rz reference input is 0 and remains unchanged, the
system requires higher disturbance rejection performance, so the proposed method is more
suitable for the synchronous control of the dual motors.
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Figure 17. The Rz control plant, open-loop, close-loop, and process sensitive Bode diagram in the experiment. (a) The
control plant Bode diagram; (b) The open-loop Bode diagram; (c) The close-loop Bode diagram; (d) The process sensitive
Bode diagram.

Table 6. The specification error between the Rz simulated and experimental open-loop Bode diagrams.

r Specification Theoretical Model Experimental Model Absolute Error

1.0

Gain crossover
frequency 10.010 Hz 10.010 Hz 0.0

Phase margin 81.993◦ 81.454◦ 0.539◦

Gain margin 9.978 dB 15.476 dB 5.498 dB

0.7

Gain crossover
frequency 10.010 Hz 10.010 Hz 0.0

Phase margin 81.995◦ 81.569◦ 0.426◦

Gain margin 9.988 dB 15.503 dB 5.515 dB
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Figure 18. Rz step input and disturbance response in the experiment. (a) Step input response; (b) Step disturbance response.

The Bode diagram of the X control plant is shown in Figure 19a, when the Y component
position is 0.0 and 0.12 m, the plants are shown as the black and blue lines respectively,
which are basically the same. It can be seen that the change of Y component position
will not affect the X control plant. The design specifications and control parameters of
the X simulation model are adopted here. The open-loop Bode diagram of the system is
shown in Figure 19b. The black line is the experimental model and the blue line is the
theoretical model. The specification errors are shown in Table 7. It can be seen that the
design specifications of X experimental model are satisfied.

Figure 19. The X control plant and open-loop Bode diagram in the experiment. (a) The control plant Bode diagram; (b) The
open-loop Bode diagram.

Table 7. The specification error between the X experimental and theoretical open-loop Bode diagrams.

Specification Theoretical Model Experimental Model Absolute Error

Gain crossover frequency 36.006 Hz 37.349 Hz 1.343 Hz
Phase margin 39.996◦ 38.169◦ 1.827◦

Gain margin 9.996 dB 9.368 dB 0.628dB

The Bode diagram of the Y control plant is shown in Figure 20a. The design specifica-
tions and control parameters of the Y simulation model are adopted here. The Y open-loop
Bode diagram is shown in Figure 20b. The black line is the experimental model and the
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blue line is the theoretical model. The specification errors are shown in Table 8. It can be
seen that the design specifications of Y experimental model are satisfied.

Figure 20. The Y control plant and open-loop Bode diagram in the experiment. (a) The control plant
Bode diagram; (b) The open-loop Bode diagram.

Table 8. The specification error between the Y experimental and theoretical open-loop Bode diagrams.

Specification Theoretical Model Experimental Model Absolute Error

Gain crossover frequency 36.006 Hz 35.884 Hz 0.122 Hz
Phase margin 39.996◦ 39.824◦ 0.172◦

Gain margin 9.996 dB 10.402 dB 0.406 dB

3.2.3. Experimental Verification of Feed-Forward Control Effect

In point-to-point motion experiments, the X and Y reference paths are same with the
simulation model. The X tracking error is shown in Figure 21. The black line is the position
tracking error under the feedback control, and the peak value is 1.985 × 10−4 m. The blue
line is the position tracking error after introducing the feed-forward control according
to Equation (49), and the peak error is 4.790 × 10−6 m. The tracking accuracy is greatly
improved, which indicates that the Y feed-forward control model is correct.

Figure 21. Comparison of Y position errors with and without feed-forward control in the experiment.
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The X tracking error is shown in Figure 22. The black line is the position tracking
error under the feedback control, and the peak value is 1.669 × 10−4 m. The blue line
is the position tracking error after introducing the feed-forward control according to
Equation (46), and the peak error is 3.553 × 10−6 m. The tracking accuracy is greatly
improved, which indicates that the X feed-forward control model is correct.

Figure 22. Comparison of X position errors with and without feed-forward control in the experiment.

In the Rz loop, the proposed control method with r = 0.7 in the fractional order filter
is applied. The platform executes point-to-point motion in X and Y directions, and the Rz
feed-forward compensation method of disturbance torque is verified.

1. X component is stationary and Y component moves.

As shown in Figure 23, the black line is the Rz angle error under the feedback control,
which shows that the movement of the Y component will cause the synchronization error,
and the peak error is 7.285 × 10−7 rad. The red line is the Rz angle error with torque
feed-forward control according to Equation (40), and the peak error is 1.821 × 10−7 rad.
The synchronization error is significantly reduced, which proves that the Rz torque feed-
forward is effective when the Y component moves.

Figure 23. When X component is stationary and Y component moves, the Rz angle error with and
without feed-forward control in the experiment.
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2. X component moves and Y component is stationary.

When the Y component is located at one side position of the beam, the Rz angle error
under the feedback control is shown as the black line in Figure 24, and the peak error is
1.674 × 10−6 rad. When the Y component is stationary in the middle position of the beam,
the Rz angle error under the feedback control is shown as the blue line, and the peak error
is 7.728 × 10−7 rad. It can be seen that when the Y component is not located in the middle
position, the X component motion will cause the angle error, and when the Y component is
in the middle position, the X component motion will not cause the angle error, which is
consistent with the disturbance torque model mentioned above. The red line is the Rz angle
error with torque feed-forward control according to Equation (42) when the Y component
is located at one side position, and the peak error is 7.777 × 10−7 rad. The synchronization
error is significantly reduced, which proves that the Rz torque feed-forward is effective
when X component moves.

Figure 24. When X component moves and Y component is stationary in one side position of the
beam, the Rz angle error with and without feed-forward control in the experiment.

The experimental results show that the proposed synchronization control method
based on model decoupling is effective. The multiple-degree-of-freedom decoupled control
loops of the platform can meet the given design specifications with the proposed systematic
feedback controller design method. The introduction of the fractional biquad filter in the
Rz loop is effective to ensure the tracking and disturbance rejection performance of the
system simultaneously. Feed-forward control in all loops can reduce the control error.
Thus, the precise X and Y position tracking control and the Rz zero rotation control, that
is, the synchronous motion control of two motors, are realized in the H-type air floating
motion platform.

4. Conclusions

This paper proposes a synchronous control method based on the decoupled dynamic
model for the H-type air floating motion platform. In the synchronous control loop, a new
fractional order biquad filtering method is proposed to adjust the phase of the second-order
low damping oscillation system for rotation control of the direction with dual motors,
which can ensure the stability and disturbance rejection performance of the system, to
realize an accurate synchronous control in the direction with dual motors. A systematic
feedback controller design method is proposed to meet the given design specifications in
frequency domain, gain crossover frequency, phase margin, and gain margin. A fractional
order biquad filter can make the system have lower peak value of the process sensitive
transfer function than that with the integer order biquad filter. The comparison results in
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simulation and experiment demonstrate that the system with fractional order filter has bet-
ter disturbance rejection performance over that with the traditional filter. The disturbance
torque in the Rz caused by the platform motion is modeled, and the effectiveness of the
torque feed-forward compensation method is verified in the simulation and experiment,
and the synchronization control accuracy is improved significantly.

In future work, the order of the fractional order biquad filter in the Rz loop can be
designed as adjustable parameters, so that the system can meet four design specifications,
and the corresponding calculation method of control parameters needs to be redesigned.

Author Contributions: Conceptualization, Y.S. and Y.L.; methodology, Y.L. and X.L.; software, Y.S.;
validation, Y.S.; formal analysis, Y.S.; investigation, Y.S. and Y.L.; resources, L.Z., X.L. and Y.L.;
data curation, Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, Y.L.;
visualization, L.Z. and X.L.; supervision, Y.L.; project administration, X.L.; funding acquisition, X.L.,
L.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science and Technology Major Project of China,
grant number 2017ZX02101007-002, and the National Natural Science Foundation of China, grant
numbers 51675195, 51705163, 51721092, and 51975234.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Date sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. X and Y Feedback Controller Design

In X and Y control loop, when the design specifications are gain crossover fre-
quency fc, phase margin ϕm, and gain margin hm, the open-loop transmission function
Go(s) = CPID(s)·Pfl(s) of the system can meet the following constraints.

1. The phase margin at the gain crossover frequency fc is ϕm.

∠Go(j2π fc) = ∠CPID(j2π fc) +∠Pfl(j2π fc) = −π + ϕm. (A1)

2. The amplitude at the gain crossover frequency fc is 1.

|Go(j2π fc)| = |CPID(j2π fc)Pfl(j2π fc)| = 1. (A2)

3. The phase at the phase crossover frequency fx is −π.

∠Go(j2π fx) = ∠CPID(j2π fx) +∠Pfl(j2π fx) = −π. (A3)

4. The gain margin at the phase crossover frequency fx is hm.

|Go(j2π fx)| = |CPID(j2π fx)Pfl(j2π fx)| = 10−
hm
20 . (A4)

The frequency response of Go(s) is

Go(j2π f ) = CPID(j2π f )·Pfl(j2π f )

= kp

[
1 + j

(
f
fd
− fi

f

)]
1

−k(2π f )2
fn−lp2

2

fn−lp2
2− f 2+j2ζlp2 fn−lp2 f e−jτ(2π f ) . (A5)

Its amplitude and phase are

|Go(j2π f )| = |CPID(j2π f )|·|Pfl(j2π f )|
=

kp
fd f

√
( fd fi − f 2)

2 + ( fd f )2·
1

k(2π f )2
fn−lp2

2√
( fn−lp2

2− f 2)
2
+(2ζlp2 fn−lp2 f )

2

. (A6)
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∠Go(j2π f ) = ∠CPID(j2π f ) +∠Pfl(j2π f )

= arctan f 2− fd fi
fd f − τ(2π f )− π − arctan

2ζlp2 fn−lp2 f
fn−lp2

2− f 2
. (A7)

From Equation (A1), we can obtain,

fi =
fc

2

fd
− fc tan(ϕm − A), (A8)

where A = −arctan
2ζlp2 fn−lp2 fc

fn−lp2
2− fc2 − τ(2π fc)− π.

From Equation (A2), we can obtain,

kp =
fd fc

B·
√
( fd fi − fc2)

2 + ( fd fc)
2

, (A9)

where B = 1
k(2π fc)

2
fn−lp2

2√
( fn−lp2

2− fc2)
2
+(2ζlp2 fn−lp2 fc)

2 .

From Equation (A3), we can obtain,

fi =
fx

2

fd
− fx tan(D), (A10)

where D = −arctan
2ζlp2 fn−lp2 fx

fn−lp2
2− fx2 − τ(2π fx)− π.

From Equation (A4), we can obtain,

kp =
fd fx10−

hm
20

E·
√
( fd fi − fx2)

2 + ( fd fx)
2

, (A11)

where E = k
k(2π fx)

2
fn−lp2

2√
( fn−lp2

2− fx2)
2
+(2ζlp2 fn−lp2 fx)

2 .

kp can be obtained by substituting Equation (A8) into (A9).

kp =
1

B·
√
(tan(ϕm − A))2 + 1

. (A12)

By substituting Equation (A10) into (A11), the equation of kp and fx can be obtained,

kp =
10−

hm
20

E·
√
(tan(D))2 + 1

. (A13)

Since kp is known, then Equation (A13) is an equation about fx. Graphical method can be
used to find the intersection of Equation (A13) and 0 axis, then fx can be obtained.

By substituting Equation (A8) into (A10), the explicit expression of fd with respect to
fx can be obtained,

fd =
fc

2 − fx
2

fx tan(D) + fc tan(ϕm − A)
. (A14)

Then fd can be calculated from Equation (A14) and fi can be obtained by substituting
fd into Equation (A18). To sum up, kp, fi, and fd can be determined.
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