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Abstract: In this work, we introduce the standard Tavis-Cummings model to describe two-qubit
system interacting with a single-mode field associated to power-law (PL) potentials. We explore
the effect of the time-dependent interaction and the Kerr-like medium. We solve the Schrödinger
equation to obtain the density operator that allows us to investigate the dynamical behaviour of
some quantumness measures, such as von Neumann entropy, negativity and Mandel’s parameter.
We provide how these entanglement measures depend on the system parameters, which paves
the way towards better control of entanglement generation in two-qubit systems. We find that the
enhancement and preservation of the atoms-field entanglement and atom-atom entanglement can be
achieved by a proper choice of the initial parameters of the field in the absence and presence of the
time-dependent interaction and Kerr medium. We examine the photons distribution of the field and
determine the situations for which the field exhibits super-poissonian, poissonian or sub-poissonian
distribution.

Keywords: atom-field systems; Tavis-Cummings model; time-dependent interaction; Kerr medium;
entropy; negativity; Mandel’s parameter

PACS: 03.67.-a; 03.65.Yz; 03.65.Ud

1. Introduction

One of the strongest features of quantum mechanics is the quantum entanglement,
which Schrödinger first introduced in 1935 [1]. The phenomenon of quantum entanglement
can be obtained with a special superposition method for several wave functions that cannot
be written as a product of subsystem wave functions. Therefore, the subject of quantum
entanglement is considered one of the most basic topics in quantum information science,
such as quantum computation and communication [2], simultaneous transmission [3],
dense coding [4] and coding [5]. Several schemes have been proposed for generating en-
tanglement of photons by bimodal superposition of coherent states [6], squeezed states [7],
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and superposition of states [8] and nonlinear coherent states [9]. On the other hand, there
are practical attempts to generate superpositions of two-mode entangled states [10] and
GHZ-type and W-type entangled coherent states [11]. Whereas for two photons moving
in multiple directions, this is a case of entanglement that contains linear momentum and
degrees of polarization freedom [12]. In recent years, it has been realized that orbital
angular momentum is another degree of freedom of the radiation field which can be used
to generate entanglement [13].

Recently, non-classical light plays a significant role in distinguishing between classical
physics and quantum physics. So far, the non-classical state of lights and atoms has become
the key center in different tasks of quantum information and optics [14]. The characteristics
of non-classical lights are similar to the classical analysis of electromagnetic waves and
are described by quantum mechanics theory. Recently, some works have significantly
demonstrated the microscopic impact of the nonclassical properties of photons on the
improvement of the spectral resolution [15], field imaging [16], wavelength measurement
with antibunching [17,18], coherent effects [19], propagation [20]. This shows that the
non-classical nature of the light is a broad topic, and scientists are working hard to better
explore the inward truth of the quantum world.

Last decades, coherent states played a vital role in various branches of physics [21,22],
and they are introduced as the eigenvectors of the lowering operators of the harmonic
oscillators [23]. These quantum states have physical features similar to classical electromag-
netic fields. In this case, the classical trajectory is utilized to characterize the center of the
coherent state wave packet associated with the harmonic oscillator potential. There exist
coherent states that describe nonlinear electromagnetic fields with nonclassical properties
including antibunching and squeezing [24,25]. Taking into account nonclassical quantum
effects, the classical and non-classical limits of the quantized field are specified by the
Glauber coherent state.

The PL potentials have attracted a lot of attention and gained more and more insights
on various physics topics [26–28]. PL potentials can introduce a large set of realistic
potentials, such as triangular, harmonic and infinite potential. A comparative study of
these potentials has been demonstrated through the exponent parameter. In this context,
like harmonic oscillator coherent states (CSs), the CSs used for PL potentials can be helpful
in quantum information and optics. In fact, it seems that apart from their theoretical ability,
the form of PL potential CSs may also have practical significance in helping to better
understanding the behavior and characteristics of the quantum system considered in the
framework of the JC and TC models. Using the PL potentials, we present a valuable and
relevant new study of entanglement measures for a system of two qubits interacting with a
field. We extend the usual TC model by considering two qubits when they simultaneously
interact with a radiation field in PL potentials and taking into account the effect of the
time-varying coupling and Kerr-like term. We solve the Schrödinger equation to obtain the
density operator that allows us to investigate the dynamical behavior of the quantumness
measures such as von Neumann entropy, negativity and Mandel’s parameter. We show
how the quantumness measures for the proposed scheme can be affected by the main
parameters of the physical model, and we compare the results to the case of fields for
different values of the exponent parameter of the PL potential. The proposed model can be
useful to understand some quantum-mechanical phenomena of nonlinear optics.

The paper is organized as follows. In Section 2, we describe the PL potentials and its
CSs. In Section 3, we introduce the physical model and system dynamics. In Section 4, we
describe the quantumness measures and the obtained results. A brief conclusion is given
in the last section.

2. Power-Law Potentials

The general expression of a one-dimensional PL potential is introduced as

V(x, k) = Vo

∣∣∣ x
a

∣∣∣k, (1)
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where Vo and a have the dimensions of energy and length, respectively. The parameter k
is a positive real number that is called the power-law exponent. These PL potentials can
be utilized to introduce a large class of quantum systems through a proper choice of the
exponent k.

The Hamiltonian associated with PL potentials is defined by

Ĥ =
p̂2

2m
+ V̂(x, p), (2)

where its corresponding eigenvalue equations are given by

Ĥ(k)|n〉 = En,k|n〉, n ≥ 0. (3)

The Fock states |n〉 are the eigenstates and En,k are its corresponding eigenenergies.
Substituting Equation (2) into Equation (3), we obtain

p̂2|n〉 =
[
2m(En,k − V̂)

]
|n〉, (4)

where
p(x) =

√
2m(En −V). (5)

The eigen-energy spectrum En,k can be obtained by using the Wentzel-Kramers-
Brillouin (WKB) approximation [29–31], such that∫ +xo

−xo
p(x)dx =

(
n +

g
4

)
πh̄, (6)

where ±xo are the classical turning points. Here, g is the Maslov index, which accounts for
the boundary effects at the classical turning points.

In the case of E = V(x), we have

± xo = ±a
(

E
Vo

) 1
k
. (7)

Using Equations (1) and (5), the Equation (6) can be written as

2
∫ xo

0

√
2m
(

En −Vo

( x
a

)k
)

dx =
(

n +
g
4

)
πh̄. (8)

This integral can be solved using the substitution, u = ( x
a )

k with dx = a
k u

1
k−1du,

and we have
2a
√

2m
k

∫ E
Vo

0

√
(En −Vou)u

1
k−1du =

(
n +

g
4

)
πh̄, (9)

where ∫ E
Vo

0

√
(En −Vou)u

1
k−1du =

1

V
1
k

o

Γ( 1
k )Γ(

2
3 )

Γ( 1
k +

2
3 )

E
1
k +

1
2

n . (10)

Therefore, the eigenenergy spectrum is given by

En,k =

(n +
g
4

)
πh̄

kV
1
k

o

2a
√

2m

Γ( 1
k +

2
3 )

Γ( 1
k )Γ(

2
3 )

 2k
k+2

,

= ω(k)
(

n +
g
4

) 2k
k+2 , (11)
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where ω(k) =
[

πh̄
2a
√

2m
V

1
k

o
Γ( 1

k +
2
3 )

Γ( 1
k +1)Γ( 2

3 )

] 2k
k+2

is the effective frequency.

The parameter k determines the type of the potentials. To gain insight into the
structure of the energy spectrum given by Equation (11), we consider the energy difference
between levels

4E(k)
n = E(k)

n − E(k)
n−1

∝
(

n +
g
4

) k−2
k+2 . (12)

Equation (12) shows that for k = 2,4E(k)
n is independent on n, so the energy spectrum

is equally spaced. For the exponent k 6= 2, the level spacing varies with n. For k > 2,
the energy difference increases with n (tightly binding potentials), while for k < 2, the
energy between adjacent levels decreases with n (loosely binding potentials).

The CSs associated with PL potentials are defined by [26–28]

|Z, k〉 = NZ,k

∞

∑
n=0

Zn√
G(n, k)

|n〉, (13)

where

G(n, k) =
n

∏
i=1

[(
i +

g
4

) 2k
k+2 −

( g
4

) 2k
k+2

]
, G(0, k) = 1, (14)

and the normalization function NZ,k is

NZ,k =

[
∞

∑
n=0

|Z|2n

G(n, k)

]− 1
2

. (15)

For k = 2, the PL potential reduces to harmonic oscillator potential and Equation (13)
becomes the standard coherent states for the harmonic oscillator [32]. In the k→ ∞ limit,
the PL potential becomes the infinite square-well potential [33]. For K = 1, the PL potential
reduces to the triangular-well potential [34].

3. System Hamiltonian and Dynamics

The proposed model considers a system of two atoms (qubits) that interact with a
quantized field initially prepared in CSs associated with PL potentials in the presence of a
Kerr-like medium. Many previous studies dealt with time dependence in different ways,
including [35]. The time dependence of this model was derived without the nonlinearity
of termes in [36,37]. Under the rotating-wave approximation, The system Hamiltonian can
be written as

Ĥ = νÂ† Â +
1
2

2

∑
j=1

ωjσ̂
(j)
z + χn̂(n̂− 1) + λ cos(pt)

2

∑
j=1

(Âσ̂
(j)
+ + Â+σ̂

(j)
− ), (16)

where the time-dependent (independent) coupling case is occurred when p 6= 0 (p = 0 ).
χ describes the effect of the Kerr-like medium, σ

(j)
z , σ̂

(j)
± are the standard qubit transition

operators for the jth qubit, Â and Â+ are the annihilation and creation operators of the
generalized Heisenberg algebra [26], respectively. The qubit transition frequency is ωj, ν is
the field frequency and λ is a coupling constant between each atom and the field.

We assume that the two atoms are initially in the upper state |uAB(0)〉 = |e1, e2〉 and
the field in the state [38]

|uF(0)〉 =
1√

1 + h2 + 2h〈Z, k| − Z, k〉

[
∞

∑
n=0

βn{1 + h(−1)n}|n〉
]

, (17)
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where
βn =

Zn√
G(n, k)

.

The state (17) is corresponding to CSs of PL potentials for h = 0 and a superposition
(even) of CSs for h = 1.

At subsequent times t > 0, the state vector of the whole system is given by

|u(t)〉 =
∞

∑
n=0

K1(n, t)|e1, e2, n〉+ K4(n, t)|g1, g2, n + 2〉

+{K2(n, t)|e1, g2〉+ K3(n, t)|g1, e2〉}|n + 1〉. (18)

The coefficients Kj(n, t) can be obtained by set of ordinary differential equation result-
ing from the Schrödinger equation:

i
dK
dt

= ΛK, (19)

So

K =


K1
K2
K3
K4

 and Λ =


χn(n− 1) λ

√
n + 1 λ cos (pt)

√
n + 1 0

λ cos (pt)
√

n + 1 χn(n + 1) 0 λ cos (pt)
√

n + 2
λ cos (pt)

√
n + 1 0 χn(n + 1) λ cos (pt)

√
n + 2

0 λ cos (pt)
√

n + 2 λ cos (pt)
√

n + 2 χ(n2 + 3n + 2)

, (20)

with the initial condition K1(n, 0) = βn and Kl(n, 0) = 0 with l = 2, 3, 4.
The atomic density matrix can be obtained by evaluating the trace over the field basis

ρ̂AB(t) = TrField{|u(t)〉〈u(t)|}, (21)

where the diagonal elements of the two atoms density matrix are given by

ρll =
∞

∑
n=0
|Kl(n, t)|2, l = 1, 2, 3, 4, (22)

while the off-diaconal elements are satisfying ρij = ρ∗ji and have the form

ρ12 =
∞

∑
n=1

K1(n, t)K∗2(n− 1, t), ρ13 =
∞

∑
n=1

K1(n, t)K∗3(n− 1, t), (23)

ρ14 =
∞

∑
n=2

K1(n, t)K∗4(n− 2, t), ρ23 =
∞

∑
n=0

K2(n, t)K∗3(n, t), (24)

ρ24 =
∞

∑
n=1

K2(n, t)K∗4(n− 1, t), ρ34 =
∞

∑
n=1

K3(n, t)K∗4(n− 1, t). (25)

4. Quantum Quantifiers and Main Results

In this section, we use the derived density matrix of the two atoms (21) to discuss
the atoms-field entanglement as well as atom-atom entanglement. Moreover, we consider
Mandel’s parameter to examine the quantum statistics of the quantized field. We assume
that the atoms have equal transition energies.

To quantify the entanglement of the atoms-field state, we use the von Neumann
entropy that is given by

SN(t) = −Tr[ρ̂AB(t) ln ρ̂AB(t)]. (26)

In Figure 1, the behavior of the function SN(t) is displayed with fixed parameters
(Z, p, χ) = (3, 0, 0). In the case of the harmonic well potential (k = 2) and a coherent
state (h = 0), a strong entanglement is generated between the field and the two atoms.
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Interestingly, the minimum values of entanglement are achieved in the middle of the
collapse and revival period and the maximum values are achieved outside this period.
On the other hand, the amount of the entanglement can be enhanced and the intensity
of oscillations increases after setting the field in the even coherent state (h = 1). For the
triangular well (k = 1) with a coherent state (h = 0), the amount of the entanglement
increases accompanied by a decrease in the intensity of the oscillations. When the field state
starts from the even coherent state (h = 1), the amount of the entanglement decreases with
an increase in the amplitude of oscillations. For the infinite well (k→ ∞) with a coherent
state (h = 0), the entanglement decreases and the intensity of its oscillations increases.
On the other hand, the entanglement is enhanced with a decrease in the amplitude of
oscillations after the field starts from the even coherent state (h = 1).
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Figure 1. Time evolution of the atomic entropy SN(t) for the physical parameters with the values (Z,
p, χ) = (3, 0, 0). (a,c,e) The field initially in the CSs for PL potentials (h = 0) and (b,d,f) show the
field initially in the superposition of CSs for PL potentials (h = 1). (a,b) for harmonic well potential
(k = 2, g = 2), (c,d) show the triangular well (k = 1, g = 3), and (e,f) show the infinite well (k→ ∞,
g = 4).

In Figure 2, we show the effect of the time-dependent interaction on the function SN(t)
considering the same previous conditions. In the first case (k = 2, h = 0), the entanglement
decreases smoothly and it reaches periodically the minimum values for every time π and
maximum values for every (2n+1)π

2 with (n = 0, 1, 2, ...). The entanglement significantly
enhanced and the intensity of oscillations increases when the field state starts from the
even coherent state (h = 1). Concerning the second case (k = 1, h = 0), there is a further
enhancement in the amount of the entanglement over most of the interaction period.
After setting the field in the even coherent state, the values of the function SN(t) can be
increased in some time intervals with more regular oscillations compared to the previous
case. In the third case (k→ ∞, h = 0), the amount of the entanglement decreases and it is
completely improved when the field setting in the even coherent state.

In Figure 3, we explore the effect of the Kerr medium on the entanglement of the
atoms-field state. In the case of k = 2 with h = 0, the presence of the Kerr medium
results in a restraint of the entanglement and stabilizes the behavior of its quantifier, SN(t),
during the evolution. On the other hand, the entanglement can be improved when the
field starts from the even coherent state (h = 1). Moreover, we can observe that the effect
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of the Kerr medium decreases with increasing time. For the second case, k = 1 with
h = 0, the function SN(t) behaves in a similar way as the previous case. While the third
case, k → ∞ with h = 0, shows that the effect of the Kerr medium is weak. Moreover,
the entanglement increases gradually as the interaction time evolves. In the even coherent
state, a strong entanglement appears and the effect of the Kerr medium disappears almost
as observed in the Figure 3f.
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Figure 2. Effect of time-dependent coupling (p = 1) on the evolution of the atomic entropy SN(t) for
the physical parameters with the values (Z, χ) = (3, 0). (a,c,e) The field initially in the CSs for PL
potentials (h = 0) and (b,d,f) show the field initially in the superposition of CSs for PL potentials
(h = 1). (a,b) Harmonic well potential (k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f)
infinite well (k→ ∞, g = 4).
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Figure 3. Effect of Kerr medium (χ = 0.5λ) on the evolution of the atomic entropy SN(t) for the
physical parameters with the values (Z, p) = (3, 0). (a,c,e) The field initially in the CSs for PL
potentials (h = 0) and (b,d,f) show the field initially in the superposition of CSs for PL potentials
(h = 1). (a,b) Harmonic well potential (k = 2, g = 2), (c,d) the triangular well (k = 1, g = 3), and (e,f)
the infinite well (k→ ∞, g = 4).
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In order to discuss the dynamics of the entanglement of the atom-atom state, we use
the negativity as a measure and it is defined by [39]

N(ρAB) =

∥∥∥ρ
TA
AB

∥∥∥− 1

2
, (27)

in which ρ
TA
AB is the partial transpose of ρAB with respect to the first atom. Negativity varies

from N(ρAB) = 0 to 1 corresponding to an unentangled state and maximally entangled
state (EPR states), respectively.

In Figure 4, we plot the time evolution of the negativity of the atom-atom state
versus time with respect to the fixed parameter values. For the first case, k = 2 with
h = 0, we can observe a monotonic relation appears between the atomic entropy and the
negativity. Entanglement is generated during the interaction and the function N(ρAB)
fluctuates between 0 and 0.5. Interestingly, the entanglement reaches maximum values
at mid-collapse time and also before and after revival time. For the even coherent state
(h = 1), the entanglement can be slightly enhanced at the beginning of the interaction and
the phenomena of sudden death and sudden birth of entanglement appear. In the second
case, k = 1 with h = 0, the amount of entanglement increases, the fluctuation intensity
of the function N(ρAB) increases and the death and sudden birth phenomena disappear.
In the third case, k→ ∞ with h = 0, random entanglement is generated with an increase in
the amplitude of oscillations with the existence of phenomena of sudden death and sudden
birth. When setting the field in the even coherent state, the amount of entanglement is
clearly improved accompanied by an increase in the phenomena of sudden death and
sudden birth of the entanglement.
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Figure 4. The evolution of the negativity N(ρAB) for the physical parameters with the values (Z,
χ, p) = (3, 0, 0). (a,c,e) The field initially in the CSs for PL potentials (h = 0) and (b,d,f) show the
field initially in the superposition of CSs for PL potentials (h = 1). (a,b) Harmonic well potential
(k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f) infinite well (k→ ∞, g = 4).

In Figure 5, we display the influence of the time-dependent interaction on the entangle-
ment of the atom-atom state. In general, the function N(ρAB) exhibits a periodic behavior
with sudden death and sudden birth phenomena of entanglement in the presence of the
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time-dependent interaction for various cases of the field state. Moreover, the previous
chaotic oscillations become ordered with the reduction of the intensity of the oscillations.
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Figure 5. Effect of time-dependent coupling on the evolution of the negativity N(ρAB) for the
physical parameters with the values (Z, χ) = (3, 0). (a,c,e) The field initially in the CSs for PL
potentials (h = 0) and (b,d,f) show the field initially in the superposition of CSs for PL potentials
(h = 1). (a,b) Harmonic well potential (k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f)
infinite well (k→ ∞, g = 4).

In Figure 6, we plot the results that show the effect of the Kerr medium on the
entanglement of the atom-atom state. It is found that the presence of the Kerr medium
causes disentanglement between the two atoms, especially when preparing the field in the
coherent state (h = 0) for the three kinds of potentials. On the other hand, the amount of the
entanglement can be enhanced in the case of the even coherent state (h = 1) accompanied
by an increase in the periods of sudden death and sudden birth.

Let us now analyze the nonclassicality of the field state through the Mandel parameter
that includes the statistical properties of the photons, specifically bunching and antibunch-
ing of the photons. The Mandel parameter is defined as [40]

PM =

〈(
Â† Â

)2
〉

〈
Â† Â

〉 −
〈

Â† Â
〉
− 1. (28)

Depending on the value of the parameter PM, we can distinguish the photon statistics
of the field with PM = 0 for the Poissonian distribution case, whereas PM > 0 and PM < 0
correspond to the super-Poissonian and sub-Poissonian cases, respectively.
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Figure 6. Effect of Kerr medium (χ = 0.5λ) on the evolution of the negativity N(ρAB) for the
parameters with the values (Z, p) = (3, 0). (a,c,e) The field initially in the CSs for PL potentials
(h = 0) and (b,d,f) for the field initially in the superposition of CSs for PL potentials (h = 1). (a,b)
Harmonic well potential (k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f) infinite well
(k→ ∞, g = 4).

In Figure 7, we display the time variation of Mandel’s parameter with respect to the
different values of the physical parameters. In the absence of the time-dependent interaction
and Kerr medium effects, the Mandel parameter exhibits the classical distribution of the
photons for most of the time of the interaction. In the first case (k = 2, h = 0), the non-
classical (sub-Poissonian) distribution achieves in small periods before and after the mid-
revival period. The non-classical distribution gradually occurs with increasing time of
interaction when preparing the field in the even coherent state (h = 1). In the second case
(k = 1), the situation changes completely and the Mandel parameter takes positive values
for both cases of the field state, h = 0 and h = 1, satisfying super-Poissonian distribution.
The Mandel parameter again provides the classical distribution in the third case of k→ ∞
for fields with h = 0 and h = 1. On the other hand, the periods of the non-classical
distribution are greatly reduced with an increase in the amplitude of the oscillations.

When the time dependence of the coupling is taken into account, as seen in Figure 8,
the behavior of the Mandel parameter is periodic during the evolution, exhibiting sub-
Poissonian and super-Poissonian distributions. Furthermore, the Mandel parameter be-
haves the same as before in all three cases.

The situation is quite different with respect to the influence of the Kerr medium on the
Mandel parameter, as seen in Figure 9. In the first and second cases, the Mandel parameter
initially starts with a Poisson distribution and is followed by a super-Poisson distribution
for both cases of h = 0 and h = 1. Whereas, in the third case, the function PM exhibits
fluctuations, showing sub-Poissonian distribution during the dynamics.
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Figure 7. The evolution of the Mandel parameter PM for the physical parameters with the values
(Z, χ, p) = (3, 0, 0). (a,c,e) The field initially in the CSs for PL potentials (h = 0) and (b,d,f) show the
field initially in the superposition of CSs for PL potentials (h = 1). (a,b) Harmonic well potential
(k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f) infinite well (k→ ∞, g = 4).
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Figure 8. Effect of time-dependent coupling (p = 1) on the evolution of the Mandel parameter PM

for the physical parameters with the values (Z, χ) = (3, 0). (a,c,e) The field initially in the CSs for PL
potentials (h = 0) and (b,d,f) show the field initially in the superposition of CSs for PL potentials
(h = 1). (a,b) Harmonic well potential (k = 2, g = 2)), (c,d) triangular well (k = 1, g = 3), and (e,f)
infinite well (k→ ∞, g = 4).
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Figure 9. Effect of Kerr medium (χ = 0.5) on the evolution of the Mandel parameter PM for the
physical parameters with the values (Z, p) = (3, 0). (a,c,e) The field initially in the CSs for PL
potentials (h = 0) and (b,d,f) show the field initially in the superposition of CSs for PL potentials
(h = 1). (a,b) Harmonic well potential (k = 2, g = 2), (c,d) triangular well (k = 1, g = 3), and (e,f)
infinite well (k→ ∞, g = 4).

5. Conclusions

We have considered the interaction between light and matter in the context of the
time-dependent interaction. We have presented a valuable and relevant new study of
entanglement measures for a system of two qubits interacting with a field. We have used
the Tavis-Cummings model considering two atoms when they simultaneously interact with
a single-mode field in PL potentials and taking into account the effect of the time-varying
coupling and Kerr medium. We have solved the Schrödinger equation to obtain the density
operator that allows us to investigate the dynamical behavior of the quantumness measures
such as von Neumann entropy, negativity and Mandel’s parameter. We have explained how
the quantumness measures for the proposed scheme can be affected by the main parameters
of the model, and we have compared the obtained results to the case of fields for different
values of the exponent parameter of the PL potential. We have examined the time evolution
of the atoms-field entanglement, atom-atom entanglement and the distribution of the
photons in the field. We have found that the enhancement and preservation of the atoms-
field entanglement and atom-atom entanglement can be achieved by a proper choice of the
initial parameters of the field in the absence and presence of the time-dependent interaction
and Kerr medium. On the other hand, we have determined the situations for which
the field exhibits super-Poissonian, Poissonian or sub-Poissonian distribution. Moreover,
we have displayed the dependence between the time variation of the entanglement and
photons distribution according to the main parameters of the physical model for three
values of the exponent parameter of the PL potentials. The proposed model can be useful
to understand some quantum-mechanical phenomena of nonlinear optics. Finally, we
consider only bipartite correlations, a study of multipartite-system correlations will be
a useful contribution to understanding the dynamics of the information. An interesting
contribution is to study the dynamic behavior of the quantumness measures for N-qubit
system in interaction with fields in the framework of PL potentials. Another significant
future investigation will be the study of the influence of finite-temperature environments
on the dynamics of these measures.
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