
entropy

Article

Optimum Placement of Distribution Generation Units in Power
System with Fault Current Limiters Using Improved Coyote
Optimization Algorithm

Hisham Alghamdi

����������
�������

Citation: Alghamdi, H. Optimum

Placement of Distribution Generation

Units in Power System with Fault

Current Limiters Using Improved

Coyote Optimization Algorithm.

Entropy 2021, 23, 655. https://

doi.org/10.3390/e23060655

Academic Editors: Muhammad Irfan,

Adam Glowacz, Thompson

Sarkodie-Gyan, Zhixiong Li and Jose

A Antonino-Daviu

Received: 7 April 2021

Accepted: 19 May 2021

Published: 24 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudia Arabia;
hg@nu.edu.sa

Abstract: Electric power frameworks become intensely loaded because of the expanded power
demand, and as a result, the power system faces great power losses and fault currents. The integration
of Distribution Generation (DG) units plays a key role in minimizing the load pressure on a power
system. DGs are transmitted with a high fault current, which surpasses the evaluations of circuit
breakers. This paper presents various DG units’ optimal placement with Fault Current Limiters
(FCLs) in different phases. The Improved Coyote Optimize Algorithm (ICOA) and Electrical Transient
Analyzer Program (ETAP) are assessed for the proposed technique in terms of normal and faulty
working status. Similarly, to enhance the efficiency of a distribution system, a fuzzy-based multi-
objective mechanism is applied. The proposed method is employed on an IEEE 21-bus and 28-bus
distribution system. The simulation analysis proved that the power losses and fault levels are reduced
at an acceptable level.

Keywords: fault current limiters; improved coyote optimize algorithm; distribution generation units;
main power grids

1. Introduction

There has been an increase in power demand in the last decade, which means electric
grids are heavily loaded [1–3]. This continuous pressure of load degrades the overall
performance of the main power system. Thus, an economical and technical solution is
required to handle load demands. Distribution Generations (DGs) are considered a fruitful
solution to minimize the load pressure on a power system economically and technically
because DGs improve system fidelity without the installation of new power plants and
transmission lines [4–6]. However, optimum placement of DGs is a key issue, owing to the
wrong allocation of DG units that may generate extra impairments in the power system.
Therefore, this work studies the proper placement of DG units in the power system to
decrease the power losses and fault current levels.

Related Work

In order to resolve the proper allocation problem of DGs and reduce power losses and
fault current levels, a number of research works have been done so far. In [7], the authors
have studied Improved Grey Wolf Optimizer (GWO) for proper placement and sizing of
DGs in the distribution system. Another methodology called the genetic algorithm (GA) is
presented in [8] to properly allocate DGs in a distribution network for decreasing power
loss and enhancing the voltage profile. To minimize power losses and maintain the voltage
profile, the Particle Swarm Optimization (PSO) mechanism is analyzed in [9]. Authors
have also focused on optimal placement and sizing of DGs in the power system in [9].
In [10], the authors have explored Fault Current Limiters (FCLs) and proper allocation of
DGs using a sensitivity factor procedure. A dynamic programming method is presented
in [11] for placing and sizing DGs aiming to degrade network loss and improve the voltage
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profile. In [12], the authors have investigated the optimum sizing and positioning of
DGs in the power system by applying the Bacterial Foraging Optimization Algorithm
(BFOA). In addition, the GA mechanism is proposed in [13] to save costs and achieve a
setting position and FCLs in the distribution system. In [14], the authors have investigated
the allocation of various types of DGs integrated with FCLs for a single stage, utilizing
COA and an Electrical Transient Analyzer Program (ETAP) for general and faulty states.
In [1], the authors have discussed optimum placement of FCLs to minimize fault current
levels. The authors of [15] investigate the superlative positions and sizes of single as well
as multiple stages of various renewable Distributed Energy Resources (DER) through a
hybrid technique built with a Slap Swarm Algorithm (SSA) in addition to combined power
loss sensitivity.

However, the presented research models contain several technical and economical
issues. Hence, to minimize the power losses and fault current in an installed power
distribution system, a new procedure is needed. Thus, this paper studies the optimum
placement of DGs and FCLs in a single-phase.

The remaining part of this paper is organized as follows. The analytical model is
discussed in Section 2. Section 3 contains the methodology for the proper allocation of DGs
and FCLs. Section 4 presents results and discussion, while the conclusion of the proposed
work is concluded in Section 5.

2. Analytical Modeling

The major purpose of this work is to reduce the power losses of the power system and
can be defined [8,16] as

g1 = minΣik
l=1rl ∗ |Il |2, (1)

where rl is the resistance, Il presents the current of the distribution lines and ik shows
total branches. Decreasing the fault current levels is a second important goal, which is
measured [13,17] as

g2 = min(I f ). (2)

Here, I f denotes a three-phase short circuit current. The economical design of FCLs is the
third main purpose and is written [18,19] as

g3 = minΣN
n=1SFCLn, (3)

where SFCL describes the size of the FCL applied, while the total number of FCLs is
denoted by N. Furthermore, the constraints of balancing active and reactive powers [20–23]
are analyzed as

βPS +
NDGUs

∑
n=1

βn −
Nb

∑
nb=1

PLb =
Nbus

∑
n=1

βd, (4)

ζPS +
NDGUs

∑
n=1

ζn −
Nb

∑
nb=1

ζLb =
Nbus

∑
n=1

ζd, (5)

Here, βPS and ζPS denote the active and reactive powers induced from the PS, βn and ζn
are DGs generated active and reactive powers, active and reactive PLs for all branches, ’b’
is represented by PLb and ζLb, the parameters NDGs, Nb and Nbus are used for the quantity
of DGs, branches and nodes in the proposed model. Correspondingly, the constraints of
the power balance based on each node [11,12,17,24] are estimated as

βn − βd −Vn

Nb

∑
n=1

Vi(Gnicosψni + βnisinψni), (6)
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ζn − ζd + ζc −Vn

Nb

∑
n=1

Vi(Gnicosψni + βnisinψni), (7)

where Gni and Bni are the conductance and susceptance among n and i nodes, capacitive
or inductive power levels are denoted by ζc, Vn and Vn are the voltage parameters at i and
n nodes and ψni describes the impedance angle between nodes n and i.

The active and reactive power levels of the DGs are laid between minimum and
maximum limits [13,25], which are given as

βn,min ≤ βn ≤ βn,max, (8)

ζn,min ≤ ζn ≤ ζn,max, (9)

In addition to that, the node voltage in DS must be limited in the range of 0.95 to 1.05 [8,26]
and is written as

Vn,min ≤ Vn ≤ Vn,max, (10)

In addition, it must be noted that the size of the thermal capacity branches is less than
maximum thermal capacity [15,16], which is measured as

Ib ≤ maxIb, (11)

where Ib presents the branch current. Secondly, the FCL size must exist between higher
and lower ranges [27,28] and is shown as

min(SFCL) ≤ SFCL ≤ max(SFCL), (12)

Types of DG Units for Distribution Networks

Four types are elaborated for DGs to deliver real and reactive powers, which are
presented as follows.

Type 1: In this type, active and reactive powers are capable by DGs.
Type 2: Active power is managed by DGs only with a unity power factor, such as micro-
turbines.
Type 3: Reactive power is controlled by DGs, such as a synchronous compensator.
Type 4: Consumption of reactive power with an injection of active power is a capability of
DGs. This type includes a fixed-speed squirrel cage induction generator.

3. Methodology for Proper Allocation of DGs and FCLs

The key goal of this model is to treat issues of choosing the best placement for DGs and
FCLs. The ICOA technique is presented for this purpose, which determines the population
with Npacks number of packs, where each pack consists of a number of coyotes Ncoyote.
Every coyote shows the best solution of placement for DGs and FCLs, including its social
condition Cso as decision variable dv. The dv denotes the position of DGs and FCLs with
active and reactive powers. Furthermore, the Cso is calculated as

Cpacket,t
so =

−→
j = (j1, j2..., jn), (13)

The formulation of the initial coyote social conditions are presented as

Cpacket,t
so,D,x = lbx + rx.(ubx − lbx), (14)
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Here, x presents each dv. lb is the lower bound and ub is the upper bound of the xth dv,
and r shows a random number between 0 and 1. In order to minimize the power loss and
fault current levels, a Fuzzy-Based Multi-Objective (FBMO) methodology is presented.
Hence, the behavior of the coyote is adopted by the fitness function Ff it and defined as

ξ
i,g
FF = Γi,g

OF + χPF

N

∑
n=1

(Ωi,g,m
PT )2, (15)

Here, ΩPT is used to violate the mth constraint in terms of ith solution for gth solution.
The solution of the best ξFF in each group is known as the best local solution, which is
described by LCbest,g.

For the purpose of updating the social condition for the coyote in each group, updated
solutions exist in COA around old solutions for two distances in terms of LCbest,g, which
are (1) middle solution and (2) picked solution. These solutions are defined as

LCnew
best,i,g = LCbest,t,h + γ(LCbest,g − LC1,g)

+γ(LCmid,g − LC2,g), (16)

where LC1,g and LC2,g are the picked solutions, and LCmid,g is the middle solution attained
from g. The decision from middle solution is further elaborated as

LCmid,g =

{
ϑw,mid1 if NLC is odd,
ϑw,mid2, else, ∀w = 1, 2...Ndµ,

(17)

where ϑw,mid1 and ϑw,mid2 are the decision variables of wth numbers for odd and another
two conditions. Moreover, each decision variable is positioned in descending order.

In order to select the performance procedure, each coyote i is related to old and new
conditions, which correspond to old and new solutions, respectively. The ξ

i,g
FF and ξnew

FF are
considered for the quality of these two social conditions; thus, the following rules are used
to retain a single social condition for each ith coyote.

LCi,g =

{
LCnew

i,g ifξnew,i,g
FF ≤ ξ

i,g
FF,

LCi,g, else,
(18)

ξ
i,g
FF =

{
ξ

new,i,g
FF ifξnew,i,g

FF ≤ ξ
i,g
FF,

ξ
i,g
FF, else,

(19)

From Equations (18) and (19), it is observed that ICOA produces two generations in every
iteration. The produced solutions in the first generation in all groups are newly upgraded
and the second generation includes only one upgraded solution for each group. Thus,
these newly generated solutions in an iteration are measured as

Nco × Ng + 1× Ng = Npop + Ng, (20)

Novelties and Contribution of the Proposed ICOA

The Coyote Optimize Algorithm (COA) has been broadly applied for streamlining
issues in a wide range of fields. In [29], the authors have applied COA to limit the
gas utilization of turbines in consolidated cycle power plants in Brazil. The proposed
arrangement completely fulfilled the physical limits of the turbine and pollution emission
regulations. The COA technique shows prevalence over different strategies like Artificial
Bee Colony (ABC), Binary Switching Algorithm (BSA), Self-adaptive Differential Evolution
(SaDE), Genetic Whale Optimization Algorithm (GWOA), Symbiotic Organism Search
(SOS), and PSO. In [10], the authors were effective in applying COA to track down the
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fundamental elements of three diodes in photovoltaic modules. However, the acquired
outcomes have not been contrasted with different strategies. In [30], the financial dispatch
issue with nuclear energy stations and wind turbines was tackled by COA, GA, and
PSO. The acquired outcomes from two examined frameworks showed that the COA
arrived at a preferable arrangement over GA and PSO, yet there was no exhibit about the
quicker speed of COA since settings of populace and cycles were overlooked. Another
example of improvements to the shortcomings of COA is shown in [31]. COA has been
applied for managing issues with block coordinating, and the consequences of COA
were contrasted with Enhanced Gray Wolf Algorithm (EGWA) and different strategies.
A discussion of results in [32] showed that COA was less compelling than EGWA and a
portion of different techniques like Black Hole Algorithm (BHA), Gray Wolf Algorithm
(GWA), and PSO. ICOA is an improved metaheuristic calculation achieved by performing
two fundamental adjustments to the first Coyote Streamlining Calculation (COA). The
two proposed adjustments aim at improving the ideal arrangement quality found by
the original and second stages in the COA strategy. The COA technique was created
in 2018 [33], dependent on the normal practices of coyotes. Every coyote is portrayed
by two fundamental components, social condition and nature of the social condition in
which social condition is related to the ideal arrangement, and the nature of the social
condition is compared to the wellness capacity of the arrangement. The local coyote area is
partitioned into Ng little coyote gatherings, and there are Nco coyotes in each gathering.
The COA strategy produces two new arrangement stages for every cycle in which the
original produces Nco new answers for each gathering and the subsequent stage produces
Ng new answers for the entire coyote local area. Consequently, the absolute number of
new arrangements created in the COA technique is (Nco × Ng + Ng) arrangements in
which Nco×Ng is equivalent to the populace (Npop). Along these lines, (Nco × Ng + Ng)
is equivalent to (Npop + Ng). The number of new answers for every stage can show
that the original affects the last arrangement quality since it produces Nco-times new
arrangements of the subsequent stage. Be that as it may, COA is adapting to the low
execution of the original since it utilizes a middle answer for creating an updated advanced
size; in the meantime, the solid mark of the middle arrangement is only to deliver a variety
of arrangements, and it does not have the potential to produce a promising updated,
advanced size. In the subsequent stage, COA produces one new answer for each group by
utilizing a randomization factor. The new arrangements are shaped by randomization, and
control factors in the arrangement can be either taken from the current arrangements or
haphazardly created inside lower and upper limits. In any case, it should utilize one out of
three unique choices for each new control variable in the arrangement, and two control
boundaries should be resolved for the choices. Unmistakably, the subsequent stage relies
on randomization, and the time has come to enforce two control boundaries. Therefore, in
the ICOA strategy, we propose two alterations to the first and the second new arrangement
stages. In the original, the arrangement is replaced with the best arrangement yet, with a
plan to improve the nature of recently delivered arrangements and lessen reenactment time.
In the subsequent alteration, each gathering produces one new arrangement based on the
best arrangement by utilizing a few updated advancements reliant upon the number of pair
arrangements, which are combined. The subsequent adjustment can improve the adequacy
of the neighborhood search and discover one promising answer for each gathering. ICOA
has some benefits over COA, for example, (i) decreasing computational time, (ii) improving
solution quality, and (iii) arriving at better stability in the pursuit interaction.

4. Results and Discussion

IEEE-28 bus systems are designed to analyze the optimum location of DGs and
FCLs using ICOA. The flow chart for analyzing optimum allocation for DGs and FCLs is
presented in Figure 1. The proposed model is discussed in terms of three cases, listed as

Case 1: DGs working at a unity power factor and related to Type 3.
Case 2: The power factor is kept constant for DGs, related to Type 1.



Entropy 2021, 23, 655 6 of 13

Case 3: Controllable power factor technique is used for DGs.

In Case 1, where DGs are working with the unity power factor, the ICOA is employed,
and the outcomes are presented in Table 1. It is depicted from Table 1 that ICOA has chosen
the best location for DGs at buses 12, 22 and 28, including 1.0834, 1.077 and 0.9244 MW sizes,
respectively. In addition, the attained outcomes are compared with Firework Algorithms
(FWA), Bacterial Foraging Optimization Algorithm (BFOA), Harmony Search Algorithm
(HSA), Taguchi Algorithm (TA)-based approach and Water Cycle Algorithm (WCA).

Start

Using ICOA and decision variable parameters

Initialize the social condition for each pack Eq(11) 

Evaluate objective function and FF Eq(18) and (19) 

Choose alpha using Eq(15)

If the outcomes<Nmax

End

Yes

No

Analyze the culture of each packet Eq (17)

New social condition < old 
social condition

Yes

Update social condition

Modify ICOA age

No
Select 
new 

Alpha

Figure 1. Flow chart of the proposed model for placement of DGs and FCL.

Table 1 shows the efficient results of ICOA over other used algorithms. Similarly,
results taken based on Case 2 and Case 3 are explained in Table 2. The outcomes of ICOA
in Case 2 show that the losses are much less than Case 1. Furthermore, the best position of
DGs is selected by using Case 3, as shown in Table 2. Thus, power losses are reduced and
minimum voltage is improved compared to the initial case.
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Table 1. Using Case 1 for optimum allocation of DGs for 28 bus system.

Mechanism KW (Losses) DG Size/Placement Min Voltage (P.U) Bus

TA [8] 89.214 0.5897(14), 0.189(18), 1.0146(21) 0.968

FWA [16] 98.3 0.633(17), 0.09(18), 0.947(27) 0.964

HAS [15] 96.76 0.5724(17), 0.107(18), 1.0462(19) 0.967(24)

BFOA [27] 103.4 0.925(11), 0.863(16), 1.2(21) 0.98(25)

PSO [28] 105.35 1.1768(8), 0.9816(13), 0.8297(24) 0.98(21)

GA [1] 106.3 1.5(11), 0.4228(29), 1.0714(20) 0.981(25)

WCA [14] 72.9 0.8546(14), 1.1017(24), 1.181(29) 0.97(16)

ICOA 40.35 2(5), 4(11), 3(21) 0.988(8)

Table 2. Optimum placement of DGs in Case 2 and Case 3.

KW (Losses) DG Size/Placement Min Voltage (P.U) Bus Power Factor

Initial 213.78 - 0.99(17) -

Case 2 17.54 0.8232(12), 1.1397(22), 1.12(26) 0.994(7) 0.84–0.85

Case 3 12.8 0.837(12), 1.124(22), 1.07(26) 0.994(7) 0.75–0.86

The proposed model was designed in ETAP, as shown in Figure 2. The selected
proposed design is used to demonstrate load flow analysis and ETAP. ETAP is an important
simulation tool for learning. The features of ETAP provide a reliable and easy design for
three-phase and single-phase AC/DC networks with bus bars and all their components; for
example, grounding and instrumentation components with selected values and parameters
of various systems can be entered, such as dynamic and static data for modeling.
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Figure 2. IEEE-28 bus Proposed model.
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The analysis of load flow needs input data, which consists of nominal values, the
impedance of generators, lines and DGs, and other values, and these are shown in Figure 2.
Libraries (database) of ETAP provide a whole set of validated and verified data from
instrument manufacturers. The process of a whole simulation has become more convenient
and efficient, and there is no need for extra data, as the typical values of specific parts of
the system can be used for analysis.

Table 3 displays the simulation outcomes of COA and ICOA for constant PF of DGUs
and different PFs of DGUs. In the case of constant PF, COA selects DGUs with sized 0.71245,
1.0379 and 1.2004 MW to be placed at buses 14, 24, and 27, and ICOA picks DGUs with
size 2, 4 and 3 MW to be set at buses 5, 11and 21, respectively. These fallouts demonstrate
that the power losses are considerably less than the initial case, as well as COA, where the
minimum VP is significantly improved.

ICOA Technique for Allocation of DGs: The planned ICOA is chosen for finding the
simultaneous site and sizing of DGUs in a single-stage method. The gained outcomes
are compared to the bi-stage method. In Table 4, the ICOA illustrates better efficiency as
compared to the other two. Furthermore, a higher PL reduction of 42.132 kW was achieved,
as shown in Table 4. Furthermore, the ICOA has a mean time of 1.5 s. The engaged
ICOA proves high efficiency in determining the lowest power losses as compared to other
approaches, as shown in Tables 1 and 3. However, the ICOA is run for 28 times for the
cases when DGs has constant and different PF, and the minimum, average, maximum and
standard deviation (Std) are assessed. Comparisons with the most well-known method,
PSO, are also presented in Table 5. These outcomes show the ICOA competence of a single
stage for choosing the optimum DGUs sizes. Consequently, the gained outcomes proclaim
the planned technique has great robustness.

Table 3. Allocation of DGu and FCL using the proposed ICOA-base FBMO.

Framework Losses (KW) DG Size/Placement

ETAP-Bi Stage 44.341 5.874(6), 8(16), 5.074(22)

COA (One Stage) 44.815 7.783(16), 5.6056(22), 5.8189(9)

ICOA (One Stage) 42.132 2(5), 4(11), 3(21)

Table 4. Comparison among PSO, COA and ICOA for DGu placement and sizing.

Network 28-Bus System

Method PSO COA ICOA

Min(MW) 0.817 0.0715 0.0690

Mean(MW) 0.0758 0.0739 0.0701

Max(MW) 0.0723 0.0794 0.0694

Std 0.0026 0.0020 0.0013

Table 5. Allocation of DGu for 28-Bus System.

Losses (KW) DG Size (MW) and Location DGu Power Factor Min. Voltage Profile % (Bus)

Initial 4871.6 – – 80.34(28)

COA Different power factor 14.43 0.71245(14), 1.0379(24), 1.2004(27) 0.85, 0.85, 0.85 99.2(8)

Constant Power Factor 11.7 0.7294(14), 1.0538(24), 1.0953(27) 0.8951, 0.9024, 0.7302 99.2(8)

ICOA Different power factor 15.12 2(5), 4(11), 3(21) 0.8951, 0.9024, 0.7302 99.12(7)

Constant Power Factor 10.34 2(5), 4(11), 3(21) 0.85, 0.85, 0.85 99.12(7)
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The performance of the proposed model is also analyzed using graphical analysis,
where Figure 3 explores the results among different iterations against fitness. Several
modern algorithms like Water Cycle Algorithm (WCA), Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Harmony Search Algorithm (HSA) and Fireworks Algorithm
(FWA) are compared with the proposed ICOA schemes. The outcomes of the proposed
model in Figure 3 clarify that the fitness range of ICOA is much better than the other
algorithms used.

Figure 3. Comparison of different algorithms with ICOA for the proposed IEEE-28bus model.

Figure 4 explains the comparison of ICOA, WCA, GA, PSO, HAS and FWA algorithms
in terms of active losses for different iterations, which shows that the efficiency of the ICOA
is more supportive than the currently employed algorithms.

Figure 4. Active power losses for different iterations to compare ICOA, WCA, GA, PSO, HAS and
FWA algorithms.
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The results of power losses as a function of light, shoulder and peak loads are investi-
gated in Figure 5 for initial cases and the proposed ICOA cases, including class 1 and class
2 conditions. It is depicted from the results that the initial case contains huge losses and,
thus, is limited in fulfilling electricity demands. On the other hand, the outcomes of the
ICOA-based system generate low losses even at peak loads.

Initial, Class 1, 
Case 1

  

Class 1, Case 1

Class 1, Case 2

Class 2, Case 1

Class 2, Case 2

Initial, Class 1, 
Case 2

  

Figure 5. Graphical results analysis for light, shoulder and peak hour loads and power loss for the
initial case, Class 1, Class 2, Case 1 and Case 2.

The employed ICOA is tested at different runs for case 1 and class 1, as declared in
Figure 6, depicting high robustness as compared to other algorithms mentioned in Table 4.
Furthermore, optimal allocation of DGUs is revealed by applying ICOA, as presented in
Table 5.

Figure 6. Convergence rate of the proposed ICOA for different iterations and runs against
power losses.
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The simulation analysis among bus voltage and numbers is evaluated in Figure 7
for the initial and proposed cases, presenting fruitful outcomes of the proposed ICOA for
both cases and classes. Figure 8 depicts the fault current for each FCL size. The results
are compared with FCL and without FCL, using short circuit analysis. It is clarified from
Figure 8 that the inclusion of FCL decreased the fault current levels.

Figure 7. Analysis of bus voltage and number at initial and proposed cases.

Figure 8. Comparison of outcomes with FCL and without FCL.
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5. Conclusions

The balance of electricity demands and power losses with proper allocation of DGs
are highlighted issues in installed power systems. Therefore, to enhance the voltage profile
and to measure better placement of DGs in the distribution system, the ICOA algorithm is
analyzed in this paper for an IEEE 28-bus system. The major constraints and their solutions
are also addressed analytically, which concludes that by compensating the power and
voltage constraints, a stable distribution network cannot be designed. The proposed ICOA
technique for allocating and sizing DGs is explored in different steps to show how fitness
functions are defined as solutions to the generated issues. In addition, the results of the
proposed model are declared in tabular and graphical forms, using different cases and
classes. It was found that, when compared, the proposed ICOA outperforms the other
optimizers. The optimization placement of DG units is proposed, correlated with FCLs
in single-phase as compared to multi-phase. To reduce power losses and fault current
levels, an improved coyote algorithm (ICOA) methodology is used. The simulation results
present that the ICOA mechanism helps in choosing the best position for DGs and FCLs in
the distribution network. Using the ICOA procedure, the proposed setup is able to achieve
acceptable outcomes and minimize power losses and faulty current levels. It is found that
a huge amount of power losses are reduced by increasing the voltage profile. Hence, the
issues of optimum placement of DGUs in distribution networks and decreasing economical
and technical issues may be improved by considering the proposed ICOA model.
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