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Abstract: Despite that many image encryption systems based on chaotic or hyperchaotic systems
have been proposed to protect different kinds of information, it has been crucial to achieve as much
security as possible in such systems. In this sense, we numerically implement a known image
encryption system with some variants, making special emphasis when two operations are considered
in the scrambling stage. The variants of such an encryption system are based on some hyperchaotic
systems, which generated some substitution boxes and the keys of the system. With the aim to
have a more complete evaluation, some internal stages of the image encryption scheme have been
evaluated by using common statistical tests, and also the scaling behavior of the encrypted images
has been calculated by means of a two-dimensional detrended fluctuation analysis (2D-DFA). Our
results show that the image encryption systems that include two operations or transformations in
the scrambling stage present a better performance than those encryption systems that consider just
one operation. In fact, the 2D-DFA approach was more sensitive than some common statistical tests
to determine more clearly the impact of multiple operations in the scrambling process, confirming
that this scaling method can be used as a perceptual security metric, and it may contribute to having
better image encryption systems.

Keywords: image encryption system; S-box; two-dimensional multifractal detrended fluctuation
analysis

1. Introduction

Nowadays, the way in which society communicates has radically changed with the fast
development of computers and the internet. In particular, multimedia communication has
been gaining momentum in the exchange of information at all social levels. Therefore, in
recent years, security and confidentiality have been of considerable interest. Text encryption
has been found to be very different from image encryption due to some inherent image
characteristics, such as data-rich capacity, high redundancy, and high correlation between
adjacent pixels. Due to the demand to have a secure transmission through any means of
communication, a great variety of encryption systems has been proposed [1–5].

Chaos theory is used in many fields of science due to its special properties, and
cryptography is no exception. Many visual data encryption systems based on chaos theory
consider the principle of applying chaotic maps to obtain highly mixing properties, which
are similar to cryptographic systems. Encryption systems that involve chaotic systems
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have been extensively studied due to the large number of properties they present such
as ergodicity, pseudo-randomness, and sensitivity to initial conditions, among others.
These properties are analogous to the confusion and diffusion stages, which a general
encryption system requires. In fact, for an image encryption system to be secure, it must
have confusion and diffusion properties [6,7]. The confusion mechanism rearranges the
pixel values, while the diffusion mechanism changes the values of each image pixel. To
obtain a higher security level, the confusion and diffusion process can be repeated many
times [8]. Then, the chaotic systems take a fundamental role to implement new encryption
systems, where the system’s performance would be very good against any attack [1,3].

Moreover, with the aim to add more security, some image chaotic encryption algo-
rithms have been included or considered additional stages such as a disturb process at
the pixel level. One such example is based on the ZigZag transformation [3–5,9]. In [7],
another image encryption scheme, with an improvement in security issues that considers
a block scrambling and a modified zigzag transformation, has been implemented before
encryption, and a key generator based on an enhanced logistic–tent map. Mansouri and
Wang [10] presented an encryption system with a new Sine chaotic maps generator, where
one-dimensional chaotic maps are used as seed maps to produce new chaotic maps. In
fact, these authors consider a one preprocessing scheme on the plain image using different
operations. Based on a ZigZag transformation and a three-dimensional logistic chaotic
map, the authors of [11] present an encryption system, where at first an scrambling pixel
position is considered, and then how the logistic map can be used to diffuse the pixel
values in an image. Ahmad and Hwang [12] present a new image encryption system based
on chaotic maps and affine transformation with provides a higher key space and removes
correlation between adjacent pixels via random chaotic sequences. A new technique of
image protection is presented in [1], which decomposes an image into bit-planes by means
of XOR-operations between the scrambled images and chaotic map matrix, then the en-
crypted image is obtained. Karawia [13] presents an algorithm for multiple images using
the two-dimensional economic map to get the combination of mixed images elements. As
the size of the key space is huge, the latter approach is secure to many different attacks.

Obviously, there are more similar image encryption systems, and one of their typical
characteristic is that multiple operations in the scrambling stage are considered, but also
with certain advantages or disadvantages when more operations are included in the
encryption process. For instance, the process will be more complex and the execution
time will be affected, but its security is increased. In this case, it is necessary to find a
balance between the security of the encryption system and the processing time. In addition,
a few attempts have been made to establish how many operations or transformations
are required in an image encryption system, or if an evaluation of internal stages of the
complete encryption process may be helpful in the design of image encryption systems.
This work is devoted to enhance the safety of image encryption algorithms, and reveal
weaknesses in such algorithms. In this sense, we consider the encryption system in [3]
and some variants that modify the scrambling stage of the encryption system. In this
stage, the original image goes through a process where initially a ZigZag transform is
used to get a distorted image. After that, a sorting scramble algorithm or the use of a
substitution box (S-box) is applied to the latter image. This allows us to have higher levels
of security in the image encryption content, compared to other systems. In particular,
in the encryption variants, we combine a ZigZag transform with a S-box, because the
S-box substitutes the information content and provides the diffusion properties while
maintaining high entropy levels [14]. Despite the chaotic encryption systems presenting
a good performance, this study is devoted to measuring the impact of the scrambling
process on the quality of the encrypted images and to making an assessment of some
stages in the encryption process to see if we can have a stronger encryption system. In
addition, to consider some common statistical tests in the assessment, we make usage of
the two-dimensional Detrended Fluctuation Analysis (2D-DFA), a tool that can characterize
and reveal weaknesses of the content of the encrypted images, where a correlation degree
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between the surface pixels is obtained. This method has been used to measure the entropy
of noisy or textured encrypted images [15], which present values close to unity for this kind
of content. It has been also used to measure the similarity between two images [16], where
the 2D-DFA value will depend on the content of the processed images, and the similarity
degree of the difference of the respective values. Besides, the 2D-DFA complemented the
results with some statistical tests to analyze the encrypted image content.

The paper is organized in the following way. In Section 2, a concise presentation of
the main elements used in the image encryption systems is given. In Section 3, the image
encryption systems and their variants are described, whereas Section 4 contains the results
obtained by applying some statistical tests and the two-dimensional DFA technique to the
images in different encryption stages. Section 5 is devoted to discuss our main findings, a
comparison with some existing works, and some limitations of our proposal. Finally, the
conclusions are drawn in Section 6.

2. Preliminaries
2.1. Hyperchaotic Systems

In this section, we briefly present the two hyperchaotic systems considered in this
work. These kinds of systems, despite their simplicity, exhibit more complex dynamics
than chaotic systems. They have received wide coverage in different areas of mathematics,
physics, and engineering, among others [17–19]. The existence of the hyperchaos is verified
by checking that there are at least two positive Lyapunov exponents [18]. Besides, according
to the Kaplan–Yorke conjecture [20], the Lyapunov dimension (dL) of any system in the
hyperchaotic regime should be 3 < dL < 4.

2.1.1. Hyperchaotic Lorenz System

The hyperchaotic dynamics of Lorenz’s system is modeled by the set of differential
equations [17]:

ẋ(1) = x(2) − x(1),

ẋ(2) = 28x(1) − x(2) − x(1)x(3) + x(4),

ẋ(3) = x(1)x(2) − 8
3 x(3),

ẋ(4) = −5x(1),

(1)

This system is hyperchaotic with Lyapunov exponents λ1 = 0.38, λ2 = 0.41, λ3 = 0.00,
λ4 = −14.37, and the Lyapunov dimension is dL = 3.055, this system is in the hyperchaotic
regime. The hyperchaotic attractors generated by Lorenz’s system projected onto the planes
x(1) − x(2) and x(1) − x(3), are shown in Figure 1a,b, respectively.

2.1.2. Hyperchaotic Chen System

We also consider the four-dimensional hyperchaotic system based on Chen’s system
as defined in [19,21,22]:

ẋ(1) = 36(x(2) − x(1)),

ẋ(2) = 28x(2) − x(1)(x(3) − 16)− x(4),

ẋ(3) = x(1)x(2) − 3x(1),

ẋ(4) = x(1) + 0.5.

(2)

As the Lyapunov exponents are λ1 = 1.627, λ2 = 0.060, λ3 = 0.000, λ4 = −12.684,
and the Lyapunov dimension is dL = 3.133, this system is in the hyperchaotic regime. The
hyperchaotic attractors generated by Chen’s system projected onto the planes x(1) − x(2)

and x(1) − x(3), are shown in Figure 1c,d, respectively.
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Figure 1. The hyperchaotic attractors of Lorenz’s system projected on the planes (a) x(1) − x(2) and
(b) x(1) − x(3). The hyperchaotic attractors of Chen’s system projected on the planes (c) x(1) − x(2)

and (d) x(1) − x(3).

2.2. ZigZag Transformation

One way to scramble image pixels is to use a ZigZag operation or transform [23].
This operation is usually performed to confuse the elements of the respective matrix data
of a plain image. It can reduce the high correlation among image pixels to increase the
security level of some encryption systems. To perform the ZigZag transform to the data
matrix corresponds to sequentially read the elements of the matrix in a “Z” shape, followed
by sequential saving within a data vector, which is reshaped in a certain way into a two-
dimensional matrix. Figure 2 shows a standard ZigZag operation [23]. Obviously, there are
other ways to implement a different version of the ZigZag transform to avoid that some ele-
ment positions do not change. For instance, in [3], some improved ZigZag transformations
have been considered with change of the scan order of the element positions.

Figure 2. A standard ZigZag transform scheme.

2.2.1. Substitution Box (S-Box) Generation

To shuffle the information of any image, some articles have considered a substitution
table known as substitution box (S-box), which is a nonlinear key component in block
ciphers of encryption systems [2,14]. Recall that any S-box makes the statistical relationship
between the ciphertext and the key as difficult as possible. In this work, we considered the
hyperchaotic approach in [2] to generate two particular S-boxes based on the hyperchaotic
systems of Lorenz and Chen, whose dynamics are very well modeled by the set of differen-
tial equations of (1)–(2), respectively. A reason to choose these hyperchaotic systems is that
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a persistent scaling behavior was observed in the fourth state of these systems, which may
be useful in this kind of applications, see the works in [21,22].

The mechanism to generate the S-box is as follows:

1. Select four initial conditions such that any system of (1) or (2) presents a hyper-

chaotic behavior, and obtain a state vector
(

x(1)i , x(2)i , x(3)i , x(4)i

)
, for i = 0, . . . , 255,

corresponding to the normalized state vector of any system of (1) or (2).
2. Multiply the state vector of step 1 by a factor of 108 to obtain a new vector wi =(

x(1)i , x(2)i , x(3)i , x(4)i

)
, for i = 0, . . . , 255.

3. Generate a new sequence S = {si}, with si = πp+1(wi), where πk is the projection

function in the component k, and p = x(4)i mod 3.
4. Apply a permutation σ of the values {1, . . . , 255} to sequence S such that sσ(k−1) <

sσ(k) for k = 1, . . . , 255.
5. Generate the S-box Sb = {σ(0), σ(1), σ(2), . . . , σ(255)}.

The respective two S-boxes obtained with this scheme are shown in Tables A1 and A2
of the Appendix A, which are in the conventional representation format.

2.3. Two-Dimensional Detrending Fluctuation Analysis

The two-dimensional detrended fluctuation analysis (2D-DFA) algorithm was pro-
posed by Gu and Zhou [24]. A modified and improved version of the 2D-DFA has been
used by Vargas-Olmos et al. [15] to analyze encrypted images, as it has been a flexible and
efficient method to measure the quality of the encrypted image content. This procedure
consists of the following steps by taking into account that an image I of size M × N is
considered as a surface and denoted by a matrix X(i, j), where the number of rows and
columns is represented by i = 1, 2, . . . , M and j = 1, 2, . . . , N, respectively.

1. Divide the surface X(i, j) into Ms × Ns disjoint square windows of the same size s× s,
where Ms = bM/sc and Ns = bN/sc. Each window can be denoted by Xm,n such that
Xm,n(i, j) = X(i + l1, j + l2) for 1 ≤ i, j ≤ s, where l1 = (m− 1)s and l2 = (n− 1)s.

2. Compute the cumulative sum for each window Xm,n, positioned by m and n, as

Pm,n(i, j) =
i

∑
k1=1

j

∑
k2=1

(Xm,n(k1, k2)− 〈Xm,n(k1, k2)〉), (3)

where 〈Xm,n(k1, k2)〉 is the average of the sub-image Xm,n, for 1 ≤ i, j ≤ s.
3. Determine the trend of the obtained sub-image by fitting the set of data to the plane

P̃m,n(i, j) = ai + bj + c, where a, b, and c are parameters which are estimated using
the least square method. Subsequently, one calculates the local variances associated
to each sub-image Pm,n as

F2(m, n, s) =
1
s2

s

∑
i=1

s

∑
i=1

[Pm,n(i, j)− P̃m,n(i, j)]2. (4)

4. Next, averaging over all sub-images, the overall detrended fluctuation is obtained as

F2(s) =

(
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

F2(m, n, s)

)1/2

. (5)

This procedure is repeated for a broad range of segment lengths s, considering the
range 6 ≤ s ≤ min(M, N)/4. In order to assess a fractal scaling property of the pixelated
surface, the fluctuation function F2(s) should display a power law scaling

F2(s) ∼ sα, (6)
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where α is called the scaling fluctuation exponent. This scaling exponent can be found
as the slope of a double logarithmic plot of F2 as a function of s, and it is a measure of
the degree of correlation among the pixels of the surface. As is pointed out in [15], the
fluctuation scaling exponent can be used as an appropriate and objective measure of the
quality of encryption algorithms. When the α exponent of the encrypted image is close to 1,
then it is supposed that the encryption system is secure from the perceptual point of view.
Furthermore, in [16], it is is established that the visual quality of the final encrypted image
will be better if the scaling exponent α of the final encrypted image is closer to that of the
carrier image.

3. Encryption System Model
3.1. Encryption System

In this work, we consider the encryption system employed in [3], which is based on an
improved ZigZag transform and a compound of dynamical chaotic systems. The general
structure of such an encryption process is shown in Figure 3. This scheme consists of three
parts: (1) of an improved ZigZag transform and the chaotic Lü system to scramble the
original image pixels, which were complemented by a sorting scramble algorithm and
(2) the chaotic Lü system and chaotic logistic map (LL compound) to generate a secure key.
(3) Finally, an adjacent-side XOR method is used to complete the image encryption scheme.

Figure 3. Schematic diagram of the encryption system proposed by Xingyuan et al. [3]. At first,
an improved ZigZag transform is applied to the original image (IO) resulting in an image IS. The
latter image and the generated key K are the input to the encryption function obtaining an encrypted
image IC.

3.2. Modified Encryption System

Similarly to the encryption system used by Xingyuan et al. [3], Figure 4 depicts a
schematic diagram of the steps involved in our proposal to generate a modified image
encryption system, where an S-box and the key generation are based on a hyperchaotic
system. Basically, there are two main differences to compute some encryption stages
or transformations in the complete encryption system. The first main difference of the
previous encryption system is the way to compute the image IS from the original image IO.
In this modification, we just apply one ZigZag transformation to the image IO and after
that an S-box is applied to obtain IS. The other difference is the way to carry out the key
generation, which takes advantage of the process to compute the S-box, see Section 2.2.1.
The main processes of this proposal are described in detail in the following.

Consider an original image Io (or plain-text image) of dimensions M× N, where M
and N are the number of rows and columns, respectively.

Then, proceed with the following steps.

Step 1 Apply the scrambling block to the plain text image IO, which consists of the
application of the standard ZigZag transformation to the image IO and followed
by the generated S-box, as is described in Section 2.2.1, to obtain the image IS.

Step 2 The key generation process is carried out by means of the following approach.

1. Choose four initial conditions such that any system of (1) or (2) presents a
hyperchaotic behavior, depending on which system is used in the S-box gen-
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eration, and obtain a state vector
(

x(1)i , x(2)i , x(3)i , x(4)i

)
, for i = 0, . . . , n � 1,

corresponding to the state vector of the considered hyperchaotic system.
2. Convert each state vector of step 1 into a new state vector of integer values,(

x(1)i , x(2)i , x(3)i , x(4)i

)
, where x(j)

i = fix
(

x(j)
i × 108

)
, for j = 1, . . . , 4, and the

function fix(x) rounds the x value to the nearest integer toward zero.
3. Compute two new vectors:

(
k1

1, k1
2, . . . , k1

n
)

and
(
k2

1, k2
2, . . . , k2

n
)
, where

k1
i =

(
C
((

x(1)i

)2
+
(

x(2)i

)2
+
(

x(3)i

)2
)1/2

+ λ

)
mod 256, (7)

k2
i =

(
Cx(4)i + λ

)2
mod 256, (8)

where i = 0, . . . , n, and C and λ are control parameters.
4. Generate the keys by means of Ki = k1

i
⊕

k2
i , with i = 0, . . . , n, and the

symbol
⊕

represents the exclusive OR operation bit-by-bit.

Step 3 The encryption function comprises two parts: The first part is called the confusion
stage, which is described as

• For encryption stage: If Ki mod 2 = 0, then Ai = k1
i
⊕
((k1

i + Isi ) mod 256),
otherwise, Ai = k2

i
⊕
((k2

i + Isi ) mod 256).
• For decryption stage: Ki mod 2 = 0, then Isi = k1

i
⊕
((Ai − k2

i ) mod 256),
otherwise, then Isi = k2

i
⊕
((Ai − k1

i )mod 256).

The second part of the encryption function, called the diffusion stage, is described
by the following equations:

Ui = Ai(bx
(4)
i × 256c mod 256),

Ic =


Ic1 = U1

⊕
ϕ,

Ici+1 = Ici

⊕
Ui+1,

(9)

where x(4)i is the value of the i-th iteration of the fourth state of the hyperchaotic
system. Ic in (9) is the final result of the encryption system. The encryption key
can be represented by an array of six elements: key = (x(1)0 , x(2)0 , x(3)0 , x(4)0 , ϕ, λ).

The first four elements of the key, x(1)0 , x(2)0 , x(3)0 , x(4)0 , correspond to the initial
conditions of the hyperchaotic dynamical system, whereas ϕ and λ are control
parameters of the encryption system.

In order to improve the sensitivity of the cipher, the value of ϕ should not be too
small. In such a case, some adjustments are proposed. For example, considering
that the original image to be encrypted is IO = {p(i, j)}, where p(i, j) is the value
of the pixel at position (i, j), then, the following values are calculated:

H1 =
M⊕

i=1

N⊕
j=1

p(i, j),

H2 =
M

∑
i=1

N

∑
j=1

p(i, j)mod 256,

(10)

where H1 is the exclusive OR operation of all the grayscale values in the original
image IO, whereas H2 is the sum of all pixels modulo 256. With the H1 and H2
values, then ϕ′ = K + H1H2 and λ′ = (λ + H1H2)mod 256 are calculated. The ϕ′

and λ′ values will be replaced by the values of ϕ and λ, respectively.
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Figure 4. Block diagram of our proposed encryption system. An image IS is obtained after the
standard ZigZag, and the S-box procedures are applied to the original image IO. The image IS and
the generated key K are the input to the encryption function resulting in an encrypted image IC.

4. Results and Performance Analysis

To measure the impact of the scrambling process on the quality and the robustness
of the image encryption system, some common statistical tests have considered such as
the histogram analysis, the correlation among the adjacent pixels, the entropy, and the
2D-DFA metric. In order to make a comparison, we consider the image encryption systems
discussed in Section 3.1: the system used in [3], called E1; our modification with the
hyperchaotic Lorenz and Chen system, denominated as E2 and E3, respectively; and one
more system based on our modification, called E4, which considers the S-box from [2].

The complete numerical implementation of the image encryption algorithms were
performed under the MATLAB R2017b software on a Mac mini with Intel i3 quad-core,
CPU 3.6 GHz, and 8 GB RAM memory. In addition, all the hyperchaotic systems considered
here were simulated numerically with the classical fourth-order Runge–Kutta algorithm.

4.1. Database of the Images

With the aim to evaluate the performance of our proposal, a representative test bank
of images with different characteristics is considered. In particular, a total of six gray-level
images were used in this study. All of them have dimensions of 512× 512 pixels, and
they have been chosen because they are widely used as standard test images in the field
of image processing. These original images IO are shown in Figure 5, which are freely
available at http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
(accessed on 15 April 2021).

Figure 5. The image dataset considered in this work. Original images (IO) of size 512× 512, each
image is numbered 1 to 6 from left to right and top to bottom.

4.2. Histogram Analysis

Histogram analysis is an important statistical feature of the images, which is generally
used to evaluate the performance of image encryption systems. An image histogram shows
how pixels in an image are distributed by plotting the number of pixels at each color
intensity level. If the histogram of an encrypted image has a uniform distribution, then the
encryption system is able to hide the redundancy of original image [3,16].

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
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We calculate the histograms for all gray-level images of the image database, and their
respective images IS and IC considering the four image encryption systems. As an example,
the histograms of the Lena test image and its respective images IS are shown in Figure 6.
We can observe in Figure 6c,d acceptable levels of confusion in the visual form of the data
when an S-box is considered in the encryption systems E2, E3, and E4, respectively. It is
clear that in these cases we cannot achieve a complete unintelligible form as the E1 system
achieved, see Figure 6e. We will see that the previous results with another encryption stage
or transformation, then we can achieve a better unintelligible form. In the bottom row of
the same figure, their respective histograms images are displayed. One can see that there
is no difference between the histograms of images IO and IS of E1 system, Figures 6f,g,
respectively, whereas the rest of them do not present a similarity between the histogram of
the original image IO with its respective histograms of images IS.

Similarly to the previous case, the histograms of the Lena test image and its encrypted
images IC are shown in Figure 7. In these cases, the encrypted images IC achieved an
unintelligible form. Moreover, one can see that the histograms of the encrypted images are
uniformly distributed and significantly different from the respective histogram of the Lena
test image. Therefore, all of the image encryption schemes can make statistical analysis
unfeasible to some extent.

With the aim to verify that the encrypted image histogram follows a uniform distribu-
tion, and as is pointed out in [25], we consider the chi-square test using

χ2 =
256

∑
j=1

(Oj − µj)
2

µj
,

where Oj and µj are the observed and the expected occurrence frequencies of each pixel
(0–255), respectively. Using a level of significance of α = 0.05, the p-values for each of the
encrypted images are shown in Table 1, where the null hypothesis is not rejected if the
p-value is greater than α = 0.05. Therefore, it is concluded that the histograms present a
uniform distribution for this level of significance.

Figure 6. Histogram analysis for the Lena test image. (a) The plain image IO. (b–e) The images IS

considering the image encryption systems E1, E2, E3, and E4, respectively. (f–j) The corresponding
histograms of images (a–e).
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Figure 7. Histogram analysis for the Lena test image. (a) The plain image IO. (b–e) The encrypted
images IC with the image encryption systems E1, E2, E3, and E4, respectively. (f–j) The corresponding
histograms of images (a–e).

Table 1. p-values of the hypothesis test for the encrypted images.

Image p-Values

E1 E2 E3 E4

1 0.3187 0.1375 0.7522 0.3187
2 0.2523 0.2315 0.5076 0.3419
3 0.0615 0.7384 0.0052 0.1463
4 0.6579 0.2443 0.9445 0.4398
5 0.3718 0.5787 0.5150 0.3920
6 0.7848 0.9676 0.2627 0.8596

4.3. Correlation between Adjacent Pixels

It is known that plain images usually present a high correlation between their adjacent
pixels, a feature that exposes their security making it vulnerable to statistical attacks [3].
If the coefficient is close to 0, it suggests that there is no linear correlation or a weak
linear correlation. Therefore, a well-designed encryption system should not present a high
correlation in the horizontal, vertical, and diagonal directions. To show that the encrypted
image is independent of the test plain image, we calculate the correlation coefficient
between the adjacent pixels of both images using

rxy =
cov(x, y)√
D(x)

√
D(y)

, (11)

where

cov(x, y) =
1
K

K

∑
i=1

(xi − E(x))(yi − E(y)),

D(x) =
1
K

K

∑
i+1

(xi − E(x))2, D(y) =
1
K

K

∑
i+1

(yi − E(y))2,

E(x) =
1
K

K

∑
i=1

xi, E(y) =
1
K

K

∑
i=1

yi.

In the last expressions, x and y represent the corresponding pixels between the two images;
N is the total number of pixels; and cov(x, y), D(·), and E(·) represent covariance, variance
and mean, respectively. Note that we randomly select 5000 pairs of adjacent pixels in each
direction from the plain images IO and their respective images IS or IC. Then, for each
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case, we have computed the correlation coefficient of each pair. In Figure 8, the distribution
of adjacent pixels at the horizontal direction in the Lena test image and their IS versions
is illustrated. The plain image, Figure 8a, presents a strong correlation between adjacent
pixels since most of the pixels are on the identity line y = x. As is shown in Figure 8b–e,
and after the scrambling stage, independently of the image encryption system, the pixels
of images IS are scattered more uniformly, but preserves many pixels on the identity line.
This situation is different after the encryption stage, where the pixels of the images IC are
scattered very uniformly as is displayed in Figure 9b–e.

Figure 8. Correlation plot of two adjacent pixels at the horizontal direction for (a) the Lena test image
and (b–e) the images IS considering the image encryption systems E1, E2, E3, and E4, respectively.

Figure 9. Correlation plot of two adjacent pixels at the horizontal direction for (a) the Lena test image
and (b–e) the encrypted images IC with the image encryption systems E1, E2, E3, and E4, respectively.

The correlation coefficients of the image dataset and the respective IS images with
different scrambling processes are listed in Tables 2–7, considering the horizontal(h), ver-
tical(v), and diagonal(d) directions. In Tables 2 and 3 are the results when one operation
is applied to the IO images in the scrambling stage the standard and improved ZigZag
operation, and the S-box of the E2, E3, and E4 systems, respectively. For the case of the
ZigZag transformation, we can observe in both cases a strong correlation in the horizontal
direction, but a weak correlation in the rest of the directions, whereas for the IS images
obtained with the S-box in the scrambling stage are exhibited just weak correlations. Then,
it seems that the application of the S-box in the scrambling stage decreases the correlation
coefficients. In addition, we can find that the correlation between adjacent pixels in images
IS becomes low when the scrambling process combines a ZigZag transformation with a
sorting scrambling algorithm or an S-box, see Tables 4 and 5. On the other hand, as is shown
in Tables 6 and 7, the correlation coefficients of the encrypted images IC are close to 0, and
therefore there is no correlation among the pixels independently of the used encryption
scheme, which suggests that such encryption systems can resist statistical attacks.
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Table 2. Correlation coefficients between adjacent pixels of plain images and their IS images considering the standard and
improved ZigZag transformation in the scrambling stage.

Correlation Coefficients

Image
Io Standard ZigZag Operation Improved ZigZag Operation

h v d h v d h v d

1 0.9838 0.9858 0.9743 0.9747 −0.0549 −0.0520 0.9688 0.5624 0.5627
2 0.9848 0.9895 0.9798 0.9670 0.0328 0.0377 0.9647 0.3275 0.3320
3 0.9710 0.9791 0.9605 0.9412 0.1039 0.0979 0.9387 0.3542 0.3603
4 0.9727 0.9752 0.9629 0.9343 0.2256 0.2149 0.9319 0.3555 0.3564
5 0.9942 0.9959 0.9923 0.9937 0.0497 0.0495 0.9862 0.4799 0.4798
6 0.9477 0.9317 0.9078 0.8662 0.1003 0.1221 0.8579 0.3117 0.2972

Table 3. Correlation coefficients between adjacent pixels of plain images and their IS images obtained with the S-box of the
E2, E3 and E4 systems in the scrambling stage.

Correlation Coefficients

Image
E2 E3 E4

h v d h v d h v d

1 0.2330 0.2311 0.1852 0.3580 0.3275 0.2483 0.1984 0.2494 0.1758
2 0.1442 0.1348 0.0636 0.1497 0.1945 0.1442 0.0862 0.1019 0.0618
3 0.0585 0.0917 0.0531 0.1387 0.1353 0.0740 0.0871 0.0596 0.0426
4 0.1095 0.1383 0.0748 0.1709 0.1870 0.1522 0.0687 0.0532 0.0418
5 0.1104 0.1384 0.1123 0.2002 0.2715 0.1695 0.1470 0.1234 0.0676
6 0.0742 0.0462 0.0474 0.0889 0.1113 0.0707 0.0280 0.0489 0.0444

Table 4. Correlation coefficients between adjacent pixels of the IS images considering the E1 and
E2 systems.

Correlation Coefficients

Image
E1 E2

h v d h v d

1 0.0153 −0.0309 0.0014 0.2095 0.2165 0.1432
2 0.0188 0.0297 −0.0003 0.0122 0.0120 0.0979
3 0.0109 −0.0025 0.0004 0.0752 0.0825 0.0513
4 0.0016 0.0588 0.0130 0.0100 0.0701 0.0980
5 0.0065 0.0152 0.0182 0.0143 0.0012 0.0092
6 −0.0001 −0.0016 −0.0661 0.0031 0.0032 0.0023

Table 5. Correlation coefficients between adjacent pixels of the IS images considering the E3 and
E4 systems.

Correlation Coefficients

Image
E3 E4

h v d h v d

1 0.3499 0.3146 0.2588 0.2094 0.2248 0.1455
2 0.1608 0.1931 0.1327 0.0822 0.0874 0.0887
3 0.0143 0.0134 0.0129 0.0952 0.0977 0.0543
4 0.0162 0.0212 0.0151 0.0726 0.0517 0.0516
5 0.0021 0.0023 0.0019 0.1134 0.1338 0.1156
6 0.0812 0.0043 0.0690 0.0578 0.0542 0.0158
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Table 6. Correlation coefficients between adjacent pixels of the IC images considering the E1 and
E2 systems.

Correlation Coefficients

Image
E1 E2

h v d h v d

1 0.0690 0.0034 0.0261 0.0029 −0.0019 −0.0126
2 0.0727 −0.0198 −0.484 0.0029 −0.0019 −0.0126
3 −0.0087 −0.0078 0.0239 0.0698 0.0729 0.0792
4 −0.0035 0.0096 −0.0190 0.0117 −0.0225 0.0156
5 0.0511 −0.050 −0.0039 0.0183 0.0092 −0.0168
6 −0.0058 −0.0050 0.0452 0.0044 0.0211 0.0159

Table 7. Correlation coefficients between adjacent pixels of the IC images considering the E3 and
E4 systems.

Correlation Coefficients

Image
E3 E4

h v d h v d

1 0.0036 0.0048 0.0152 −0.0050 0.0006 0.0015
2 0.0036 0.0048 0.0152 −0.0156 −0.0115 0.0189
3 0.1399 0.1293 0.0976 0.0261 −0.0014 0.0288
4 0.0068 −0.0062 −0.0018 −0.0018 0.0250 −0.0057
5 −0.0193 −0.0031 −0.0103 0.0178 −0.0139 0.0061
6 0.0015 0.0016 −0.0109 −0.0028 0.0104 −0.0143

4.4. NPCR and UACI Analysis

In image encryption, the cipher resistance to differential attacks is commonly analyzed
with the two measures: the number of pixels changing rate (NPCR) and the unified
averaged changed intensity (UACI). Both measures are based on slight changes of two
images keeping the key unchanged.

For the original (IO) and encrypted (IC) images of dimensions M×N, the NPCR make
the assessment of the pixel difference between them as follows:

NPCR(IO, IC) =
M

∑
i=1

N

∑
j=1

D(i, j)
M× N

× 100, (12)

where D(i, j) is calculated as

D(i, j) =

{
0 IO(i, j) = IC(i, j),
1 IO(i, j) 6= IC(i, j).

(13)

In a similar way, the UACI evaluates the mean intensity of differences between the IO
and IC images as follows

UACI(IO, IC) =
M

∑
i=1

N

∑
j=1

|IO(i, j)− IC(i, j)|
M× N × L

× 100, (14)

where L is the largest value pixel value of both images. A value of 99% for the NPCR
test and a value of 33% for UACI are interpreted as success criteria. As is pointed out
in [10,26], for a significance level α, the obtained results are accepted if the NPCR values
are greater than the critical NPCR value N∗α , and the UACI values should be in the critical
interval [U∗−α , U∗+α ]. Table 8 shows the N∗α , U∗−α and U∗+α values for some cases, where, in
accordance to the works in [10,26], we also set α = 0.05. It seems that the encryption system
with two operations at the scrambling stage achieves a better performance, as the critical
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NPCR value is greater than the encryption system with just one operation at the scrambling
stage. To illustrate the evaluation results of the NPCR and UACI, Tables 9–13 present the
evaluation results of NPCR and UACI at the scrambling stage and the encryption stage. We
can observe a better performance when two operations are considered at the scrambling
stage. Such a situation indicates that our conjecture will provide good resistance against
differential attacks.

Table 8. Expected NPCR (%) and UACI (%) values for some cases when the standard ZigZag
(S-ZZ) and improved ZigZag (I-ZZ) transformation are applied to images IO in the scrambling and
encryption stages.

Image→ IS IC

System ↓ N∗
α U∗−

α U∗+
α N∗

α U∗−
α U∗+

α

E1 with I-ZZ 97.5023 32.1023 32.9938 98.1233 33.3312 33.6310
E2 with S-box 97.9002 31.1025 31.9533 98.2313 33.1133 33.7521
E2 with S-ZZ and S-box 99.3312 33.2815 33.5731 99.6135 33.3328 33.5451

Table 9. NPCR (%) and UACI (%) values when the standard ZigZag (S-ZZ) and improved ZigZag
(I-ZZ) transformation are applied to images IO in the scrambling and encryption stages.

IS IC

Image
S-ZZ I-ZZ S-ZZ I-ZZ

NPCR UACI NPCR UACI NPCR UACI NPCR UACI

1 97.5672 33.3830 97.0600 31.2290 98.6108 33.3330 97.0137 32.2630
2 97.6622 32.9965 98.1769 31.9929 98.7830 32.2187 97.1992 32.5631
3 97.4531 32.1238 97.9945 31.9995 98.8612 33.0953 98.0945 32.9752
4 97.9954 31.9549 97.4301 31.9437 98.0167 33.3316 98.9012 33.2139
5 97.9128 32.9981 98.1956 32.2190 98.5621 33.4319 98.1605 33.4691
6 97.4182 32.4794 97.3981 32.2964 98.1598 33.4189 98.9158 33.4498

Pass 5 5 6 5 5 4 5 5
Mean 97.6681 32.6559 97.7092 31.9466 98.4989 33.1377 98.0474 32.9940

Std 0.0571 0.3134 0.2265 0.1432 0.1151 0.2175 0.6572 0.2404

Table 10. NPCR (%) and UACI (%) values considering IO and IS images when the S-box of the E2, E3

and E4 systems are applied to images IO in the scrambling stage.

IS

Image
E2 E3 E4

NPCR UACI NPCR UACI NPCR UACI

1 97.9124 31.9252 97.0467 32.3768 96.9961 32.4314
2 98.0496 31.2461 97.0459 32.4592 97.1198 32.9832
3 97.9047 31.9010 97.8830 32.1674 97.9179 32.9174
4 98.3955 31.2061 97.7819 31.0194 97.5991 31.0173
5 97.8728 31.2187 97.1298 32.2109 97.0652 32.2487
6 98.1807 31.2205 97.9612 31.0175 97.1921 31.0147

Pass 6 6 5 4 5 4
Mean 98.0526 31.4529 97.4747 31.8752 97.3150 32.1021

Std 0.0415 0.1272 0.1967 0.4517 0.1323 0.7860
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Table 11. NPCR (%) and UACI (%) values considering the IO and IC images when the S-box of the
E2, E3, and E4 systems are applied to images IO in the scrambling stage.

IC

Image
E2 E3 E4

NPCR UACI NPCR UACI NPCR UACI

1 99.0783 33.1338 98.2983 32.9927 99.0485 32.9832
2 98.9916 33.1859 98.9630 32.7950 99.7391 33.3861
3 99.5842 33.4997 99.4598 33.0937 98.9937 33.2487
4 98.4461 33.2643 99.5293 33.2197 98.3671 33.2201
5 98.1845 33.3432 98.9932 33.3141 98.6825 33.2826
6 98.2901 32.3379 98.2017 33.3357 98.9951 33.3261

Pass 5 6 5 5 5 5
Mean 98.7624 33.1274 98.9075 33.1251 98.9710 33.2411

Std 0.2969 0.1661 0.3142 0.0433 0.2090 0.0193

Table 12. NPCR (%) and UACI (%) values considering IO and IS images with the E1 − E4 systems in
the scrambling stage with two operations.

Scrambling Block

Image
NPCR UACI

E1 E2 E3 E4 E1 E2 E3 E4

1 98.9993 99.5691 99.6881 99.1727 33.4662 33.2931 33.4621 33.4638
2 99.3956 99.6142 99.6129 99.4328 33.3687 33.4637 33.4674 33.4643
3 99.2137 99.6344 99.6017 99.3449 33.4431 33.4631 33.4538 33.4459
4 99.4429 99.6147 99.6045 99.6327 33.4537 33.4638 33.4625 33.4452
5 99.4414 99.6134 99.6827 99.6157 33.4238 33.4545 33.4545 33.4637
6 99.4215 99.6135 99.6122 99.6020 33.4632 33.4623 33.4632 33.4628

Pass 6 6 6 6 6 6 6 6
Mean 99.3190 99.6098 99.6336 99.4667 33.4364 33.4334 33.4605 33.4576

Std 0.0320 0.0004 0.0016 0.0340 0.0013 0.0047 0.0025 0.0084

Table 13. NPCR (%) and UACI (%) values considering IO and IC images with the E1 − E4 systems
when two operations are considered in the scrambling stage.

Encryption Block

Image
NPCR UACI

E1 E2 E3 E4 E1 E2 E3 E4

1 99.6112 99.6226 99.9083 99.6028 33.4926 33.4748 33.4843 33.4838
2 99.5932 99.6633 99.6825 99.6033 33.4693 33.4683 33.4683 33.4782
3 99.6135 99.6383 99.6838 99.6139 33.4739 33.4874 33.4635 33.4632
4 99.6133 99.6253 99.6335 99.6873 33.4843 33.4724 33.4639 33.4639
5 99.6332 99.7823 99.7172 99.7643 33.4934 33.4891 33.4718 33.4763
6 99.6123 99.6298 99.6382 99.6273 33.4793 33.4636 33.4693 33.4697

Pass 6 6 6 6 6 6 6 6
Mean 99.6127 99.6552 99.7105 99.6498 33.4821 33.4759 33.4701 33.4725

Std 0.0016 0.0039 0.0103 0.0041 0.0937 0.0012 0.0054 0.0063

4.5. Information Entropy

To measure the randomness of images, the information entropy test was carried out.
This test provides us information on the texture of an image and returns a scalar value H
which is calculated as [27]
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H(s) =
255

∑
i=0

p(si) log2

(
1

p(si)

)
, (15)

where p(si) denotes the probability of the appearance of the symbol si. For each image of
256 gray levels, the more entropy value H gets close to the ideal theoretical value of 8, the
less possible for attackers to decode encrypted images. Tables 14–16 show the numerical
entropy values of the IO, IS, and IC images when the ZigZag transformation, the S-box,
and both of them have been applied to images IO in the scrambling stage, respectively. We
can observe that the entropy values obtained for the IS images are close or greater than 7,
but the IC images present an increment in their entropy values, for all encryption systems,
and are close to the ideal value, which also means high resistance to entropy attacks.

Table 14. The comparison of information entropies for the IS and IC images when the standard ZigZag
(S-ZZ) and improved ZigZag (I-ZZ) transformation are applied to images IO in the scrambling stage.

Entropy

Image
IS IC

IO S-ZZ I-ZZ S-ZZ I-ZZ

1 7.0478 7.0479 7.0477 7.9989 7.9980
2 7.4451 7.4452 7.4449 7.9977 7.9975
3 7.2367 7.2367 7.2368 7.9966 7.9964
4 6.9542 6.9544 6.9541 7.9965 7.9953
5 7.2757 7.2760 7.2765 7.9974 7.9983
6 7.2925 7.2930 7.2921 7.9990 7.9990

Table 15. The comparison of information entropies for the IS and IC images when the S-box of the
E2, E3, and E4 systems is applied to images IO in the scrambling stage.

Entropy

Image
IS IC

E2 E3 E4 E2 E3 E4

1 7.0477 7.0480 7.0478 7.9980 7.9984 7.9983
2 7.4459 7.4465 7.4460 7.9986 7.9984 7.9988
3 7.2370 7.2374 7.2367 7.9990 7.9991 7.9991
4 6.9550 6.9548 6.9545 7.9991 7.9991 7.9991
5 7.2740 7.2743 7.2740 7.9983 7.9987 7.9980
6 7.2935 7.2930 7.2929 7.9991 7.9991 7.9989

Table 16. The comparison of information entropies for the IS and IC images when the complete
scrambling stage is applied to images IO.

Entropy

Image
IS IC

E1 E2 E3 E4 E1 E2 E3 E4

1 7.0478 7.0477 7.0477 7.0464 7.9993 7.9993 7.9993 7.9993
2 7.4451 7.4451 7.4451 7.4451 7.9993 7.9993 7.9993 7.9993
3 7.2367 7.2367 7.2367 7.2367 7.9992 7.9993 7.9994 7.9993
4 6.9542 6.9542 6.9542 6.9542 7.9993 7.9993 7.9993 7.9994
5 7.2757 7.2737 7.2737 7.2757 7.9992 7.9992 7.9993 7.9994
6 7.2925 7.2925 7.2925 7.2925 7.9993 7.9993 7.9993 7.9994
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4.6. Peak Signal to Noise Ratio (PSNR) Analysis

The peak signal to noise ratio (PSNR) has been considered as an objective metric to
measure the quality of an image [15]. The PSNR metric is computed as

PSNR(IO, IC) = 10log10
(2b − 1)2

MSE(IO, IC)
, (16)

MSE(IO, IC) =
1

MN

M

∑
i=1

N

∑
j=1

[IO(i, j)− IC(i, j)]2, (17)

where IO is the original image, IC is the encrypted image, and b is the number of bits
required to represent each pixel of the images, which is equal to 8. The mean squared error,
which is denoted by MSE, is defined by Equation (17), where MN is the size of the images,
whereas (i, j) corresponds to the coordinates of the pixel. The value of the PSNR represents
the similarity between the images IO and IC, where the higher the value of PSNR, the lesser
error or greater similarity between them [7,15,16].

Table 17 shows the results of the PSNR between the original images IO with their
respective images at the scrambling and encryption stages, IS and IC, respectively, when
two operations are considered at the scrambling stage. It is observed that the obtained
values of PSNR are low for all the encrypted images, hence they also show that our
proposals are good.

Table 17. PNSR values in IC considering the complete scrambling.

PSNR Values

Image
IS IC

E1 E2 E3 E4 E1 E2 E3 E4

1 13.1462 15.7231 13.0126 13.0480 7.8623 7.4127 7.9827 7.4568
2 12.1596 13.0690 12.5056 12.1596 8.3917 8.4818 8.6578 8.2682
3 12.4326 13.2715 13.2670 11.2021 8.8176 8.8086 8.8526 8.8264
4 13.3398 12.4504 12.4812 13.5120 7.9042 7.9827 7.8129 7.6559
5 11.3313 11.4401 11.0419 11.4757 8.9271 8.8597 8.8045 8.7528
6 13.8149 13.7376 13.6122 13.3356 9.4522 9.4782 9.4529 9.2740

4.7. 2D-DFA Metric

To carry out the scaling analysis of the different encryption systems, we apply the
2D-DFA to the IO, IS, and IC images when the scrambling stage considers one or two
operations. Tables 18 and 19 provide the scaling exponents when the standard or improved
version of the ZigZag operation or an S-box is applied to IO images, respectively. For
this metric, the scaling exponents present similar values for IS and IC versions, where the
scaling exponent has a lower value compared to the obtained of the IO images, and some
information of the original image may be revealed.

On the other hand, Table 20 shows the results of the scaling analysis for all encryption
systems considered in this work with a scrambling stage with two operations. For this
metric, the values of the scaling exponents of the IS images are lower than the obtained
for the IO images. Even more, the scaling exponent values of the encrypted images are
close to 1, which means that the analyzed information presents a persistent behavior, and
according to the work in [15], the encrypted images do not reveal any piece of information
that can allow to distinguish the original images.
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Table 18. The comparison of information of the scaling exponents obtained from applying the 2D-
DFA scheme to the IO, IS, and IC images, when the standard ZigZag (S-ZZ) and improved ZigZag
(I-ZZ) transformation are applied to images IO in the scrambling stage.

α Exponents

Image
IS IC

IO S-ZZ I-ZZ S-ZZ I-ZZ

1 2.1990 1.9504 1.7666 1.8956 1.8603
2 2.2121 1.8130 1.6232 1.8845 1.8556
3 2.2851 1.8130 1.6389 1.6329 1.8594
4 2.1970 1.8808 1.5421 1.5421 1.8063
5 2.5659 1.8495 1.8152 1.7881 1.6562
6 1.9218 1.7336 1.8091 1.9323 1.8921

Table 19. The comparison of information of the scaling exponents obtained from applying the 2D-
DFA scheme to the IS and IC images, when the S-box of the E2, E3, and E4 systems is applied to
images IO in the scrambling stage.

α Exponents

Image
IS IC

E2 E3 E4 E2 E3 E4

1 1.5664 1.6356 1.5737 1.7754 1.7941 1.7881
2 1.4223 1.5746 1.4929 1.5667 1.4651 1.6956
3 1.3669 1.5002 1.4416 1.6796 1.7534 1.7598
4 1.5422 1.5627 1.3373 1.6988 1.6793 1.7018
5 1.5152 1.6566 1.5156 1.5583 1.5868 1.6039
6 1.1891 1.2609 1.2655 1.5624 1.5617 1.6117

Table 20. The comparison of information of the scaling exponents obtained from applying the
2D-DFA scheme to the IS and IC images when the complete scrambling stage is applied to images IO.

α Exponents

Image
IS IC

E1 E2 E3 E4 E1 E2 E3 E4

1 1.5351 1.5464 1.6356 1.5737 1.1426 0.9999 1.0018 1.0481
2 1.5444 1.4223 1.5746 1.4929 1.1545 1.0028 1.0072 1.0556
3 1.5528 1.3669 1.5002 1.4416 1.1394 1.0030 1.0016 1.0380
4 1.5652 1.5422 1.5627 1.3373 1.1346 1.0224 0.9948 1.0648
5 1.5438 1.5152 1.6566 1.5156 1.1386 0.9955 1.0318 1.0393
6 1.5616 1.1891 1.2609 1.2665 1.1222 0.9926 1.0141 1.0631

As an example, Figure 10 shows the results of the performance of the 2D-DFA of
the Lena test image. In Figure 10a are the IO image and its respective scaling exponent
α ≈ 2.2121; Figure 10b,c corresponds to IS and IC when the S-box of E2 is considered in
the scrambling stage with scaling exponents α ≈ 1.5664 and α ≈ 1.4754, respectively.
In this case, we can observe acceptable levels of confusion in the visual form of the
encrypted image, but we cannot achieve a complete unintelligible form. On the other
hand, Figure 10d,e corresponds to IS and IC when the complete scrambling stage in the
E2 system with scaling exponents α ≈ 1.4223 and α ≈ 1.0028, respectively. For this case,
we notice that the scaling exponent α is close to unity, and the encrypted image does not
reveal information. Therefore, we consider that this 2D-DFA method is an efficient tool to
describe this kind of image in terms of the scaling exponent values, which are in agreement
with those obtained in [15].
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(a)

(b) (c)

(d) (e)

Figure 10. (a) The Lena test image and its respective scaling analysis. (b,c) The IS and IC images with
their respective scaling analysis, where the S-box of the E2 system is considered in the scrambling
stage. (d,e) The IS and IC images with their respective scaling analysis, where the complete scrambling
stage in the E2 system is considered.

5. Discussion

Despite that the main architecture of the encryption system as well as the main
operations that we consider are well known from literature, only a few attempts have
been made to establish how many operations or transformations are required in an image
encryption system, or if an evaluation of internal stages of the complete encryption process
may be helpful in the design of image encryption systems.

There are some missing tests to assess the performance of our proposals, and with the
aim to carry out a performance comparison of some existing works with our proposals,
we apply the encryption system E2 for a color Lena image (256× 256). In Figure 11, we
illustrate the histograms for the Lena test image, its encrypted version, and their respective
histograms for each color intensity level. From the figures, one can see that the histograms
of the encrypted versions are uniformly distributed and significantly different from the
respective histograms of the original image, which indicates that it would be difficult for
the attacker to decipher the image content.

In Figure 12, the distribution of adjacent pixels at the horizontal, vertical and diagonal
directions for the color Lena image (top row) and its encrypted version (bottom row) is
shown. Figure 12a–c illustrate a strong correlation between adjacent pixels along the three
directions, whereas there is no correlation among the pixels for the encrypted version, see
Figure 12d–f.

Figure 13 shows the scaling results when the 2D-DFA is applied to the color Lena
image in the E2 system. The results are very similar to the case of the grayscale Lena image
presented in Figure 10, as the scaling exponent α is closer to unity, the encrypted image
does not reveal information.
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Figure 11. Histogram analysis for the color Lena test image. (a) The plain-image IO. (b–d) Histograms
for red, green and blue channels, respectively. (e) The encrypted Lena image considering the image
encryption system E1. (f–h) The corresponding histograms for red, green and blue channels of the
encrypted image (e).

Figure 12. Correlation plot of two adjacent pixels for the color Lena test image (top) and its encrypted
version (bottom), using E2, at the horizontal (first column), vertical (second column), and diagonal
(third column) direction.

Figure 13. (a) The color Lena test image, (b) the IS, and (c) IC images, with their respective scaling
analysis when the complete scrambling stage in the E2 system is considered.

Furthermore, Table 21 contains the results of the comparison of our proposals with
other methods proposed by Li et al. [11], Ahmad et al. [12], and Ramasamy et al. [7], where
the correlation analysis, entropy, NPCR, UACI, and PSNR were considered. The bold values
shown in Table 21 indicate that our results are quite comparable with the other methods.
Moreover, Table 22 shows a speed analysis test, where the algorithms in [7,13,28,29] were
considered. The results show that our proposals are computationally efficient.
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Table 21. Performance evaluation and comparison with other methods considering as original image
the Lena color image.

Measure [11] [12] [7]
Proposed

E1 [3] E2 E3

Horizontal correlation 0.0327 0.0026 −0.0237 0.0219 −0.0037 0.0091
Vertical correlation 0.0219 −0.0038 −0.0178 0.0128 −0.0278 0.0029

Diagonal correlation 0.0180 −0.0062 −0.0284 −0.0059 0.0041 −0.0158
Entropy 7.9993 7.9832 7.9995 7.9990 7.9990 7.9990
NPCR n/a 0.9966 0.9962 0.9961 0.9966 0.9960
UACI n/a 0.3362 0.3358 0.3345 0.3346 0.3346
PSNR n/a 8.3656 6.7494 4.7465 4.7961 4.8101

Table 22. Comparison of computational time for the proposed algorithms.

Algorithms

[28] [29] [13] [7]
Proposed

E1 [3] E2 E3 E4

Time (seconds) 2.414 2.169 2.386 2.087 2.055 1.913 1.925 1.992

In this context, it is observed that through certain tests we analyzed the impact of
considering two operations in the scrambling block in some image encryption systems that
are based on hyperchaotic systems. Our main observations are as follows: (a) To consider
more than one operation or transformation in the scrambling stage present an increment in
security; (b) the use of a hyperchaotic dynamical system to remove pixel correlation and
the key generation is desirable to exploit the chaotic characteristics in image encryption
algorithms; and (c) although some standard tests make a good evaluation, the scaling
analysis outperforms as an objective metric.

However, we still cannot establish how many operations are optimal in the scrambling
stage without affect substantially the execution time; which operations will provide a better
performance, or which is the best hyperchaotic system. In addition, a larger number of
images must be considered in the analysis.

6. Conclusions

In this work, we have used some statistical tests and some quality metrics to analyze a
known encryption system and some variants, which are based on hyperchaotic dynamical
systems. In those variants, such hyperchaotic systems are used to generate S-boxes as
well as the key generation in the encryption systems. Although many similar encryption
systems have been proposed, little attention has been paid to evaluate some internal
encryption stages or processes. Our results show that the encryption systems improve the
performance when the scrambling block includes two operations or transformations. This
could help in the design or implementation of this kind of encryption system.

In addition, the 2D-DFA method seems to be more sensitive than some statistical
tests to characterize images in different stages of the encryption process. In our opinion,
this is an efficient metric to indicate if the encrypted images may reveal or not any image
information. Thus, it is suggested that such a scaling exponent can be used as an objective
metric of the quality in different encryption schemes. In fact, a good image encryption
method should obtain a scaling exponent close to unity independently of what encryption
system is used. As is pointed out in [15], one cannot fully guarantee so far that an encrypted
image with such values of the scaling exponent is absolutely immune to any type of attack,
but we consider that this tool with the help of other metrics can provide enhanced security
to encryption systems.

Although many image encryption algorithms based on chaotic dynamical systems
have been proposed, we believe that our approach can be helpful in the design and analysis
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of such systems, as it shows a performance that is comparable with other similar systems.
From the security point of view, the results show that the scaling analysis used here can be
an appropriate measure to assess the quality of encryption methods. In the future, we aim
to evaluate different kinds of operations in the scrambling stage to increase the security
without affecting drastically the processing time. We are also considering to carry out an
extensive examination of which chaotic or hyperchaotic dynamical systems may improve
the protection of the image content, as well as to make a better assessment based on a larger
set of images.
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The following abbreviations are used in this manuscript:

S-ZZ Standard ZigZag transformation
I-ZZ Improved ZigZag transformation
S-box Substitution box
2D-DFA Two-dimensional detrended fluctuation analysis

Appendix A. S-Boxes Based on the Hyperchaotic Systems

Tables A1 and A2 illustrate, in the conventional representation format, the elements
of the two S-boxes considered in this work when the hyperchaotic Lorenz system and the
hyperchaotic Chen system are considered, respectively.

Table A1. Elements of the S-box based on the hyperchaotic Lorenz system (1) in the form of a
16× 16 matrix.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 212 188 234 104 49 245 186 249 30 42 5 187 93 254 144 113
1 158 143 140 251 55 203 100 236 125 123 169 58 218 38 160 18
2 173 0 127 248 126 255 137 46 240 130 134 48 230 141 19 180
3 153 159 163 164 131 166 165 14 238 44 229 146 112 71 129 106
4 109 92 210 75 21 214 150 77 27 228 11 111 51 3 177 148
5 15 96 207 168 182 244 89 50 170 156 105 47 246 190 135 197
6 31 124 250 237 6 219 178 205 199 61 213 139 133 67 16 40
7 152 82 162 41 9 62 193 220 107 138 198 84 208 69 116 78
8 192 102 1 154 224 174 151 54 227 231 43 221 36 52 217 171
9 97 59 56 194 2 120 88 4 209 60 64 79 80 145 26 66
A 34 37 101 10 28 202 157 53 216 103 181 29 235 87 115 233
B 83 13 247 232 119 122 32 242 172 7 95 90 17 86 184 81
C 68 149 74 25 12 147 211 200 94 252 155 195 223 23 33 206
D 191 185 179 117 243 22 39 57 85 114 136 24 176 108 63 225
E 196 98 99 8 204 45 72 65 76 121 128 118 132 142 161 110
F 175 183 222 201 215 70 239 241 253 167 20 73 35 91 226 189
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Table A2. Elements of the S-box based on the hyperchaotic Chen system (2) in the form of a
16× 16 matrix.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 41 38 98 28 75 233 51 192 12 7 4 245 136 252 181 247
1 84 71 123 237 34 20 235 234 240 211 191 236 194 176 239 117
2 242 83 80 60 36 24 5 14 215 179 154 31 118 116 95 56
3 55 77 88 204 110 202 130 106 139 167 183 197 226 29 13 151
4 207 112 153 137 114 91 0 230 190 246 238 128 108 82 131 48
5 161 62 45 241 42 70 209 138 166 145 133 127 121 115 66 157
6 200 99 19 59 97 250 163 206 216 208 61 199 193 227 203 249
7 210 225 78 105 135 16 185 223 49 64 40 147 125 142 35 129
8 124 170 165 177 186 140 205 212 221 86 232 119 6 222 214 43
9 196 189 175 173 180 255 44 159 224 104 63 76 155 219 18 8
A 3 94 141 182 164 26 132 198 143 47 54 22 21 9 25 218
B 111 172 150 251 27 113 101 73 195 228 30 33 74 248 229 126
C 187 254 156 217 79 11 120 107 96 72 1 68 57 52 89 39
D 32 23 168 17 213 244 2 10 243 50 231 220 93 109 122 134
E 67 188 184 178 85 201 92 174 171 253 169 15 162 160 158 103
F 37 102 46 100 152 53 149 58 148 90 87 81 146 144 69 65

References
1. Zhang, Y.; Xiao, D. An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun.

Nonlinear Sci. Numer. Simul. 2014, 19, 74–82. [CrossRef]
2. Tsafack, N.; Kengne, J.; Abd-El-Atty, B.; Iliyasu, A.M.; Hirota, K.; EL-Latif, A.A.A. Design and implementation of a simple

dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. 2020, 515, 191–217. [CrossRef]
3. Wang, X.; W.; Zhang, J.; Cao, G. An image encryption algorithm based on ZigZag transform and LL compound chaotic system.

Opt. Laser Technol. 2019 119, 105581.
4. Hao, J.; Li, H.; Yan, H.; Mou, J. A New Fractional Chaotic System and Its Application in Image Encryption with DNA Mutation,

IEEE Access 2021, 9, 52364–52377. [CrossRef]
5. Zhang, D.; Chen, L.; Li, T. Hyper-Chaotic Color Image Encryption Based on Transformed Zigzag Diffusion and RNA Operation.

Entropy 2021, 23, 361. [CrossRef]
6. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
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