
entropy

Article

A Coupling Framework for Multi-Domain Modelling and
Multi-Physics Simulations

Dario Amirante 1,*, Vlad Ganine 1, Nicholas J. Hills 1 and Paolo Adami 2

����������
�������

Citation: Amirante, D.; Ganine, V.;

Hills, N.J.; Adami, P. A Coupling

Framework for Multi-Domain

Modelling and Multi-Physics

Simulations. Entropy 2021, 23, 758.

https://doi.org/10.3390/e23060758

Academic Editor: Jean-Noël Jaubert

Received: 1 April 2021

Accepted: 10 June 2021

Published: 16 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Thermo-Fluid Systems UTC, University of Surrey, Guildford GU2 7XH, UK; v.ganine@surrey.ac.uk (V.G.);
n.hills@surrey.ac.uk (N.J.H.)

2 Rolls-Royce Deutschland, Eschenweg 11, 15827 Blankenfelde-Mahlow, Germany;
paolo.adami2@Rolls-Royce.com

* Correspondence: d.amirante@surrey.ac.uk

Abstract: This paper describes a coupling framework for parallel execution of different solvers for
multi-physics and multi-domain simulations with an arbitrary number of adjacent zones connected
by different physical or overlapping interfaces. The coupling architecture is based on the execution
of several instances of the same coupling code and relies on the use of smart edges (i.e., separate
processes) dedicated to managing the exchange of information between two adjacent regions. The
collection of solvers and coupling sessions forms a flexible and modular system, where the data
exchange is handled by independent servers that are dedicated to a single interface connecting
two solvers’ sessions. Accuracy and performance of the strategy is considered for turbomachinery
applications involving Conjugate Heat Transfer (CHT) analysis and Sliding Plane (SP) interfaces.

Keywords: code coupling; conjugate heat transfer; overset

1. Introduction

Future simulation technologies will increasingly rely on the capability to perform flex-
ible coupling between existing solvers. Multi-physics problems, including Fluid–Structure
(FS) interactions, moving parts, and Conjugate Heat Transfer (CHT), have recently become
common within the industry, and several commercial packages offer integrated systems to
solve them. Coupling procedures are also widely used for standalone CFD computations:
in turbomachinery and rotorcraft applications, for example, the computational domain is
divided into regions where the flow equations are solved in different frames of reference
to account for the relative motion of objects. Overset (Chimera) methods or sliding plane
techniques are usually adopted to couple the solutions between the zones [1–3].

More generally, there are classes of flow that, due to their inherent hybrid nature (e.g.,
different Reynolds or Mach numbers), can be better resolved using locally specialised flow
solvers or computational settings; a typical example in a turbomachinery application is the
incompressible reacting flow from a combustion chamber coupled to a compressible and
(usually) in-equilibrium mixture flowing trough heavily cooled turbine inlet guide vanes
[4,5].

A class of methods gaining popularity is that of segregated (also referred to as zonal)
methods, where hybrid RANS/LES modelling closures are coupled together. In this case,
the domain is split using the idea that the best turbulence closure is more effective at
different zones of the flow; the interfaces must guarantee both the physical and statistical
compatibilities between the diverse modelling approximations [5–7].

The growing importance of similar requirements, combined with the modularity avail-
able in a modern simulation environment, naturally suggest the need for some capability
allowing for coupling of these individual physical modules, discretisation techniques, or
mixed fidelity methods. Good examples of this approach are the CEDRE software package
[8] developed at ONERA and the zonal flow solver of Schröder and his group [9,10].

Entropy 2021, 23, 758. https://doi.org/10.3390/e23060758 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23060758
https://doi.org/10.3390/e23060758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060758
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060758?type=check_update&version=2

Entropy 2021, 23, 758 2 of 30

A common issue with code coupling methods is the need to combine flexibility
and accuracy with simplicity and parallel performance. Following Larson et al. [11], a
parallel coupled model can be schematised by a net of vertices representing individual
solvers that interact through connecting edges. This is a decentralised model suitable for
the parallelisation of heterogeneous complex systems where the individual solvers are
managed through input information from their neighbors. If the information is available,
they are able to proceed, while they have to wait if this is not the case: from the parallel
performance point of view, the system therefore behaves in the same way as the parallel
processes of a monolithic code.

In order to maintain full scalability of each solver, the communications along the
edges should remain a distributed process. In a parallel environment with distributed
memory, this requires peer-to-peer communications, i.e., direct data transfer among the
adjacent processes handling the various interfaces. Popular coupling libraries such as
preCISE [12], MpCCI [13], or the Multiscale Universal Interface of Tang et al. [14] follow
this strategy. However, direct communications are less efficient (and more difficult to
handle) for interfaces with moving boundaries because, in this case, the connectivity
patterns need to be dynamically updated.

More generally, one has to consider the case where the mutual interaction between
two distinct solvers involves a significant amount of computational work. For example,
operations such as searching algorithms, interpolating, filtering, or reading from an external
database may all be required by the coupling. In this case, the scalability of the whole
system cannot be achieved by balancing only the discretisation work load of each solver.
It is also necessary to consider the processing of the data at the interfaces and the impact
that the updating strategy has on the convergence of each single domain. Ganine et al. [15]
illustrated this scenario for an unsteady simulation involving two zones in a turbine stage:
in their example, a performance improvement in the coupled simulation was achieved
by dedicating a set of intermediary processors to exclusively perform the search and
interpolation operations needed to exchange across the moving interface. The benefit here
stems from the fact that the interpolation can be evenly distributed among the coupling
processors, while some of these operations can be overlapped with the work carried out at
the same time by the two solvers [15].

In this paper, we describe a coupling architecture that combines the decentralised
model of Larson et al. [11] with the client-server scheme of Ganine et al. [15]. The aim is
to build a unified framework able to preserve the modular flexibility of the former and
the performance of the latter. The context of our work is the Rolls-Royce proprietary suite
of solvers Hydra [3,16,17]. Hydra is an unstructured code designed for turbomachinery
applications, equipped with a range of validated modules for CFD and thermal analysis.
Inspired by the concept of “smart edges” discussed by Hoekstra et al. [18], also known
as “smart interface methodology” [19], a coupling framework (here, referred to as JMxx)
was developed following the schematic of Figure 1. The whole system is decomposed in a
number of solver Hydra Sessions (HS) mutually interacting through individual Coupler
Units (CU). The Hydra Sessions are different models running on distinct meshes that cover
adjacent or overlapping zones of the physical space. A Coupler Unit is a set of one or
more processes dedicated to carrying out specific coupling procedures between two Solver
Sessions. The framework is general and can allow for coupling of different solvers, but for
the purpose of the present work, the discussion focuses on the use of Hydra as solver.

Entropy 2021, 23, 758 3 of 30

HS1

HS2

HS3

HS5

HS4

HS6

CU2

CU3

CU4 CU5 CU6

CU7

CU8

CU9

CU1

Figure 1. Coupling architecture of JMxx. A Coupler Unit (CU) is associated with only one interface
between two Hydra Sessions (HS). In this example, HS1 and HS2 share one interface HS3 and HS4
share three interfaces, etc.

A distinctive feature of JMxx is that a single Coupler Unit manages only one interface,
namely the interface (or one of the interfaces) shared by the two associated Hydra Sessions.
In case of multiple interfaces between two Hydra Sessions, then multiple Coupler Units are
required, one for each interface. As result of this feature, each Coupler Unit works exclu-
sively on data related to two “attached” Hydra Sessions. Data structure, communication
pattern, and connectivity are therefore all independent from any other interface and not
affected by the complexity of the overall system. Perhaps more importantly, this direct
correspondence between interfaces and Coupler Units introduces a first coarse level of
parallelisation into the topology of the system thanks to the specification of the separate
interfaces. In applications where the relative motion between the zones remains confined
in regions known a priori, both communications and spatial global search can be easily
made scalable by appropriate definition of the interfaces.

The paper is organised as follows: a short description of Hydra is given in Section 2.
Only the necessary details are given, while the main focus is on the general infrastructure
of JMxx that is detailed in Section 3. The results are presented in Sections 4–6. First, the
methodology is validated for a CHT analysis of a forced convection flow. A model of the
internal air system of a low pressure turbine is then used to demonstrate the application of
the method to a more complex system. Finally, the scalability characteristics of JMxx are
examined for a model problem, and the parallel performance is discussed for a test case
involving a sliding plane interface.

2. Hydra Solvers

Hydra consists of a suite of fluid and thermal unstructured solvers developed collabo-
ratively by Rolls-Royce plc and its university partners. All solvers are finite-volumes and
use an edge-based data structure generated by the same preprocessing tool. The variables
are stored at the cell vertices, and the control volume is defined by the “median-dual”
around each mesh node [16]. Hydra solves the compressible Navier–Stokes equations
and has a number of popular turbulence models for RANS and LES. The spatial discreti-
sation uses the approximate Riemann solver of Roe for the evaluation of the convective
fluxes. A second order of accuracy for the convective fluxes is achieved by introducing
pseudo-Laplacian operators in the upwind contribution of the Roe dissipative flux, as
detailed in the work of Moinier [16]. The gradients are computed with a Green–Gauss
method on the mesh nodes, and a second-order finite-volume discretisation for the viscous
fluxes is obtained by averaging the gradients at the cells interface. In RANS computations,
the flow equations are iterated towards steady state using a Runge–Kutta (RK) m-stage
method. Convergence is accelerated by incorporating the 5-stage RK scheme within an
edge-collapsing multigrid algorithm [20]; alternatively, the implicit formulation of Swanson

Entropy 2021, 23, 758 4 of 30

et al. [21,22] can be used for the three-stage RK scheme executed on a single grid level. The
thermal solver inherits most of the features from the flow solver. The unsteady equation for
solid heat conduction is iterated towards steady-state using the five-stage RK scheme with
multigrid. Simplified versions of the subroutines used in the flow solver are adopted to
compute the viscous fluxes and to evaluate the residuals for the heat conduction equation.

JMxx was designed to simulate complex configurations with several fluid and/or
solid zones, individually solved by Hydra and coupled through appropriate interfaces.
A Conjugate Heat Transfer (CHT) interface is used to enforce thermal coupling between
fluid and solid zones [13,23,24]. The wall temperature retrieved from the solid domain is
prescribed as a boundary condition for the fluid domain, whereas the heat flux retrieved
from the fluid side is applied on the boundaries of the solid domain. An under-relaxation
parameter (applied to the boundary condition changes) is used to ensure stability [25]. The
interfaces between solid regions in contact are treated following the same method of CHT
interfaces, enforcing the continuity of temperature and heat flux. In this work, they are
referred to as Thermal Contact (THC) interfaces.

The simulations with multiple fluid zones use mixing planes, sliding planes, or overset
interfaces. Mixing planes are a standard type of interface adopted between stationary and
rotating rows in steady RANS of turbomachinery applications. Unsteady computations
require sliding planes to account for the relative movement between rotor and stator. In
Hydra, these were implemented following the method of Blades et al. [15,26]. A layer of
halo nodes on each side of the interface form a one cell overlap with the adjacent zone. The
two solutions are updated in a different frame of reference, and the flow variables of one
zone are interpolated, after appropriate rotation, to set the flow variables on the halo nodes
of the opposite zone. The method requires a search algorithm at any time step to identify
the donor element for each target node.

The overset interfaces (OSET) are based on the Chimera method [1,27,28] and can be
used for a variety of reasons, such as simplifying meshing around complex geometries,
increasing resolution locally, or treating moving objects. The computational domain is
discretised with overlapping grids. In general, one of the two grids (the “overset mesh”)
is fully embedded into the other (the “host mesh”), and the difference between the two
defines a hole within the host mesh. The grid points of the host mesh that lie within the
hole are excluded from the computation, and the grid points surrounding the hole form an
artificial boundary (the “fringe”), where the flow variables are interpolated.

In JMxx, each zone corresponds to a Hydra Session, any inter-grid communication is
regarded as an interface, and the data transfer between the grids is handled by dedicated
Coupler Units.

3. Coupling Framework

The coupling framework is organised as shown in Figure 2. Two distinct applications,
JMxx and Hydra, operate in three subsequent phases. JMxx starts the program and, during
an initialisation phase, prepares the parallel environment defining the subgroups and
launching the execution of Hydra Sessions (HSs) and Coupler Units (CUs). At the end
of this step, a set-up phase establishes the communications between HSs and CUs. This
is followed by the effective execution phase, during which Hydra and JMxx carry out
their internal iterations and exchange data throughout. The program is launched with the
standard SPMD syntax

mpirun -np nproc jmxx_exe

where jmxx_exe is the executable obtained linking JMxx against Hydra, previously com-
piled with its entry point converted into subroutine. The next subsections describe the
initialisation phase; the communications; and the execution phase, emphasising, in particu-
lar, the infrastructure and the communicational scheduling.

Entropy 2021, 23, 758 5 of 30

(communic. set−up)

Hydra

JMxx
(main)

Hydra

JMxx
(coupling routines)

(communic. set−up)

JMxx2. Set−up

3. Execution

1. Initialisation

(solvers routines)

Figure 2. Coupling framework organisation with the three distinct phases: initialisation, set-up,
and execution.

3.1. Initialisation Phase

The data structure of JMxx is based on two derived data types: a Coupler Table and a
Hydra Table. Typical sections of these structures are shown in Table 1. It can be noticed
that most of the records in the Coupler Table have a dichotomous structure. This reflects
the paradigm that one Coupler Unit is always linked with two Hydra Sessions. On the
other hand, an Hydra Session may have an arbitrary number of interfaces and, therefore,
may be connected to an arbitrary number of CUs. Thus, most of the records in the Hydra
Table are variables sectioned according to the number of coupled interfaces (ncoupl). All of
the required information, including ranks, sizes, models options, memory addresses, etc.,
are organised in the same way.

JMxx reads the number of Hydra Sessions (nHS) and the number of Coupler Units
(nCU) involved in the computation from an input file. Immediately afterwards, all processes
allocate memory to store the data tables. More precisely, every process keeps nHS Hydra
Tables and nCU Coupler Tables in memory. At this point, JMxx reads the number of cores
dedicated to each HS and to each CU from the input file along with the interconnections
between the various sessions and units. This information defines the topology of the
coupled system and is stored in the appropriate records of the Hydra and Coupler Tables.

Now, the program creates nHS + nCU local communicators for individual subsets
with the prescribed number of cores. At the end of this step, every process remains
associated with a group rank, a code identifier, and a session identifier. The code identifier
is used to divert the various processes towards the Hydra entry point or towards the
inner routines of JMxx. Hydra is invoked passing the local communicators that have to
replace the MPI_COMM_WORLD for the internal communications. This is achieved by
initialising the parallel environment in Hydra by MPI_Comm_dup instead of MPI_Init.
Following this procedure, one ends up with nHS instances of Hydra, and nCU instances of
the JMxx coupling routines, obtaining an effect similar to what the mpirun command would
produce if executed in MPMD mode for distinct programs. This step marks the end of the
initialisation phase.

Throughout the rest of the computation, the session identifier is used by each process
to single out the Hydra Table or the Coupler Table pertaining to the partition. Such an
organisation makes programming simple and intuitive, as can be seen from the two pieces
of code reported in Algorithms 1 and 2. In the first example, a CU process accesses the ranks
of the processes handling the two connected HSs, obtains the sizes of the corresponding
interfaces, and sets pointers to the memory address of node coordinates. The second
example illustrates the dual operation performed by a HS process, with the external loop
executed over the number of interfaces (ncoupl) defined for the Hydra Session.

Entropy 2021, 23, 758 6 of 30

Table 1. Representative sections of the data structures used in JMxx: Coupler Table (top) and Hydra
Table (bottom).

STRUCTURE coupler_table

string ctype Interface type
integer cproc Number of cores for the CU
integer hsession(2) Session id of attached HSs
integer hproc(2) Number of cores for attached HSs
. . .
integer rank_h(hproc,2) Partition ranks of attached HSs
. . .
integer ntnode(hproc,2) Number of target nodes on the interface
. . .
real rot(2) Zonal rotational speed
. . .
pointer p_xtarget(2) Memory address of target nodes
pointer p_xsource(2) Memory address of source nodes

END STRUCTURE

STRUCTURE hydra_table

string ctype(ncoupl) Interface type
integer hproc Number of cores for the HS
integer cproc(ncoupl) Number of cores for attached CUs
. . .
integer

rank_c(cproc,ncoupl) Partition ranks of attached CUs

. . .
integer

ntnode(cproc,ncoupl) Number of target nodes on the interface

. . .
pointer

p_xtarget(cproc,ncoupl) Memory address of target nodes

pointer
p_xsource(cproc,ncoupl) Memory address of source nodes

END STRUCTURE

Algorithm 1 Access to data from Coupler Unit (CU) processes

iset = id_set(my_rank) . Session id of the CU process
for im = 1, 2 do . Loop over the two connected HSs

nproc = ctable(iset).hproc(im) . Number of processes handling this HS
for ip = 1, nproc do

rank_to = ctable(iset).rank_h(ip, im) . Rank of processes handling this HS
ntnode = ctable(iset).ntnode(ip, im) . Number of target nodes
xtarget→ ctable(iset).p_xtarget(ip, im) . Set pointer to target nodes

end for
end for

Entropy 2021, 23, 758 7 of 30

Algorithm 2 Access to data from Hydra Session (HS) processes

iset = id_set(my_rank) . Session id of the HS process
ncoupl = htable (iset).ncoupl . Number of connected CUs
for ic = 1, ncoupl do . Loop over the connected CUs

nproc = htable (iset).cproc(ic) . Number of processes handling this CU
for ip = 1, nproc do

rank_to = htable(iset).rank_c(ip, ic) . Rank of processes handling this CU
ntnode = htable(iset).ntnode(ip, ic) . Number of target nodes
xtarget→ htable(iset).p_xtarget(ip, ic) . Set pointer to target nodes

end for
end for

3.2. Communications

JMxx uses an element containment test for the interpolation. Therefore, CU processes
need to receive nodal coordinates and connectivity arrays on both sides of their interfaces.
After the mesh has been partitioned within Hydra, the HS processes form a list of local
target nodes (local in the sense of pertaining to the partition), a list of local source nodes,
and a list of mesh elements connecting the local source nodes. In the case of an overset
interface, the source elements are grid cells, whereas for interfaces defined on a surface,
such as sliding planes, they are boundary faces. Note that source and target nodes may
or may not point to the same geometric entity, depending on the interface type. In any
case, they form separate lists because the way in which they are accessed is different. The
local lists with nodes and elements constitute the mesh topology relative to the portion of
interface owned by each partition. The lists are sent to the connected CU processes which,
in turn, assemble the various patches forming two global lists of target nodes, two global
lists of source nodes, and two global lists of source elements. The global lists define the
entire mesh of the interface.

All processes of a single Coupler Unit keep the whole mesh of the associated interface
in memory. When performing the interpolation, the search algorithm is carried out on the
whole pool of source elements while the target nodes are equally distributed among the
various CU processes. An example of this architecture is shown in Figure 3a. A Coupler
Unit with two MPI processes handles the interface between HS1 and HS2. Each Hydra
partition with mesh nodes lying on the interface (rank = 0 and rank = 2 for HS1, and
rank = 0 for HS2) sends the same set of data to both rank = 0 and rank = 1 of the Coupler
Unit. Each process of the Coupler Unit interpolates half of the total number of target nodes.
Clearly, this is not an optimal solution, because although searching and interpolation scale
linearly with the number of CU processes, the amount of data received by each CU process
remains constant.

A more scalable approach can be easily obtained in JMxx by reproducing an effect
similar to the coarse level bounding box discussed by Sitaraman et al. [29]. The main idea
is based on the fact that the communication paths are constructed separately depending on
the prescribed topology. If each interface is uniquely associated with a Coupler Unit, the
communications can be parallelised by appropriately splitting the interface between two
Hydra Sessions. The Hydra processes access the source nodes by looping over the mesh
elements; the corresponding data are packed and scattered among the CUs depending on a
membership relation between mesh element and interfaces. Membership of an interface
can be made subordinate to geometric constraints specified by the user in the input file.
For example, in Figure 3b, the interface is split in two radial bands, lower and upper, and
a single Coupler Unit with one process is dedicated to each band. In this case, the HS
processes send to the Coupler Units only the nodes located above or below a certain radius
r̄. Thus, assuming a well-balanced choice of r̄, the number of data received by each CU
process is halved compared to the case of Figure 3a. In this way, the overhead for both
interpolation and communications is expected to scale linearly whereas the work load
for the search algorithm (assuming a brute force method) scales quadratically. Compared

Entropy 2021, 23, 758 8 of 30

to peer-to-peer communications strategies, this approach keeps the program simple and
minimally invasive because there is no need to map the internal partitioning of one Hydra
Session into the other: the Hydra processes just need to know which Coupler Unit is
dedicated to which band and can ignore the distribution of source nodes in the coupled
Hydra Sessions.

HS1 HS2
CU1

0

1
N

rank 0

rank 1

rank 2

rank 3

N0

2

rank 0

rank 1

rank 2

rank 0

rank 1

N

N
1

2

2

1

2

0N

1

0
N

(a)

HS1 HS2

CU2

CU1
0

1
N

1
0

rank 0

rank 1

rank 2

rank 3

1
~N2/2

/2

/2N

~N
1
2/2

~

~
N0

2
/2~

N~ 0

2
/2

rank 0

rank 1

rank 2

(b)

_

(r < r)
_

(r > r)

rank 0

rank 0

Figure 3. Parallelisation strategies in JMxx. (a) One Coupler Unit with two MPI ranks. (b) Two
Coupler Units with one MPI rank each. N j

i is the number of mesh nodes belonging to rank i of Hydra
Session j that lie on the interface.

It is important to remark that the same concept can be applied, identically, to an
interface consisting of a volume portion. The only limitation for the method is that the
relative movement between the grid nodes must be confined to the same spatial regions, so
that the communication paths between HSs and CUs do not change. Cases with arbitrary
motion of the interfaces are therefore out of scope.

3.3. Execution Phase

Algorithm 3 describes the sequence of operations performed by Hydra processes dur-
ing the execution phase. The steps reported in Algorithm 3 are representative of a generic
pseudo-time marching scheme. There is an external loop over the number of iterations to
perform (ncycle), an intermediate loop defined by the multigrid cycle, and an inner loop
representing the Runge–Kutta stages. When running with the explicit scheme, the multi-
grid cycle consists of a few smoothing iterations (generally 1 or 2) performed by the RK5
method on each grid level. For the semi-implicit scheme, a cycle corresponds to a number
of Richardson iterations (≤5) performed within the RK3 scheme on the finest grid [22]. For
unsteady computations, the operations described above are nested into a further loop over
the physical time steps. In this case, ncycle assumes the meaning of subiterations of a Dual
Time Stepping scheme, and an additional communication point occurs after the solution
update. In the analysis that follows, we focus on steady computations because, in this case,
there is a greater degree of freedom in choosing the parameters that define the coupling.

Entropy 2021, 23, 758 9 of 30

Algorithm 3 Sequence of operations of Hydra Session (HS) processes

for n = 1, ncycle do
Post communication requests

while cycle n is not complete do
for ns = 1, nstage(RK) do

Compute residuals
if implicit then

Perform Richardson iterations
end if
Update

end for
if explicit then

Prolong or Restrict solution
end if

end while
end for

A communication request from a HS process consists of the following steps:

1. Loop over the interfaces to open communications for receiving data from all connected
CU processes (MPI_Irecv).

2. Loop over the interfaces to send data to all connected CU processes (MPI_Isend).
3. Wait for the receive operations to be completed (MPI_Waitall).
4. Loop over the interfaces to unpack the data received.

When dealing with systems integrating different physics or systems where interfaces
of different nature coexist, it is key to leave the user with the possibility of prescribing
individual coupling frequencies on both sides of each Coupler Unit. When parsing a
specific interface, at steps 1 and 2 described above, the corresponding MPI_Irecv and
MPI_Isend operations are skipped if the iteration counter does not match the coupling
frequency specified for that interface. This approach provides great flexibility but requires
some care to avoid deadlock in coupling topologies containing a cycle.

Consider the simple cycle of Figure 4, with 2 HSs and 2 CUs. The numbers reported
on the edges denote the coupling frequency on each side of the two interfaces. According to
the scheme, HS1 processes post a communication request every iteration for both CU1 and
CU2. Likewise, HS2 processes post a communication request every single iteration for CU1
and every two iterations for CU2. This means that iteration n of HS1 can be performed only
when HS2 arrives at iteration 2n, while iteration n of HS2 requires HS1 to be at iteration n.
The dependency is illustrated in the patterns of Figure 4, reporting the CUs across which
the dataflow takes place. In this case, a deadlock occurs at the second iteration. At this
stage, in fact, HS1 waits for data from CU2, which cannot arrive, because HS2 cannot
execute iteration 3. In order to correct the model, it is necessary to recover a synchronised
mutual dependency. More formally, if iteration i of HS1 depends on iteration j of HS2, then
iteration j of HS2 must depend on iteration i of HS1. An example of a synchronised cycle is
shown in Figure 5, but this is not the only choice, and in Appendix A, we report simple
guidelines that can be followed to avoid deadlock, whatever the topology of the system.

The operations performed by Coupler Unit processes are listed in Algorithm 4. The
set of instructions depends on the type of interface associated with the CU (variable ctype
in Algorithm 4). For example, in a CHT interface, there is no relative motion and the search
algorithm is executed only once. Conversely, in unsteady simulations with sliding planes,
the search has to be repeated for every time step. The algorithm is invoked before entering
the internal loop on the number of Dual Time Step subiterations (ncycle), and after that
non-blocking receive messages have opened the communications. In this way, the search,
which does not require updated data from HSs, is initiated while the HS processes are busy
in the last subiteration of previous time step and then overlapped with the subsequent
communication phase.

Entropy 2021, 23, 758 10 of 30

Algorithm 4 Sequence of operations of Coupler Unit (CU) processes

iset = id_set(my_rank) . Session id of the CU process
ctype = ctable (iset).ctype . Type of interface

if (ctype = sliding plane) then
while true do . Loop until completion

Open communications to receive data
Search algorithm . Search for this time step

for i = 1, ncycle do . Loop over internal subiterations
if (i 6= 1) open communications to receive data
Wait until receive is completed
Interpolate data on target nodes
Send interpolated data

end for
end while

end if

if (ctype = CHT interface) then
Search algorithm . Search is performed only once

while true do . Loop until completion
Receive data on source nodes
Interpolate data on target nodes
Send interpolated data

end while
end if

if (ctype = any other type of interface) then
... . Organise operations as appropriate

end if

it 1it 1

it 2

it 3

it 4

it 5

it 6

it 3

it 4

it 5

it 6

it 3

it 4

it 5

it 6

HS1 HS2 HS1

it 2 it 2

it 1

HS1 HS2

CU1

CU2

1

1

1

2

CU1 CU1

CU2 CU2

CU1

CU2 CU2

CU1

CU1

CU2

CU1

CU1

Figure 4. Example of cyclic JMxx model with deadlock and corresponding dependency patterns.

Entropy 2021, 23, 758 11 of 30

it 1it 1

it 3

it 4

it 5

it 6

it 3

it 4

it 5

it 6

it 3

it 4

it 5

it 6

HS1 HS2 HS1

it 2 it 2

it 1

HS1 HS2

CU1

CU2

1

1 2

2

it 2

CU1

CU2

CU1

CU2

CU1

CU2

CU1

CU2

CU1

CU2 CU1

CU2

Figure 5. Example of cyclic JMxx model without deadlock and corresponding dependency patterns.

4. Forced Convection on a Conductive Solid Square

The first test case considered is the conjugate heat transfer analysis of forced convection
flow over a conducting solid square. The physical model is shown in Figure 6. A laminar,
incompressible flow with a uniform temperature of TF moves over a square block of solid
with thermal conductivity kS. The lower side of the solid has a constant temperature
TS > TF, while the two sides normal to the flow direction are adiabatic walls. Free stream
conditions are prescribed to match a Mach number M∞ = 0.01 and a Reynolds number
based on the square length L equal to Re∞ = 500. With the further specification of the
Prandtl number Pr and the thermal conductivity ratio between solid and fluid λ = kF/kS,
the problem is defined in terms of nondimensional temperature T∗ = (T − TF)/(TS − TF).
Here, we consider the case studied by Vynnycky et al. [30] with Pr = 100 and λ = 20.

.
q=0

y
x

L

Moo

Re
L
= 500

= 0.01

Inviscid wall

L

Inviscid wall

Free stream

TS
= const

q=0
.

T
F

T
S

Free streamFree stream

<

Figure 6. Problem definition for the forced convection flow on a conductive solid block.

4.1. Model Set-Up

The JMxx model adopted for this case study was deliberately overcomplicated for the
purpose of validation. The fluid region is divided into a boundary layer zone enclosed into
a coarser background mesh, with the latter extending from the wet surface of the solid to
the free stream (Figure 7). The conductive solid is formed by two adjacent regions with
equal thermal conductivity. Each solid region is coupled to the boundary layer fluid zone
via CHT interfaces, whereas the interconnection between the two solid components occurs
through a Thermal Contact interface. In the sketch of Figure 7b the coupling frequencies
on both sides of each Coupler Unit are also reported. In general, it is convenient to keep
the coupling frequency low for fluid–fluid and solid–solid interfaces, to avoid excessive
decoupling of the solutions. For CHT interfaces, this constraint is less stringent, and the
communication requests on the solid side can be posted after a large number of iterations
in order to accelerate convergence.

Entropy 2021, 23, 758 12 of 30

BOUNDARY LAYER

SOLID1

0.1 L0.1 L

0.05 L

L/2 L/2

SOLID2

10 L

BACKGROUND2.5 L

(a)

SOLID1

BACKGROUND

THC SOLID2

OSET

CHT CHT

1

1

1 1

BOUNDARY LAYER

20 20

200 200

(b)

Figure 7. JMxx model adopted for the forced convection conjugate problem. (a) Definition of
fluid/solid domains. (b) Interconnections between Hydra Sessions and Coupler Units.

As shown in Figure 8, a substantially different mesh resolution is employed for the
various domains. In the region where the background mesh and the boundary layer mesh
overlap, the axial and radial grid spacing of the background mesh are about three and
seven times larger, respectively, than in the boundary layer mesh. The cell size of the
two solid models is similar, but the grid point distribution along the THC interface is not
conformal.

Figure 8. Forced convection conjugate problem. Close-up view of the fluid/solid meshes.

Computational resources are allocated by the user depending on the complexity of
each model and based on the selected coupling frequency. Denoting by Wi a measure of the
workload (per rank) associated with the ith Hydra Session, a Coupler Unit is balanced if

Wi × fi = Wj × f j (1)

in which fi and f j are the coupling frequencies between the Coupler Unit and the attached
Hydra Sessions. Load balancing requires the above condition to be fulfilled for all Coupler
Units. Note that an appropriate distribution of the resources along with a pertinent selection
of the coupling frequencies can be exploited to speed-up the convergence of the coupled
system. In this paper, we focus more on detailing the architecture of JMxx, providing the
relevant validation. Hence, this type of analysis is not reported and the reader is referred
to [31] for a demonstration of this feature.

Entropy 2021, 23, 758 13 of 30

4.2. Results

Figure 9 shows the wall temperature computed along the outer surface of the solid.
The result is in excellent agreement with the numerical solution of Vynnycky et al. [30],
obtained using a finite difference code. A contour plot of the axial velocity is shown
in Figure 10. It should be noted that the domain of the background mesh penetrates a
certain “cutting distance” (specified by the user) within the domain of the boundary layer.
The cutting distance selected for this case covers a layer of four cells in the background
mesh. Thus, there exists a narrow region where the two solutions overlap, and these
are both visualised by the graphic solver. The absence of blur in the figure denotes that
the two coexisting solutions converge towards the same flow field. Figure 11 shows the
computed temperature field. Even in this case, the smooth behaviour of the isotherms
across the THC interface confirms the good quality of the coupled solution. Note that, with
a Prandtl number equal to Pr = 100, the thermal boundary layer is much thinner than the
momentum boundary layer and remains resolved withing a few mesh nodes of the fluid
BOUNDARY LAYER zone.

x/L

T
*

0 0.25 0.5 0.75 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

JMxx

Vynnycky (numerical)

Vynnycky (analytical)

Figure 9. Forced convection conjugate problem. Computed wall temperature.

Figure 10. Forced convection conjugate problem. Axial velocity contour plot U∗ = U/U∞.

Entropy 2021, 23, 758 14 of 30

Figure 11. Forced convection conjugate problem. Temperature contour plots. Top: global view of the
solid. Bottom: close-up view of the solid–fluid interface.

5. Secondary Air System of a Low-Pressure Turbine

Figure 12 shows the secondary air system in the low-pressure turbine of an aircraft
engine. Various arrows schematise different flow paths present in the system. The main
annulus flow consists of hot gas coming from the high-pressure turbine; the cooling flow
supplied to the large inner cavity is colder air extracted from the compressor and delivered
to the outer stator wells through appropriate holes.

Figure 12. Secondary air system of a low-pressure turbine and definition of control points (Pno.).
Black symbols correspond to thermocouple positions. Green symbols are additional control points
selected for the analysis.

Entropy 2021, 23, 758 15 of 30

The control points depicted in Figure 12 by black symbols represent the locations
of several thermocouples used during engine testing. The metal temperatures recorded
during the experimental survey are not directly available in this study. We can refer
here to the results of a thermal model calibrated to match the measurements to within
a small error. The thermal model of the turbine is a finite element model based on the
Rolls-Royce proprietary code SC03 [32]. The thermal model, hereafter referred to as SC03
model, employs appropriately tuned heat transfer correlations to define the boundary
conditions on the solid surfaces. The calibration in SC03 is carried out to match the
available thermocouple data, that is, for a limited number of points. Hence, when looking
at the details of the solution, the thermal model is not guaranteed to be correct away from
the experimental measurement points.

Also note that the SC03 model is axisymmetric and that the blades over the discs are
not included. Their effect on the thermal response is incorporated through the boundary
conditions specified on the outer disc surfaces.

5.1. Computational Domain

With reference to Figure 12, the computational model adopted for this analysis in-
cludes three stator feet (SF1, SF2, and SF3), the underlying rotor discs (RD1, RD2, RD3,
and RD4), and five fluid regions (three stator wells, the inner cavity, and the wheel space
ahead of Stator Well 1). An attempt to include the main gas path into the analysis has
been recently conducted by the same authors for a model limited to Stator Well 1 [31]. It
was found that flow solutions based on RANS are unable to predict the correct amount
of hot gas ingress and, as a result, the metal temperature within the cavity was strongly
underpredicted. Ingress prediction is a complex, longstanding problem related to turbu-
lence modelling [33–35] and is not the object of the current analysis. In this paper, inlet and
outlet boundary conditions are applied at the rim seals of each stator well to guarantee the
values of hot gas ingestion consistent with those prescribed in the benchmark SC03 model.

The solid models adopted for the study are shown in Figure 13. There are three
disconnected domains for the stator feet and a single domain for the rotating part. The fluid
zones have been meshed using overlapping grids, as shown in Figure 14. Each stator well
is composed of a background mesh, constructed for a hollow cavity without any interior
object, and an embedded boundary layer mesh built around the stator foot. Similarly, for
the inner cavity (Figure 14d), a body-fitted mesh incorporating the features along the walls
is contained within a Cartesian background mesh. This strategy facilitates preprocessing
operations and can be conveniently adopted to replace a single component of the assembly
without the need to reprocess the entire model. The final JMxx model is made up of 13
Hydra Sessions and 12 Coupler Units (see Figure 15). There is no direct link between
the inner cavity and the outer stator wells. The coupling occurs through the solid model
ROTOR, which is connected to the various fluid zones by CHT interfaces.

Figure 13. Solid models adopted for the low-pressure turbine.

Entropy 2021, 23, 758 16 of 30

Figure 14. Fluid meshes adopted for the low-pressure turbine. (a) Stator Well 1; (b) Stator Well 2;
(c) Stator Well 3; (d) Inner Cavity and Wheel Space.

 SW3

SF1 SF3SF2

ROTOR

BL_CAV BACK_CAV

WS

CHT CHT CHT

CHT CHT

CHT

OSET OSET

OSET

 SW1 SW2

OSET

CHT

CHT

 BL_D1 BL_D2 BL_D3

Figure 15. JMxx model of the low-pressure turbine. Refer to Figures 13 and 14 for the nomenclature.

5.2. Model Set-Up

The SC03 thermal model of an engine component is built through laborious calibration
work. Very briefly, the user specifies the mass flow rate, the fluid temperature, and the
heat transfer coefficient for the flow streaming along each metal surface, and the wall
temperature is then computed from one-dimensional energy budgets. The specifics for
the SC03 model reflect the physical flow conditions developed in various parts of the
component. This information is generally retrieved from standalone CFD simulations and
1D network flow models nested within an iterative multidisciplinary analysis [36,37].

The cavity flow models assumed in SC03 for the three stator wells are depicted in
Figure 16. Stator Well 3 is without coolant. In this case, a certain amount of flow ṁH
penetrates the front cavity, moves through the labyrinth seal, and leaves the stator well
from the rear cavity. In Stator Well 2, the coolant ṁc is added to the ingested gas ṁH before
moving through the labyrinth seal. Stator Well 1 is characterised by egress conditions. In
this case, the coolant is divided in two parts, with some of it moving into the labyrinth and
the remainder leaving the cavity through the front rim seal after being mixed with the hot
air coming from the annulus (ṁH1).

Entropy 2021, 23, 758 17 of 30

The model set-up in JMxx needs to comply with the flow physics just described. The
behaviour of Stator Well 2 and Stator Well 3 can be directly reproduced in the corresponding
CFD models by specifying the mass flow rate, total temperature, and flow direction at the
entry of the front cavity and for the cooling flow. The treatment of Stator Well 1 requires
more attention. In fact, the schematic of Figure 16a represents the axisymmetric equivalent
of a phenomenon that is strictly three-dimensional.

Figure 16. Cavity flow models assumed in the SC03 thermal model for the stator wells. (a) Stator
Well 1; (b) Stator Well 2; (c) Stator Well 3.

Even in conditions of net egress, the circumferential pressure variations that occur
outside the cavity induce local ingestion in the regions with high pressure [34]. In order
to reproduce this behaviour in the CFD model, the surfaces that define the rim seals of
Stator Well 1 are split along the circumferential directions in three patches (see Figure 17),
in which the boundary conditions are alternatively specified as inlet and outlet with fixed
mass flow rate. More precisely, in accordance with the model of Figure 16a, for the inflow
boundaries of the front and rear cavities (green surfaces in Figure 17), the mass flow rates
are set equal to ṁH1 and ṁH2, respectively. For the outflow boundaries at the front and at
the rear (blue surfaces in Figure 17), the mass flow rates are set equal to ṁH1 + ṁc − ṁLD
and to ṁLD + ṁH2, respectively. The values of ṁH1, ṁc, ṁLD and ṁH2 are taken equal
to those specified in SC03. Thus, although the geometry has rotational symmetry, the
boundary conditions are defined as three-dimensional to allow for consistent specification
of the net amount of hot air passing through the cavities.

Figure 17. Inflow/outflow specification in the CFD model of Stator Well 1.

Table 2 summarises the model details for each fluid zone. The setting of the CFD
method is heterogeneous. All models are steady RANS, and the implicit scheme, which
is more efficient for flows dominated by diffusion, is adopted for the inner cavity. The
choice of the turbulence model is the result of several numerical experiments aimed at
improving the agreement with the metal temperature predicted by SC03. In this regard,
it is important to remark that, while a single case initialised with uniform conditions and

Entropy 2021, 23, 758 18 of 30

running on 400 cores required about one week to converge, each subsequent adjustment
could be carried out in a single day. The resources allocated to handle the interfaces are 12
in total, one for each Coupler Unit.

The test case corresponds to the cruise conditions of an engine currently in service. For
this reason, temperature values and mass flow rate ratios cannot be reported. Hereafter, all
temperatures are expressed as T∗ = (T − Tc)/(TH − Tc), where Tc is the total temperature
at the entry of the inner cavity, and TH is the total temperature of the annulus flow entering
Stator Well 1. The rotational Reynolds number, based on the rotor angular speed, the radius
at point P4 (Figure 12), and the flow conditions in the rim seal at the front of Stator Well 1,
is equal to Reθ = 2.3× 105.

Table 2. Turbulence model (SST: Kω-SST, SA: Spalart-Allmaras, EARSM: Explicit Algebraic Reynolds Stress Model). Time
integration method (exp: explicit multigrid scheme, imp: implicit scheme on single grid). Mesh size in million nodes of
each fluid zone.

SW1 BL_SF1 SW2 BL_SF2 SW3 BL_SF3 WS BL_CAV BACK_CAV

Model SST SST SA SA SA SA SA EARSM EARSM
Scheme exp exp exp exp exp exp exp imp imp

Size 7.4 3.0 7.3 3.5 8.0 3.7 1.6 10.3 7.3

5.3. Results

Figure 18 shows the coupled temperature field computed by JMxx and the solid
temperature predicted by SC03. A good qualitative agreement between the two solutions is
achieved, and it is possible to correlate the thermal response of the metal with the observed
flow behaviour. The largest amount of coolant is supplied to Stator Well 1. Here, the stator
foot, which is heated on the outer surface from the annulus flow, shows a strong thermal
gradient in the radial direction due to the presence of coolant that fills both the front and
the rear cavity. The amount of coolant introduced in Stator Well 2 is relatively smaller,
and the jet with cold air appears to be all sucked into the labyrinth seal. As a result, the
temperature field shows a marked discontinuity between the front and the rear cavities.
Stator Well 3 is without cooling flow. Both front and rear cavity are filled with hot gas, and
the temperature distribution is more uniform.

A more quantitative comparison between JMxx and SC03 thermal predictions is given
in Figures 19 and 20. Here, we report the temperature predicted at several points located
inside the stator wells and along the discs. Only the monitor points denoted by black
symbols correspond to a thermocouple, and these are all located on rotating components.
Green symbols are additional control points selected for the current analysis. Note that
the error bars used in Figure 19 correspond to the overall accuracy reported for the thermal
model. More specific information concerning the error at each control point is not available.
There is a good agreement between the two solutions, especially for the points inside
Stator Well 2 and Stator Well 3. In Stator Well 1, the agreement is less satisfactory, although
the trend is well captured. The largest error (10%) occurs at point P14 in the central part
of the stator foot. With the help of Figure 18, it can be recognised that the discrepancy
becomes smaller in the upper and lower parts of the component. For the points located in
the upper part of the rotor discs, there is a substantial agreement with the measurements.
At inner radii, point P33 on disc RD3 can be noted, where the temperature is significantly
underpredicted. This discrepancy is examined later.

Figure 21 shows the fluid temperature on a cross section of Stator Well 1. The figure
reflects the mixed specification of inlet/outlet boundaries, highlighting a central region
where the coolant penetrates deeper into the cavity. It is understood that some uncertainties
in the model specification remain. First, the strong interaction between the coolant and the
ingested flow is unsteady, and although the solid temperature converges well to a mean
value, unsteady effects may not be well captured by the steady RANS solver. In addition,

Entropy 2021, 23, 758 19 of 30

the number of patches selected for the entry surface of the stator well may have an impact
on the mixing process.

Figure 18. Nondimensional temperature predicted by JMxx (top) and by SC03 (bottom). Refer to
Figure 12 for control points from P25 to P35.

Entropy 2021, 23, 758 20 of 30

Figure 19. Temperature at the control points within the stator wells. Black squares correspond to
thermocouple locations.

Figure 20. Temperature at the control points on the rotor discs. Black squares correspond to thermo-
couple locations.

Figure 21. Temperature contour plot on a cross section of Stator Well 1.

On the basis of these uncertainties, the thermal prediction of JMxx can be deemed
reasonably good. Figure 22 shows axial temperature profiles retrieved for the upper
surfaces of the inner cavity. For the majority of the control points, there is a close agreement
with the SC03 solution, and the profiles show a certain similarity. The JMxx solutions

Entropy 2021, 23, 758 21 of 30

present “jumps” in the temperature profiles, occurring in the metal protrusions that extend
into the domain of the Inner Cavity. These jumps are stronger for Stator Well 1 and Stator
Well 2, suggesting a connection with the presence of coolant. To examine the behaviour, it
is convenient to focus on Stator Well 2, where the inlet/outlet conditions are axisymmetric
and the flow conditions are more regular than in Stator Well 1. Figure 23 shows the
temperature field in the labyrinth seal. It can be seen that, in the small cavities between the
labyrinth fins, the air temperature is significantly higher than the inlet temperature of the
coolant. This indicates that a considerable amount of hot flow is mixed with the cooling
flow. Note also, on the right of the secondary inlet, a confined region with cold fluid, that
keeps the underlying metal at low temperature. In the labyrinth seal, the acceleration
imposed on the flow by the constrictions enhances heat transfer by convection, and the
metal fins, which have small thermal capacity, are heated up. Since the solid protrusion is
cooled on the inner side, heat is transferred radially inwards by conduction, and the metal
temperature reaches a minimum at point P8. The jumps observed in Figure 22 identify
radial temperature gradients for the boundary points located on the two parallel sides
of the protrusion. In Stator Well 3, this mechanism occurs on a smaller scale due to the
absence of the secondary flow. It can be seen in Figure 18 that the solid protrusion is wet
on the inner side by a fluid region with little recirculation, where a smaller amount of heat
is extracted from the solid.

Figure 22. Axial temperature profiles on the upper surface of the inner cavity. Black symbols
correspond to thermocouple locations.

Figure 23. Close-up view of the temperature field in the labyrinth seal of Stator Well 2.

In the SC03 prediction, the jumps are not completely absent, but they are substantially
smaller. The reason for this is that the temperature distribution in the labyrinth seal regions
is much more uniform (see Figure 18). In this regard, the SC03 solution is less convincing,

Entropy 2021, 23, 758 22 of 30

as it indicates an equal fluid temperature on the inner and outer sides of the protrusion
or, equivalently, that the flow moving through the labyrinths in Stator Well 1 and Stator
Well 2 consists predominantly of cold fluid. This is contrast with the behaviour observed
in Figure 23. As a further remark related to these arguments, it is possible to state that,
owing to the radial extent of the solid protrusion, the mismatch with the thermocouple
measurement at point P8 (Figure 22) is probably associated with the behaviour of the flow
in the zone Inner Cavity, as also suggested in the considerations that follow.

The temperature profiles along the rotor discs are given in Figure 24. The behaviour
of disc RD1 and disc RD2 is well captured, and the agreement at the inner tips of the discs
(points P1 and P2) is very good. The temperature profile for RD3 is significantly different.
It can be noted in Figure 18 that RD3 separates a cavity where cold fluid enters from inner
radii and recirculates (on the left of RD3), from a cavity with hotter fluid where very little
convection occurs (on the right of RD3). It is possible that, in the CFD solution, less flow
is diverted towards the cavity on the left of RD3 and a small amount of coolant remains
channelled in the cavity on the right. This may also explain the overprediction observed
at point P8 in Figure 22. In our tests, we noticed a certain sensitivity of the resulting flow
field to the selected turbulence model. The overall impression is that some mechanisms
(buoyancy and mixing) may not be properly captured by RANS and may require a higher
fidelity approach (LES).

r/r
max

T
*

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RD1­JMxx

RD1­SC03

RD2­JMxx

RD2­SC03

RD3­JMxx

RD3­SC03

P1

P2

P1

P3

Figure 24. Radial temperature profiles along the rotor discs. Black symbols correspond to thermo-
couple locations.

6. Scalability Analysis

The aim of this section is to describe the main scalability features of JMxx. For this
purpose, two different tests are considered. In a first one, we focus on the concurrency
between search operations of CU processes and internal iterations of HS processes (see
Section 3.3) and illustrate how the overhead for handling an interface can be made scalable
by splitting the interface, as described in Section 3.2. In a second test, we measure strong
scalability for a URANS computation performed on a simple (but realistic) model involving
a sliding plane.

6.1. Concurrency Tests between HS and CU Precesses

We consider a problem where two solid domains are coupled with two fluid domains
according to the schematic of Figure 25. Each domain is a cube, and the corresponding
mesh is a structured block discretised by nx = 4× 102, ny = 4× 102, and nz = 10 nodes in
the x, y, and z direction, respectively. The overall assembly has 6.4 million mesh nodes and
four coupled surfaces with 4× 103 nodes each. Two JMxx models are considered for the
same problem. Model A, shown in Figure 25a, includes 4 Coupler Units; in Model B, the
surfaces between the domains are split in two portions of equal size and the corresponding
JMxx model has a total of 8 Coupler Units, (Figure 25b) .

Entropy 2021, 23, 758 23 of 30

CU1

CU2

CU3

CU4

FLUID1

FLUID2SOLID2

SOLID1

(a)

FLUID1

FLUID2SOLID2

SOLID1

CU4

CU6

CU7 CU8

CU5

(b)

CU3

CU2

CU1

Figure 25. JMxx models used for the concurrency test. (a) Model A, with one interface for each
coupled surface; (b) Model B, with two interfaces for each coupled surface.

The coupling parameters in JMxx are intentionally set to trigger the conditions under
which the scalability of the coupler deteriorates. The exchange of data and the element
containment search is performed at the end of any iteration, and a “brute force” sequential
search is carried out by looping for each target node over the entire set of source elements
that lie on a single interface. The containment test includes a projection onto each of the
four triangles forming the source element, followed by inversion of four linear systems of
size 2× 2 to determine the natural coordinates of the projected point. The spatial search can
be made faster by orders of magnitude using bounding boxes, i.e., limiting the operations
to the source elements that lie within a small distance from the target nodes. In the present
test, bounding boxes are turned off. In other words, the test is designed to increase the
workload of the CU processes to the point where it is comparable to that of the HS processes.
In this way, we reproduce on a small model the conditions that, in a larger model, are
responsible for a performance decay if running on several thousands of processes. In such
a pathological condition, we analyse the effect of increasing the number of processes per
Coupler Unit and the effect of splitting the interfaces.

The tests were conducted on a Cray CS-400 system equipped with Intel Xeon E5-2600
CPUs of 24 cores and a Mellanox Infiniband high-speed interconnect. Figure 26 shows the
execution time measured for 100 iterations. The total number of cores allocated for the
Hydra Sessions is equally distributed among the zones and gradually increased from 160
to 320, 640, and 960. The various curves in Figure 26 correspond to a different number of
cores allocated (and equally distributed) for the Coupler Units. The behaviour of JMxx is
assessed with reference to an uncoupled simulation conducted for the same model, with
Hydra having all of the communication routines between the HS and CU processes turned
off. The uncoupled simulation does not resolve the fluid/solid problem and is adopted
here to report the scaling behaviour associated with the internal parallisation of Hydra.

Total number of Hydra processes

R
u

n
ti
m

e
[s

]
fo

r
1

0
0

it
e
ra

ti
o

n
s

200 400 600 8001000

20

40

60

80

100

CU 4x4
CU 4x8

CU 4x16

CU 4x32
Uncoupled

Linear

(a)

Total number of Hydra processes

R
u

n
ti
m

e
[s

]
fo

r
1

0
0

it
e
ra

ti
o

n
s

200 400 600 8001000

20

40

60

80

100

CU 8x2

CU 8x4
CU 8x8

CU 8x16

Uncoupled

(b)

Figure 26. Scalability analysis for the concurrency test. (a) Results obtained for Model A; (b) Results
obtained for Model B.

Entropy 2021, 23, 758 24 of 30

Using four cores for each Coupler Unit, the execution time of Model A is insensitive
to any variation in the number of HS processes (Figure 26a). In this case, most of the work
is associated with the search operations, and the HS processes are sitting idle, waiting for
CU processes to complete. As the number of CU processes is doubled (4× 8) the search
operations are sped up, and the performance of the uncoupled model is recovered when
160 Hydra cores are used. The corresponding curve lowers and remains almost constant
after 320 HS cores. By gradually increasing the number of CU cores, the process continues:
the number of Hydra cores where the various curves flatten becomes gradually higher.
These “breakdown points” mark the transition between the case in which Hydra iterations
are faster than coupling operations (HSs wait for CUs) and the opposite condition (CUs
wait for Hydra iterations to finish). The linear scaling, identified in the figure by the black
solid line, intersects the breakdown points of the curves almost exactly. This indicates that
the workload of the Coupler Units scales linearly. When 4× 32 cores are used, the curve
finally collapses into that of the uncoupled model, with a slight degradation presumably
due to the communications. Thus, as long as the search is quick enough to be “hidden”
within a single Hydra iteration, the coupled model scales as its Hydra components.

The results of Model B (Figure 26b) reflect the obvious behaviour of a parallel im-
plementation search. With the same amount of resources allocated for the Coupler Units,
Model B is faster than Model A, and less CU processes are needed in order to recover the
performance of the uncoupled model. The execution time of the search algorithm (with
bounding boxes turned off) scales as Nt × Ns where Nt is the number of target nodes and
Ns the number of source elements (in our example Nt ' Ns). Clearly, doubling the CU
processes corresponds to a reduction by a factor of 2 in Model A and by a factor of 4 in
Model B. The present results illustrate the opportunity to offload and schedule a search
and interpolation workload earlier, overlapping it with the main computation.

It is worth noting that parallelisation of the communications, which in a larger model
are certainly more relevant, follows the same logic and can equally benefit from the strategy
of splitting the interfaces.

6.2. Case Study with Sliding Plane

Sliding planes are a common method used in turbomachinery to handle the unsteady
coupling between rotating components in URANS simulations. In Hydra, stator and rotor
passages are resolved in their own frame of reference and joined together using overlapping
cells at the interface to provide a second-order discretisation scheme. Due to their nature,
sliding planes are typically difficult to balance and optimise for parallel efficiency and, in
large multi-row 360 deg models, very quickly become the main bottle-neck for the speed-up
of the simulation.

As demonstrated in the previous example, one way to improve the parallelism is
to enforce geometric conditions in the construction of the interface, so that the search
performed at each time step can be more efficient. This type of tuning fits naturally in
the capability of the coupling approach proposed and different strategies can be easily
implemented. As a more realistic example, the results for a 30◦ sector model of a rotor-stator
cavity are shown herein (Figure 27). The cavity is formed by two fluid zones, both solved
as URANS. The stationary domain (blue mesh in Figure 27) is separated from a rotating
domain (red mesh) by a sliding plane located at the cavity centre. The stator mesh consists
of 924 thousand nodes, of which 21 thousand are on the sliding plane with a relative ratio
equal of 1:44. The rotor mesh has 67.2 thousand mesh nodes and 4200 sliding plane nodes
(relative ratio of 1:16).

The tests were executed without multigrid using Dual Time Stepping, with the number
of inner iterations equal to ncycle = 25 for each physical time step. The Hydra processes
were gradually increased from 44 (corresponding to an average number of mesh nodes per
process Nave ' 23, 000 to 704 (Nave ' 1400), maintaining load balancing between the two
Hydra Sessions. The sliding plane is divided into an increasing number of radial bands
(from 1 to 8) containing a very similar number of nodes. Each radial band corresponds to a

Entropy 2021, 23, 758 25 of 30

Coupler Unit, and each Coupler Unit has one MPI rank. The method used to pinpoint an
appropriate distribution of the radial bands is described in Appendix B. It is important to
note that the memory requirements of the coupler units scale perfectly linearly with the
portion of the grid interacting through the coupled interface.

Figure 27. Rotor-stator cavity model adopted for the sliding plane test. Axial velocity contours are
shown on the periodic surface.

Figure 28 depicts strong scaling of the coupled application in terms of the runtime of
100 time steps. From that, it is possible to see that the model scales increasingly better up
to 704 cores, exhibiting the strong scalability limits of a typical CFD finite volume based
monolithic code. Despite being a simple model, the overhead of the sliding plane, which is
measured by the ratio between mesh nodes and sliding plane nodes, is very demanding.
The test shows that, with a proper coupling logic based on geometrical constraints and
with a flexible use of the available computing ranks dedicated to the solver or the Coupler
Units, linear scaling can be satisfactorily recovered. It is finally worth mentioning that
the implementation of this as well as different improved logic occurs inside the coupling
sliding-plane kernel and therefore, it does not affect the coupler framework. Additionally,
being at the same time outside of the solver, it does not require any update or change either.

Total number of Hydra processes

R
u

n
ti
m

e
[s

]
fo

r
1

0
0

ti
m

e
s
te

p
s

10
1

10
2

10
3

100

200

300

400

500

600

700

800

1 Coupler Unit
2 Coupler Units
4 Coupler Units
8 Coupler Units
Linear scaling

Figure 28. Scalability analysis for the rotor-stator cavity model.

7. Conclusions

In this paper, we have presented a high-performance inter-code coupling framework
for distributed execution of coupled multi-physics solvers using the suite of CFD Hydra
codes as an example. Conceptually, the proposed JMxx framework avoids the creation of a

Entropy 2021, 23, 758 26 of 30

centralised communication hub by launching as many distributed instances of the same
coupler abstraction as there are coupled interfaces. The Coupler Units are employed as
individual servers for each interacting interface between the coupled models. The selected
flexible modular approach enables effortless point-to-point inter-code communication.

Several typical turbomachinery analysis scenarios have been discussed, involving
moving and stationary fluid–fluid, fluid–solid, and solid–solid interfaces. Parallel perfor-
mance of the coupling framework was assessed using the time to solution and the strong
scaling indicators. The performance results show that JMxx can recover nearly linear
scalability of a monolithic single-physics Hydra CFD solver.

Although the JMxx coupler abstraction was designed primarily for turbomachinery
flows, the system architecture and many of the underlying concepts have a broader range
of applicability in scientific simulations codes involving time stepping systems. We believe
that the main advantage of JMxx is in its conceptual simplicity and non-intrusiveness: by
enforcing a direct correspondence between the Coupler Unit and interface, the coupler can
be viewed by an individual code as another type of boundary condition, regardless of the
complexity of the overall coupled system behind it and without any scheduling burden.

Work is currently in progress to equip JMxx with multi-scale capability, enabling time-
scale separation and introducing appropriate interfaces for hybrid modelling involving
LES, steady, and unsteady RANS. In this context, more work will also be needed to
develop a system for automatic allocation of resources. This will serve to optimise static
load-balancing of computations and communication work between individual codes and
coupler units in a heterogeneous system.

Although this may not be a simple task, the architecture of JMxx offers a natural
advantage for the purpose: treating the interfaces separately, the overhead for handling
each interface can be made scalable by paying a small penalty, namely having a tiny
percentage of resources (those in charge of the CUs) running faster than the rest. Thus,
if we are also able to guarantee the local balance described by Equation (1) for any type
of interface, regardless of mesh type/size, physical model, discretisation scheme, etc., a
global solution would always be available enforcing Equation (1) for all Coupler Units. The
resulting distribution of resources would be suboptimal either in the least squares sense or
in the sense of Lagrange multipliers.

Author Contributions: All authors contributed to the conceptualisation, methodology, software,
validation, formal analysis, investigations, data curation, and writing. All authors have read and
agreed to the published version of the manuscript.

Funding: The work presented in this paper was conducted within the framework of the DARWIN
research project (20D1911A), funded by Rolls- Royce Deutschland Ltd & Co KG and the Bundesmin-
isterium für Wirtschaft und Technologie. Rolls-Royce Deutschland’s permission to publish this work
is greatly acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Additional data have not been reported.

Acknowledgments: The authors thank Rolls-Royce plc for the engine model provided and the
technical support received.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Deadlock Avoidance

A Solvable Elementary Cycle is defined as a JMxx cyclic model with two HSs; two CUs;
and coupling frequencies a, b, n× a, and n× b (Figure A1). Using dependency patterns, it
is easy to see that a Solvable Elementary Cycle can never incur a deadlock, regardless of
the value assumed by n. An example is reported in Figure A2 for a = 1, b = 2, and n = 3.
Coupler Unit CU1 receives communication requests for every single iteration from HS1

Entropy 2021, 23, 758 27 of 30

and every two iterations from HS2, while the requests received from CU2 occur at iteration
numbers that are the same multiple of a and b. This guarantees that the synchronised
mutual dependency is preserved.

For a cyclic model with an arbitrary number of HSs and CUs, a sufficient condition to
avoid deadlock can be derived with the help of transparent CUs and transparent HSs. A
Coupler Unit is said to be transparent if it has equal coupling frequencies on both sides.
For an Hydra Session, the definition of transparency is related to interfaces belonging to
the same cycle. Thus, an Hydra Session is transparent with respect to a certain cycle if the
coupling frequencies on the two interfaces lying on the cycle are equal.

Transparent CUs and transparent HSs have the property of not affecting the synchro-
nisation of a cycle. In other words, a model obtained by enlarging a Solvable Elementary
Cycle with an arbitrary number of transparent CUs and HSs, each with its own coupling
frequency, is deadlock free. With the same arguments, it is possible to state that, if the graph
of a cyclic model can be reduced to that of a Solvable Elementary Cycle through removals
of transparent CUs and transparent HSs, the model is deadlock free. Figure A3 illustrates
the concept with an example. The JMxx model includes one transparent CU (CU4) and one
transparent HS (HS2), which can be both removed from the graph. The removal of CU4
means that HS1 and HS4 are collapsed into HS14. At the successive step, CU1 and CU2
are collapsed into C12 for the removal of HS2. The reduced graph corresponds to that of a
Solvable Elementary Cycle. Hence, the model is deadlock free. If more cycles are present
in the model, the above condition should be verified for each of them.

HS1 HS2

CU1

CU2

ba

n x bn x a

Figure A1. Definition of a Solvable Elementary Cycle.

HS1 HS2

CU1

CU2

1 2

3x1 3x2

HS1 HS2 HS1

it 1it 1

it 2 it 2

it 3

it 4

it 5

it 6

it 7

it 9

it 10

it 11

it 12

it 1

it 3

it 2

it 4

it 5

it 6

it 7

it 8 it 8

it 9

it 10

it 11

it 12

it 10

it 11

it 3

it 4

it 5

it 6

it 7

it 8

it 9

it 12

CU1

CU1

CU1

CU2

CU1

CU1

CU1

CU2

CU1

CU2

CU1 CU1

CU1

CU2

CU1 CU1

Figure A2. Solvable Elementary Cycle with a = 1, b = 2, andn = 3.

Entropy 2021, 23, 758 28 of 30

CU1

HS2

CU2

HS3

HS1

HS4

CU4

CU31
2

5

5

3

3

4

2

CU1

HS2

CU2

HS3CU3
2

3

3

4

HS14

1

2

HS3CU3
2

HS14

1

2

CU12

4

Figure A3. Simple method for deadlock detection in a JMxx cyclic model (top). At the first step,
HS1 and HS4 are collapsed into HS14 (center). At the second step, CU1 and CU2 are collapsed into
CU12 (bottom). The model is deadlock free because the corresponding graph is reduced to that of a
Solvable Elementary Cycle.

Appendix B. Surface Splitter Emulator

The radial bands, or other types of geometric constraints adopted to split the interface,
are specified in the input file of JMxx. A small preprocessing tool helps the user in this
task. For any surface defined in the mesh, it is possible to identify a specific direction
along which the nodal distribution can be parallelised. Obviously, if a relative movement is
involved, it is necessary that the nodes belonging to the different patches remain confined
in the same spatial region. For the sliding plane of a turbine stage, the obvious choice is
the radial direction, but if the interface extends along another direction, different choices
would be more appropriate.

Thus, without loss of generality, we can assume a nodal distribution F = F(r) along
the selected direction r, with F(r) varying between 0 and the total number of nodes N that
lie on the interface. In the method, a cubic spline interpolation is first determined for F(r),
and a balanced choice of the bands is obtained by solving the equation

F(r2)− F(r1) = N/n (A1)

where n is the prescribed number of bands and r1, r2 are values ranging from rmin and rmax,
which are iteratively updated as shown in the following steps:

1. r1 = rmin ; F(rmin) = 0
2. Solve F(r2) = N/n + F(r1)
3. r1 ← r2
4. Go to step 2 or exit if r2 = rmax

Entropy 2021, 23, 758 29 of 30

Best practice rules based on the ratio between interface nodes and mesh nodes guide the
user to select the value of n, which allows for sufficient scalability of the interface.

References
1. De Laborderie, J.; Duchain, F.; Gicquel, L.; Vermorel, O.; Wang, G.; Moreau, S. Numerical analysis of high-order unstructured

overset grid method for compressible LES of turbomachinery. J. Comput. Phys. 2018, 363, 371–398. [CrossRef]
2. Stejil, R.; Barakos, G. Sliding mesh algorithm for CFD analysis of helicopter rotor-fusolage aerodynamics. Int. J. Numer. Methods

Fluids 2008, 58, 527–549. [CrossRef]
3. Hills, N.J. Achieving high parallel performance for an unstructured unsteady turbomachinery code. Aeronaut. J. 2007, 111, 185–193.

[CrossRef]
4. Kannan, K.V.; Page, G.J. Coupling of compressible turbomachinery and incompressible combustor flow solvers for aerothermal

applications. In Proceedings of the ASME Turbo Expo 2014, Düsseldorf, Germany, 16–20 June 2014; p. GT2014-26118.
5. Schlüter, J.; Wu, X.; Kim, S.; Shankaran, S.; Alonso, J.; Pitsch, H. A framework for coupling Reynolds-averaged with large-eddy

simulations for gas turbine applications. J. Fluids Eng. 2005, 127, 806–815. [CrossRef]
6. Fröhlich, J.; von Terzi, D. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 2008, 44, 349–377.

[CrossRef]
7. Shur, M.; Spalart, P.; Strelets, M.; Travin, A. Synthetic turbulence generators for RANS-LES interfaces in zonal-simulations of

aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 2013, 93, 63–92. [CrossRef]
8. Refloch, A.; Courbet, B.; Murrone, A.; Villedieu, P.; Laurent, C.; Gilbank, P.; Toryes, J.; Tesse, L.; Chaineray, G.; Dargaud, J. CEDRE

software. AerospaceLab J. 2011, 2, 1–10.
9. Schlottke-Lakemper, M.; Yu, H.; Berger, S.; Meinke, M.; Schröder, W. A fully coupled hybrid computational aeroacoustics method

on hierarchiecal Cartesian meshes. Comput. Fluids 2017, 144, 137–153. [CrossRef]
10. Lintermann, A.; Schröder, W. Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Comput. Fluids

2017, 63, 73–89. [CrossRef]
11. Larson, J.; Jacob, R.; Ong, E. The model coupling toolkit: A new Fortran90 toolkint for building multiphysics parallel coupled

models. Int. J. High Comput. Appl. 2005, 19, 277–292. [CrossRef]
12. Bungartz, H.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B. preCISE—A fully parallel library

for multi-physics surface coupling. Comput. Fluids 2016, 141, 250–258. [CrossRef]
13. Duchaine, F.S.; Poitou, D.; Quemerais, E.; Staffelbach, G.T.; Gicquel, L. Analysis of high performance comjugate heat transfer with

the OpenPalm coupler. Comput. Sci. Disc. 2015, 8, 015003. [CrossRef]
14. Tang, Y.; Kudo, S.; Bian, X.; Li, Z.; Karniadakis, G. Multiscale Universal Interface: A concurrent framework for coupling

heterogeneous solvers. J. Comput. Phys. 2016, 141, 250–258. [CrossRef]
15. Ganine, V.; Amirante, D.; Hills, N. Enhancing performance and scalability of data transfer across sliding grid interfaces for

time-accurate unsteady simulations of multistage flows. Comput. Fluids 2015, 140, 140–153. [CrossRef]
16. Moinier, P. Algorithm Developments for an Unstructured Viscous Flow Solver. Ph.D. Thesis, Oxford University, Oxford, UK, 1997.
17. Amirante, D.; Hills, N.J. Large-eddy simulations of wall bounded turbulent flows using unstructured linear reconstruction

techniques. J. Turbomach. 2015, 137, 051006. [CrossRef]
18. Hoekstra, A.; Lorenz, E.; Falcone, J.; Chopard, B. Towards a complex automata framework for multi-scale modeling: Formalism

and the scale separation map. In Proceedings of the International Conference on Computational Science 2007, Part I, LNCS 4487,
Beijing, China, 27–30 May 2007; pp. 922–930. Available online: https://citations.springernature.com/item?doi=10.1007/978-3-54
0-72584-8_121 (accessed on 15 March 2021)

19. Romagnosi, L.; Li, Y.; Mezine, M.; Teixeira, M.; Vilmin, S. A methodology for steady and unsteady full-engine simulations. In
Proceedings of the ASME Turbo Expo 2019, Phoenix, AZ, USA, 17–21 June 2019; p. GT2019-90110.

20. Crumpton, P.I.; Muller, J.D.; Giles, M.B. Edge-based multigrid schemes and preconditioning for hybrid grids. AIAA J. 2002,
40, 1954–1960.

21. Swanson, R.C.; Turkel, E.; Rossow, A.A. Convergence acceleration for Runge-Kutta schemes for solving the Navier-Stokes
Equations. J. Comput. Phys. 2007, 24, 365–388. [CrossRef]

22. Misev, C.; Hills, N.J. Steepest descent optimisation of Runge-Kutta coefficients for second order implicit finite volume CFD codes.
J. Comput. Phys. 2018, 354, 576–592. [CrossRef]

23. Illingworth, J.B.; Hills, N.J.; Barnes, C.J. 3D fluid-solid heat transfer coupling of an aero engine pre-swirl system. In Proceedings
of the ASME Turbo Expo 2005, Reno, NV, USA, 6–9 June 2005; p. GT2005-68939.

24. Verstraete, T.; Alsalihi, Z.; Van den Braembussche, R.A. Numerical study of the heat transfer in micro gas turbines. J. Turbomach.
2007, 129, 835–841. [CrossRef]

25. Duchaine, F.; Corpron, A.; Pons, L.; Moureau, V.; Nicoud, F.; Poinsot, T. Development and assessment of a coupled strategy
for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow 2009,
30, 1129–1141. [CrossRef]

26. Blades, E.; Marcum, D.L. A sliding interface method for unsteady unstructured flow simulations. Int. J. Numer. Methods Fluids
2005, 53, 507–529. [CrossRef]

http://doi.org/10.1016/j.jcp.2018.02.045
http://dx.doi.org/10.1002/fld.1757
http://dx.doi.org/10.1017/S0001924000004449
http://dx.doi.org/10.1115/1.1994877
http://dx.doi.org/10.1016/j.paerosci.2008.05.001
http://dx.doi.org/10.1007/s10494-014-9534-8
http://dx.doi.org/10.1016/j.compfluid.2016.12.001
http://dx.doi.org/10.1016/j.euromechflu.2017.01.008
http://dx.doi.org/10.1177/1094342005056115
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://dx.doi.org/10.1016/j.jcp.2015.05.004
http://dx.doi.org/10.1016/j.compfluid.2015.03.030
http://dx.doi.org/10.1115/1.4028549
https://citations.springernature.com/item?doi=10.1007/978-3-540-72584-8_121
https://citations.springernature.com/item?doi=10.1007/978-3-540-72584-8_121
http://dx.doi.org/10.1016/j.jcp.2007.02.028
http://dx.doi.org/10.1016/j.jcp.2017.09.008
http://dx.doi.org/10.1115/1.2720874
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.07.004
http://dx.doi.org/10.1002/fld.1296

Entropy 2021, 23, 758 30 of 30

27. Rogers, S.E.; Suhs, N.E.; Diets, W.E. PEGASUS 5: An automated preprocessor for overset-grid computational fluid dynamics.
AIAA J. 2003, 41, 1037–1045. [CrossRef]

28. Meakin, R.L. Object X-rays for cutting holes in composite overset structured grids. In Proceedings of the 15th AIAA Computational
Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001; p. AIAA-2001-2537.

29. Sitaraman, J.; Floros, M.; Wissink, A.; Potsdam, M. Parallel domain connectivity algorithm for unsteady flow computations using
overlapping and adaptive grids. J. Comput. Phys. 2010, 229, 4703–4723 [CrossRef]

30. Vynnycky, M.; Kimura, S.; Kanev, K. Forced convection heat transfer from a flat plate: the conjugate problem. Int. J. Heat Mass
Transf. 1998, 41, 45–59. [CrossRef]

31. Amirante, D.; Adami, P.; Hills, N.J. A multi-fidelity aero-thermal design approach for secondary air systems. J. Eng. Gas Turbines
Power 2021, 143, 031012. [CrossRef]

32. Edmunds, T.M. Practical three-dimensional adaptive analysis. In Proceedings of the 4th International Conference on Quality
Assurance and Standards, NAFEMS, Brighton, UK, 26–28 May 1993.

33. Scobie, J.A.; Sangan, C.M.; Owen, J.M.; Lock, G.D. Review of ingress in gas turbines. J. Eng. Gas Turbines Power 2016, 138, 120801.
[CrossRef]

34. Chew, J.W.; Gao, F.; Palermo, D.M. Flow mechanisms in axial turbine rim sealing for secondary air systems. Proc. Imeche Part C J.
Mech. Eng. Sci. 2019, 233, 7637–7657. [CrossRef]

35. Palermo, D.M.; Gao, F.; Amirante, D.; Chew, J.W.; Bru, Revert, A.; Beard, P.F. Wall-modelled large eddy simulations of axial
turbine rim sealing. J. Eng. Gas Turbines Power 2021, accepted manuscript. [CrossRef]

36. Amirante, D.; Hills, N.J.; Barnes, C.J. Use of dynamic meshes for transient metal temperature prediction. In Proceedings of the
ASME Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; p. GT2012-68782.

37. Ganine, V.; Chew, J.W.; Hills, N.J.; Sulfi Noor, M.; Miller, M. Transient aero-thermal-mechanical multidimensional analysis of a
high pressure turbine assembly through a square cycle. J. Eng. Gas Turbines Power 2021, 143, 081008. [CrossRef]

http://dx.doi.org/10.2514/2.2070
http://dx.doi.org/10.1016/j.jcp.2010.03.008
http://dx.doi.org/10.1016/S0017-9310(97)00113-0
http://dx.doi.org/10.1115/1.4049406
http://dx.doi.org/10.1115/1.4033938
http://dx.doi.org/10.1177/0954406218784612
http://dx.doi.org/10.1115/1.4049487
http://dx.doi.org/10.1115/1.4049498

	Introduction
	Hydra Solvers
	Coupling Framework
	Initialisation Phase
	Communications
	Execution Phase

	Forced Convection on a Conductive Solid Square
	Model Set-Up
	Results

	Secondary Air System of a Low-Pressure Turbine
	Computational Domain
	Model Set-Up
	Results

	Scalability Analysis
	Concurrency Tests between HS and CU Precesses
	Case Study with Sliding Plane

	Conclusions
	Deadlock Avoidance
	Surface Splitter Emulator
	References

