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Abstract: Grouping the objects based on their similarities is an important common task in machine
learning applications. Many clustering methods have been developed, among them k-means based
clustering methods have been broadly used and several extensions have been developed to improve
the original k-means clustering method such as k-means ++ and kernel k-means. K-means is a
linear clustering method; that is, it divides the objects into linearly separable groups, while kernel
k-means is a non-linear technique. Kernel k-means projects the elements to a higher dimensional
feature space using a kernel function, and then groups them. Different kernel functions may not
perform similarly in clustering of a data set and, in turn, choosing the right kernel for an application
could be challenging. In our previous work, we introduced a weighted majority voting method for
clustering based on normalized mutual information (NMI). NMI is a supervised method where the
true labels for a training set are required to calculate NMI. In this study, we extend our previous
work of aggregating the clustering results to develop an unsupervised weighting function where
a training set is not available. The proposed weighting function here is based on Silhouette index,
as an unsupervised criterion. As a result, a training set is not required to calculate Silhouette index.
This makes our new method more sensible in terms of clustering concept.

Keywords: k-means; kernel k-means; machine learning; nonlinear clustering; silhouette index;
weighted clustering

1. Introduction

There is a high demand for developing new methods to discover hidden structures,
identify patterns, and recognize different groups in machine learning applications [1].
Cluster analysis has been widely applied for dividing objects into different groups based
on their similarities [2]. Cluster analysis is an important task in different areas of study such
as medical diagnosis, information retrieval, marketing, and social sciences [3]. For instance,
in medical diagnosis, clustering can help to divide the patients into different groups based
on the stage of the disease and in marketing, clustering can assist in determining customers
with similar interests to customize the advertisement process and make it more effective [4].

Cluster analysis is an unsupervised learning method [5] to optimize an objective
function based on features similarities [6]. The goal is finding groups, such that elements
in the same group have similar features. Clustering algorithms often use a search method
to optimize the objective function. To quantify the distinctiveness of each pair of elements,
a distance measure such as Euclidean distance or Manhattan distance can be used. The
number of clusters is often unknown and must be chosen for cluster analysis. Hence, either
the number of clusters is specified by the user or it must be estimated using an overall
distance measure such as the sum of the squared distances of elements from their cluster
centers. An objective function is optimized by minimizing the distance of elements to their
cluster centers (within-cluster distance) and/or maximizing the distance between cluster
centers (between-cluster distance). A search strategy is required to find the groups that
optimize the objective function [1].
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Several clustering methods have been developed [7], such as k-means, model-based
clustering, spectral clustering, and Hierarchical clustering. The focus of this study is on the
k-means based clustering methods. K-means is a well-known clustering method with the
aim of minimizing the Euclidean distance between each point and the center of the cluster
to which it belongs. Advantages of k-means are its simplicity and speed [8]. However,
k-means can only discover clusters that are linearly separable. In contrast, kernel k-means
is a non-linear extension of the k-means clustering method that can identify clusters that are
not linearly separable. Although objective functions of both methods are similar, elements
are projected into a higher dimensional space in kernel k-means.

In our previous work [9], we introduced a weighted majority voting method for
clustering based on normalized mutual information (NMI). We showed that the clustering
results highly depend on the selected kernel function when using kernel k-means method.
For example, by choosing a different kernel such as Gaussian, polynomial, or hyperbolic
tangent kernels, we obtain different clustering results for the same dataset. Therefore, to
eliminate the partiality based on the chosen kernel for an arbitrary application, we aggre-
gated the clustering results obtained by different kernels. To achieve this, we implemented
a weighting function to assign the weights to each kernel based on their performances.
The performance of each kernel for clustering application was assessed by normalized
mutual information (NMI) [10]. NMI is a supervised method, i.e., we need a training set for
calculating NMI to evaluate the performance of a clustering method. However, a training
set might not be available for the clustering purposes. Therefore, in this study, we extend
our previous work of ensemble clustering by developing a weighting function that does
not need a training set. Silhouette index is an unsupervised method for evaluating the
performance of a clustering method [11]. Since the Silhouette index does not need a training
set to evaluate the clustering performance, it is more relevant to the clustering concept.

Here in this work, we have developed a different weighting function based on the
Silhouette index. The paper is organized as follows. We review k-means, kernel k-means,
and the Silhouette index in Section 2. Section 3 explains the proposed weighting function
using the Silhouette index. Simulation studies and results are presented in Section 4, and
the conclusions are provided in Section 5.

2. Background
A brief review of k-means, kernel k-means, and the Silhouette index follow.

2.1. K-Means

K-means choose K centers such that the total squared distances of each point and its
cluster center is minimized. K-means technique can be summarized by first selecting K
arbitrary centers, which are usually, as Lloyd’s algorithm suggests, uniformly selected at
random from the data. Second, we must calculate the Euclidean distance between each
element and all cluster centers separately, and assign each element to its closest cluster
center. Third, new cluster centers are obtained by averaging the Euclidean distances of all
elements grouped in the same cluster in Step 2. Finally, the second and the third steps are
repeated until the algorithm converges, i.e., cluster centers obtained in current iteration are
the same or very close to the cluster centers obtained in the previous iteration. K-means
objective functions can be written as ZkK — 1 Lxe 1% — Hx |2, where 7ty is cluster k, iy is
the center of cluster k, and || - || is the Euclidean distance.

2.2. Kernel K-Means

Kernel k-means is an extension of k-means for grouping objects that are not linearly
separable. The idea of kernel k-means clustering relies on projecting the elements into
a higher-dimensional feature space using a non-linear function to make them linearly
separable in the projected space. The kernel k-means algorithm is summarized below [10].

Let {x1,x2,...,x,} be a set of n data points, K be the number of clusters, 7ty be the
cluster k, {7ty } ,If _ 1 be a partitioning of points into K groups, and ¢ be a non-linear function
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projecting each data point x; to a higher dimensional space. Each element in the kernel
matrix M is:
Mij = ¢(x;) -([)(x]-),for ij =1,2,..., n 1)

where ¢(x;) and ¢(x;) are transformations of x; and x; respectively. Some popular kernel
functions are the Radial Basis Function known as the Gaussian kernel [12], polynomial
kernel, and sigmoid kernel. The procedure is similar to k-means, but in the transformed
space as follows. Step 1: after transforming the data points into the new space, each
cluster center y; must be randomly initialized. Step 2: the Euclidean distance between each
element and all cluster centers y;s is computed in the transformed space by:

Ox) — e = o) = T = o) - olx)

ZZXjEﬂk ¢(xi)'¢(xj) 2):xj/xc€7zk <P(Xj)'¢(xc) (2)

|7tk [ [?

where |71i| is the number of elements in cluster 7. Step 3: each data point in the trans-
formed space is assigned to the closest cluster with minimum distance in the transformed
space. Step 4: a new cluster center yy is obtained for cluster k by averaging Euclidean
distance of all elements that were assigned to cluster 77y in the transformed space in the
previous iteration:

o= ¥ P9 gk = 10,0 K (3)

X; €T | 7Tk |
Steps 2 to 4 will be repeated to minimize the objective function:

K

D({mdi1) = L X o) —ml® )

k =1x;em

The algorithm will converge when the obtained cluster centers in the current iteration
are the same as or very close to the cluster centers obtained in the previous iteration.

2.3. Silhouette Index

There are several methods to evaluate clustering results, such as the Rand index [13],
adjusted Rand index [14], distortion score [11], and Silhouette index. While most of
the performance evaluation methods need a training set, the Silhouette index does not
need a training set to evaluate the clustering results. This makes it more appropriate for
a clustering task. In this work, we use the Silhouette index to evaluate the clustering
performance. The Silhouette width s(x;) for the point x; is defined as [11]:

b(xi) - a(xi)
max{b(x;), a(x;)}

where x; is an element in cluster 71y, a(x;) is the average distance of x; to all other elements
in the cluster 7 (within dissimilarity), and

s(x;) = )

b(x;) = min {d;(x;)}, among all clusters | # k.

where d;(x;) is the average distance from x; to all points in cluster 7r; for I # k (between
dissimilarity). From Equation (5) the value of the Silhouette width can vary between —1
and 1. A negative value is undesirable because it is related to a case in which a(x;) is
greater than b(x;), and the means within dissimilarity is greater than between dissimilarity.
A positive value is obtained where a(x;) < b(x;), and the Silhouette width reaches its
maximum s(x;) = 1fora(x;) = 0[11]. The greater the (positive) s(x;) value of an
element, the higher the likelihood to be clustered in the correct group. Elements with
negative s(x;) are more likely to be clustered in wrong groups [15]. A typical example is
shown in Figure 1, where x; is shown by a black disk, a(x;) by red lines, and b(x;) by blue
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lines. The average Silhouette width for a cluster is the average s(x;) for all points in the
cluster, and the average Silhouette width for the entire clustering result is the average s(x;)
of all points in every cluster. We discuss the proposed weighting function using Silhouette
in detail in the next section.

Figure 1. Procedure to calculate Silhouette index for a typical data point X. Red lines show the
distances between X and every data point clustered in the same group. Blue lines show the distances
between X and every data point clustered in the nearest group.

3. Weighted Clustering Method Using Silhouette Index

The goal of the proposed method is to assess the performance of different clustering
methods and combine their results based on their performances to provide a single out-
come. The focus here is on kernel k-means, because selecting the right kernel function
F(x;, xj) = ¢(x;)- cp(xj) for an arbitrary application is not obvious. Therefore, applying a
set of different kernels for clustering and aggregating the clustering results based on the
performance of different kernels can provide consistent results and eliminate the partiality
of the results based on the selected kernel. We compute the performance of a kernel by
computing the average Silhouette width (7y) for the clustering results obtained by the kernel.
Three kernels including Gaussian, polynomial, and hyperbolic tangent are used to project
the elements as follows.

Gaussian kernel with standard deviation ¢ is given by:

—[lx;—xlI?

P(xi)-p(xj) = e 22 . (6)
Polynomial kernel is defined by:
l
p(xi)-¢(x) = (p"x+c) . )

where p is the slope, c is the intercept, and [ is the polynomial order.
Hyperbolic tangent kernel is given by:

¢(x;) - ¢(xj) = tanh (pxiT xj+c>. (8)

where p is slope and c is the intercept.

We compute the average Silhouette width for the clustering results obtained by each
kernel separately. We then combine the results using computed weights for each kernel.
Let y; be the average Silhouette width for the clustering result obtained using the jth kernel.
The assigned weight §; for the clustering result of the jth kernel is computed by:

’Y]'-i-l
0 = g ’
Zm=1(7m+1)

where d is the number of kernel functions (here d = 3) and

forj =1,2,---,d. 9)

Y. 6 =1 (10)



Entropy 2021, 23, 759

50f17

The Silhouette value is used to evaluate and assign weight to each kernel. Weights
must be non-negative real values between 0 and 1 and must sum up to one. Hence, we
shifted the Silhouette scores by adding one, obtaining shifted Silhouette scores ranging
from 0 to 2. Normalized non-negative weights are consequently computed by dividing the
shifted Silhouette scores to the sum of shifted Silhouette scores. Next, for each data point,
we sum up the weights (J;) assigned to the kernels that clustered the data point into the
same group. To ensure the consistency of the group labels by different kernels, the clusters
found by the first kernel are considered the base group labels. The Euclidean distance
between the cluster centers found by each kernel and the cluster centers found by the first
kernel (reference groups) are computed to assign the consistent cluster labels. The cluster
labels are then preserved based on the minimum sum of Euclidean distances. Finally, for a
given data point, we compare the total weights computed for each cluster label, and the
data point will be considered in the group with the highest weight. The proposed method
is summarized below.

1.  Let Q)4 be a set of d kernel functions h; to h;. Perform kernel k-means method using
kernels in the kernel set and generate d clustering results I';, for j = {1, 2,...,d};

2. Compute average Silhouette width -y; for clustering results T}, for j = {1, 2, ..., d}
obtained by kernel /; for all kernels j = {1, 2,...,d};

3. Shift Silhouette values from {—1 to 1} to {0 to 2} to compute non-negative weights 5j
for each kernel;

4. For each data point, use the computed weights J; in step (3) to combine the clustering
results [;, for j = {1, 2, ..., d} asfollows:

e  Sum up the weights corresponding to the kernels that assign the same cluster
label to the data point;

e  Compare the total weight of each cluster for the data point;

e  Group the data point to the cluster with the highest total weight.

4. Simulation

To evaluate the performance of the proposed method, we have applied it to several
benchmark datasets as follow.

Bensaid data: it contains 49 two-dimensional elements grouped in three classes [16].
Dunn data: it contains 90 two-dimensional elements grouped in two classes [17].
Iris data: it contains 150 four-dimensional elements grouped in three classes [18].
Seed data: it contains 210 seven-dimensional elements grouped in three classes [19].

To address the random initialization of the cluster centers in kernel k-means, we
applied the proposed method in a Monte Carlo setting and averaged the results obtained
through 100 Monte Carlo trials. In each trial, initial cluster centers were randomly gen-
erated. For each dataset, kernel k-means with three different kernel functions (Gaussian,
polynomial, and hyperbolic tangent) were used. To evaluate the clustering performance
of each kernel, identified clusters by these three kernels are matched using their cluster
centroids. Clustering performance of each kernel is then evaluated using the Monte Carlo
average of the Silhouette index. Next, weight of each cluster is assigned by the estimated
performance of the kernel. Finally, clustering results of three kernels are merged using
majority voting and the proposed weighted majority voting method.

5. Results

In this section, the clustering results obtained using the proposed method are demon-
strated. Table 1 summarizes the Monte Carlo average for the average Silhouette indices,
and the Monte Carlo average of true rates for the clustering results of each dataset obtained
using Gaussian, polynomial, and tangent kernels along with combined results using the
proposed weighted method. We use package “kernlab” in R, and hyper-parameters are
set by default “automatic” setting that use a heuristic to determine suitable values for the
hyper-parameters of the kernel.
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Table 1. Monte Carlo average of the average Silhouette index (ASI) and Monte Carlo average of true
rate (TR) for the clustering results obtained using kernel k-means with three different kernel functions
(Gaussian, polynomial, and tangent) along with majority voting, and the proposed weighted majority
voting based on average Silhouette.

Maiori Weighted
DATA Gaussian  Polynomial Tangent )9 ty Majority
Voting .
Voting
Bensaid ASI 0.159 0.453 —0.127 0.132 0.167
ensat TR 0.528 0.641 0.413 0.592 0.611
ASI 0.269 0.418 —0.003 0.293 0.293
DUNN TR 0453 0.521 0.417 0.474 0.474
IRIS ASI 0.609 0.609 —0.068 0.482 0.589
TR 0.856 0.850 0.381 0.833 0.873
SEED ASI 0.594 0.601 —0.052 0.537 0.570
TR 0.869 0.842 0.376 0.852 0.862

The first row of Table 1 summarizes the clustering results for the Bensaid dataset.
For this dataset, the polynomial kernel provided the best performance among all kernels
based on the Monte Carlo average true rate (0.641) and Monte Carlo average of average
Silhouette indices (0.453). Figure 2 (top left) demonstrates the three original groups in
the Bensaid dataset along with the clustering results obtained by three different kernels,
majority voting, and the proposed weighted method. It shows that among all kernels, the
polynomial kernel could better distinguish the original clusters in the Bensaid dataset. The
clustering results of these three kernels are combined using the calculated weights for each
kernel. Then, the Monte Carlo average of average Silhouette indices and the Monte Carlo
average of the true rates are obtained for both majority voting and the proposed method.
The proposed method outperforms majority voting with the Monte Carlo average true rate
of 0.611 in comparison with 0.592. Figure 3 shows the Silhouette index for all data points in
the Bensaid dataset, computed for clustering results obtained using each kernel separately.
A colored horizontal line shows the Silhouette index of each data element. We can see that
there are smaller number of data points with negative Silhouette scores in the clustering
results obtained by the proposed method in comparison with that of the majority voting
method. As a result, the average Silhouette index of the proposed method is higher.

The second row of Table 1 summarizes the clustering results for the Dunn dataset. For
this dataset with two original groups, clustering performance of three different kernels
were comparable with the Monte Carlo average true rates of 0.453, 0.521, and 0.417 for
Gaussian, polynomial, and tangent kernels, respectively. Among them, polynomial kernels
provided slightly better results (with the true rate of 0.521). As we can see in Table 1, the
Monte Carlo average of the average Silhouette index for this kernel is also higher than those
of the other two kernels (0.418), resulting a higher weight for this kernel when we combine
the results. Figure 4 shows the original groups in the Dunn dataset and the clustering
results obtained using kernel k-means with three different kernel functions, majority voting,
and the proposed weighted method. Since three different kernels produced comparable
results, the proposed method (weighted averaging) and majority voting (averaging) will
also produce similar results, comparable with the results obtained by the original three
kernels (Table 1). Figure 5 illustrates the Silhouette indices obtained for the clustering
results of the Dunn dataset in a randomly selected trial (from 100 Monte Carlo trials).
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Figure 2. Silhouette index obtained for clustering results of Bensaid dataset using kernel k-means with three different kernel functions (Gaussian, polynomial, and tangent), majority

voting, and the proposed weighted method.
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Figure 3. Original groups in the Bensaid data and the clustering results of kernel k-means, obtained using three different kernel functions (Gaussian, polynomial, and tangent), majority

voting, and the proposed weighted method. Results are visualized using 1st and 2nd PCA.
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Figure 4. Silhouette index obtained for clustering results of the Dunn dataset using kernel k-means with three different kernel functions (Gaussian, polynomial, and tangent), majority
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The third row of Table 1 summarizes the clustering results for the Iris dataset. For
this dataset with three original groups, Gaussian kernels performed better than the other
two kernels with a Monte Carlo average true rate of 0.856. Polynomial kernels produced
comparable results to Gaussian kernels with a Monte Carlo average true rate of 0.850, while
the Monte Carlo average true rate of the tangent kernel was 0.381. The computed Monte
Carlo average Silhouette indices were 0.609, 0.609, and —0.068 for Gaussian, polynomial,
and tangent kernels, respectively. As a result, Gaussian and polynomial kernels with the
same high weight and tangent received a low weight in the proposed weighted method.
The proposed method provided the Monte Carlo average true rate of 0.873, which is higher
than Monte Carlo average true rates obtained by each kernel individually. As we can see in
Table 1, the clustering results obtained by the proposed method also have higher Monte
Carlo average true rates than the majority voting, since the latter assigns the same weights
to each kernel. Figure 6 shows the original groups in the Iris dataset, and the clustering
results obtained using kernel k-means with three different kernel functions, majority voting,
and the proposed weighted method. Figure 7 shows the Silhouette indices calculated for
the clustering results of Iris data obtained using kernel k-means with three different kernel
functions, majority voting, and the proposed weighted method in a randomly selected trial
(from 100 Monte Carlo trails).

The fourth row of Table 1 summarizes the clustering results for the Seed dataset. For
this dataset with three original groups, such as with the Iris data, the Gaussian kernel
performed better than the other two kernels, with a Monte Carlo average true rate of 0.869.
Polynomial kernels produced comparable results to Gaussian kernels with a Monte Carlo
average true rate of 0.842, while the Monte Carlo average true rate of the tangent kernel
was 0.376. As a result, Gaussian and polynomial kernels had high weights and the tangent
received a low weight in the proposed weighted method. The proposed method obtained
the Monte Carlo average true rate of 0.862, which is higher than that of the majority
voting (0.852), and almost as high as the best performance obtained by the Gaussian kernel
(0.869). Figure 8 shows the original groups in the Seed dataset, and the clustering results
obtained using kernel k-means with three different kernel functions, majority voting, and
the proposed weighted method. Figure 9 shows the Silhouette indices calculated for the
clustering results of Seed data obtained using kernel k-means with three different kernel
functions, majority voting, and the proposed weighted method in a randomly selected trial
(from 100 Monte Carlo trails).
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Figure 6. Silhouette index obtained for clustering results of the Iris dataset using kernel k-means with three different kernel functions (Gaussian, polynomial, and tangent), majority voting,

and the proposed weighted method.



Entropy 2021, 23, 759

13 of 17

Petal Width

15 2.0 25

10

0.5

Original Groups

Kernel k-means, Gaussian function

Kernel k-means, polydot function

24 a 2 o oo 2 o oo
A a . . . .
LM A DA A *0ee o 00 ee0s o 0 0
an a .o .o
N 2008 A a cooe o . cooe o
QA an0n a a 3+ sooe . Q4 sooe .
on A a e o . e o .
ona Man A e o e o0 o e o e o0 o
L ° . . . .
. oo o A e o . ee o .
o o 0oco onA 3 i o 0o soe 2 . o eece eoe
o o ooo a - * oes . . o eee .
o aoooooo o essssse o essssse
c0oo o woss o e o
o ° oo . . B oo
e 4 coo oo S 4 se e oo S+ ces oo
wn DD . .
S v | . v .
o o
Sncjus o . 000 o * 000 o
oo o oee o
0 oo 8 o sosess o o soeeee o
. o o o
T T T T T T T
N ) s . s . ; T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Petal.Length
Kernel k-means, tanhdot function Majority Voting Weighted Majority Voting
4 . oo I o oo < o o
. . . . * *
. coee oo
. . .o
. . coos o
o |
4 .o N .. N '::’. .
e eeee o
. . . e
.« e . e . ce o .
e o . oo o ® 3 94 * oo sse
B o ece oo 2 o ece oo H o e eee .
o o e . o e eee . 3 o esescce
o esessse o eccccce & oo o
coe o sese o 2 . .
. o . o S oo o
E cee oo 2 eee oo
.
v |
. . S
4 . P .
. 000 o
oy
o soeses o LRITIIIRS
. e o o T T T T T T
T T T T T T T T T T T T T t 2 3 4 5 &
1 2 3 4 5 6 7 1 2 3 4 5 6

iris$Petal.Lenath

Figure 7. Original groups in the Iris data and the clustering results of kernel k-means obtained using three different kernel functions (Gaussian, polynomial, and tangent), majority voting,
and the proposed weighted method. Results are visualized using 1st and 2nd PCA.
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Figure 9. Original groups in the Seed data and the clustering results of kernel k-means obtained using three different kernel functions (Gaussian, polynomial, and tangent), majority voting,

and the proposed weighted method. Results are visualized using 1st and 2nd PCA.
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6. Conclusions and Future Research

In our previous work [9], we introduced a weighted mutual information method for
aggregated kernel clustering. We showed that the clustering results highly depend on
the selected kernel in the kernel k-means method. Therefore, we proposed a weighting
function based on the clustering performance to aggregate the clustering results obtained
by different kernels. The notion of aggregating the clustering results obtained by several
kernel functions including Gaussian, polynomial, and hyperbolic tangent was based on
assigning weight functions using their associated NMI values. Calculation of NMI requires
a training set which might not be available, therefore in this paper, we extended our
previous work of ensemble clustering by developing an unsupervised weighting function
based on the Silhouette index. For calculating the Silhouette index, a training set is not
required, which in turn is more sensible in the context of clustering.

We applied the proposed method to different benchmark datasets and combined
the results obtained by three different kernels. We should point out that the proposed
aggregated method either improved the clustering performance or provided comparable
results, depending on the performance of different kernels for the application at hand.
However, the main goal of the proposed method is to obtain impartial results independent
of the kernel function, rather than merely improving the clustering performance. The
former is essential, because in the real applications the true results are not available to
measure the clustering performance, and as a result the choice of the right clustering
method is not obvious. In turn, by aggregating the results based on some sensible weights,
the aggregated clustering results are less biased regarding the selected method. Here, we
showed that not only the aggregated results are impartial where the ensemble performance
was comparable with the best performance obtained by an individual kernel, but also,
for some datasets, the aggregated results outperformed the best performance obtained
by an individual kernel. The focus of future work is on further improvement of the
performance of the ensemble clustering. As the average Silhouette score of the entire model
demonstrates encouraging results, future research will be conducted to study a pointwise
Silhouette score for potential further improvement.
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