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Abstract: The goal of the paper is to present a solution to improve the fault detection accuracy of
rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permu-
tation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM).
Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF)
by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct
the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed
signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidi-
mensional feature vector is fed into the PSO-SVM classification model for automatic identification
of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate
the effectiveness of the proposed method. Experimental results show that the proposed method
can achieve a higher identification accuracy compared with some similar available methods (e.g.,
variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode
decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based
multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation
entropy (WT-MPE)).

Keywords: variational modal decomposition; multiscale permutation entropy; particle swarm
optimization-based support vector machine; rolling bearing; fault diagnosis

1. Introduction

With the vigorous development of the machinery industry, rolling bearings have
become an important component of rotating machinery and are widely used in generators,
gas engines and other kinds of rotating machinery [1,2]. The local fault of rolling bearing
will directly affect the normal operation of the whole of the mechanical equipment, so it is
important to explore a new fault diagnosis technique. However, in practical engineering,
the collected bearing vibration signals contain various interference signals (e.g., white
noise, harmonic interference) and have nonlinear and nonstationary properties, which
indicates that it is difficult to distinguish the bearing fault types and severities. Therefore,
to improve the fault diagnosis accuracy of rolling bearings, it is very necessary to remove
the useless information and obtain more accurate fault features by a novel fault diagnosis
method [3–5].

Common vibration signal decomposition methods include empirical mode decompo-
sition (EMD) [6], wavelet transform (WT) [7], variational mode decomposition (VMD) [8,9],
etc. EMD has been widely addressed by many scholars and is applied in the field of bearing
fault diagnosis. Sun et al. [10] proposed a fast bearing fault diagnosis method based on
ensemble empirical mode decomposition (EEMD), the moth-flame optimization algorithm
based on Lévy flight (LMFO) and the naive bayes (NB). The results manifest the efficiency
and accuracy of signal sparse representation, and fault type classification has been en-
hanced. However, EMD has some disadvantages, such as end effect and mode aliasing [11].

Entropy 2021, 23, 762. https://doi.org/10.3390/e23060762 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23060762
https://doi.org/10.3390/e23060762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060762
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060762?type=check_update&version=2


Entropy 2021, 23, 762 2 of 23

In addition, in the decomposition process of EMD, its performance depends heavily on
extreme point search and envelope interpolation. WT is an effective time-frequency analy-
sis method in signal decomposition, but its performance largely depends on the selection
of wavelet basis function. That is, WT is not adaptive in signal decomposition. To over-
come the deficiencies of EMD and WT, Dragomiretskiy [12] proposed a new adaptive
time-frequency analysis method named VMD in 2014. Compared with EMD and WT,
VMD can suppress interference signals, avoid the loss of useful information and provide
high-quality data sources for subsequent feature extraction. In this method, the center fre-
quency and bandwidth of each mode are determined automatically by iteratively searching
the optimal solution of variational modes. That is, VMD has the characteristics of high
decomposition accuracy and high operational efficiency, which can effectively suppress the
phenomenon of mode aliasing in the process of signal decomposition. At present, it has
been applied to many fields, such as rotating machinery fault diagnosis, by many scholars.
For instance, Li et al. [13] firstly adopted whale optimization algorithm-based optimized
VMD to decompose lidar signals into several intrinsic mode functions (IMF); then, based
on Bhattacharyya distance criterion, the relevant modes are selected to reconstruct the
original signal and complete the effective feature extraction. Li et al. [14] firstly used VMD
to obtain a series of intrinsic mode functions (IMF), then selected the IMF with a higher
center frequency as the main IMF component and generalized the compound multiscale
symbolic dynamic entropy (GCMSDE) of the main IMF component, which is calculated
for fault feature extraction and planetary gearbox fault diagnosis. However, in the above
studies, only one or several main mode components obtained by VMD are adopted for fault
feature information extraction, which may cause a loss of some useful fault information
of the original bearing vibration signal. Therefore, considering the advantages of VMD,
this paper adopts the VMD method to decompose the collected bearing vibration signal.
Furthermore, to avoid some shortcomings of the existing studies, after conducting VMD,
the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration
signal in this paper, which can not only adequately retain the useful fault characteristic
information but also remove some interference frequency components.

To analyze the feature information of the mode components obtained from VMD
decomposition, Shannon entropy theory is introduced. Permutation entropy (PE) [15],
as a measurement tool of time series complexity, is highly sensitive to signal mutation
and has made good progress in the field of fault diagnosis. However, PE cannot measure
multiscale signals. It has a great disadvantage in bearing fault feature extraction. Therefore,
multiscale permutation entropy (MPE) [16,17] is introduced into fault diagnosis. MPE
not only contains the characteristics of a simple calculation and strong anti-interference
of PE but can also be used to analyze the signal at different scales. Du et al. [18] used
MPE to extract fault features and, combined with the self-organizing fuzzy classifier based
on harmonic mean difference (HMDSOF), to classify fault features. The results verified
the superiority of MPE. In view of the limitations of existing fault diagnosis methods for
rotating machinery in single-scale signal analysis, Li et al. [19] proposed a fault diagnosis
method based on MPE and a multichannel fusion convolutional neural network (MCFCNN)
and verified that this method has high diagnostic accuracy, stability and speed. Compared
with PE, MPE is more stable and can be used in a wider range. Therefore, this paper adopts
the MPE method to extract bearing fault features.

Common classification and identification methods include the artificial neural net-
work (ANN) [20], extreme learning machine (ELM) [21,22] and support vector machine
(SVM) [23,24]. Although ANN has obtained many achievements in the field of pattern
recognition, its identification performance greatly depends on its several important param-
eters (e.g., the number of layers and nodes). Additionally, ANN can easily fall into the local
minimum value in the optimization process. Although ELM runs fast, its generalization
performance is poor. SVM has fewer adjustable parameters and runs stably. It can obtain
higher diagnostic accuracy under the condition of fewer training samples. Mao et al. [25]
adopted SVM to classify and identify the transformer winding type correctly. Compared



Entropy 2021, 23, 762 3 of 23

with ANN and ELM, SVM has the advantages of simple calculation, stable operation,
good robustness and better global optimization performance. Moreover, the identification
performance of SVM is greatly affected by its several important parameters. Hence, this
paper uses the particle swarm optimization (PSO) to automatically determine the important
parameters of SVM and adopts the parameter-optimized SVM to identify bearing fault
types. To summarize, the main work and contributions of this paper are summarized
as follows:

(1) The VMD method based on the feature energy ratio (FER) criterion is presented to
decompose and reconstruct the original bearing vibration signal, which can retain the
abundant bearing fault information and remove some interference components.

(2) The VMD, MPE and PSO-SVM are combined into an effective fault diagnosis method,
which can improve the identification accuracy of bearing faults.

(3) Two experimental cases are conducted to show the effectiveness of the proposed
method in bearing fault identification.

The rest of this paper is organized as follows. Section 2 introduces the basic theory of
some methods (i.e., VMD, MPE, PSO-SVM). Section 3 shows the flowchart of the proposed
bearing fault diagnosis method. In Section 4, the effectiveness of the proposed method is
proven by using two experimental examples. Furthermore, contrastive analysis among the
different methods is conducted in Section 4. Finally, some conclusions are summarized in
Section 5.

2. Related Algorithm
2.1. Variational Mode Decomposition

The purpose of the VMD is to decompose the original signal f into several mode
components uk [26]. ωk represents the center frequency of each mode component. uk is
defined as the amplitude modulation (AM) and frequency modulation (FM) signal, and
the expression is as follows:

uk(t) = Ak(t)cos(ϕk(t)) (1)

where Ak(t) is the instantaneous amplitude of the signal, and ϕk(t) is the instantaneous
phase of the signal.

The frequency center and bandwidth of each mode function are determined by the
extreme value of the variational mode constructed by the iterative search, which realizes
the frequency domain division of the signal and the effective separation of each component.
The constrained variational model is firstly constructed as follows:

min
{uk},{ωk}

{
∑k ‖∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt‖

2

2

}
s.t.∑

k
uk = f

(2)

where {uk} = {u1, . . . , uk} and {ωk} = {ω1, . . . , ωk} are modal functions and center
frequencies, respectively.

The quadratic penalty factor α and Lagrange multiplication operator λ are introduced
to establish the Lagrange function:

L({uk}, {ωk}, {λk}) = α∑k ‖∂t
[(

δ(t) + j
πt

)
uk(t)

]
e−jωkk‖

2

2
+

‖ f (t)−∑k uk(t)‖2
2 + 〈λ(t), f (t)−∑k uk(t)〉

(3)

where f (t) represents the original input signal.
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Transform Equation (3) from time-domain to frequency-domain by Fourier trans-
form, and calculate the corresponding extreme value. Finally, the corresponding mode
components uk and ωk are obtained:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (4)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(5)

where uk is the k-th mode component obtained by signal decomposition, and ωk is the
center frequency corresponding to the k-th mode component.

2.2. Signal Reconstruction Based on Feature Energy Ratio Criterion

This paper adopts the reconstruction method based on the feature energy ratio cri-
terion to reconstruct the IMF component of VMD decomposition. This method can not
only make full use of the IMF information but can also retain the useful fault characteristic
information and remove some interference frequency components. Specific steps of signal
reconstruction based on feature energy ratio criterion are as follows:

Firstly, the feature energy ratio FERk of each mode component is calculated:

FERk =
(

E1
k + E2

k + . . . + Eh
k

)
/Ek (6)

where Eh
k is the accumulated energy of the feature frequency at the h order in the Hilbert

envelope spectrum of the k-th mode component uk, and Ek is the total energy of the
envelope spectrum of the k-th mode component uk. Briefly speaking, Eh

k is obtained based
on Equation (4). More specifically, suppose that one given signal x(t) is decomposed by
VMD to obtain the k-th mode component uk. The envelope spectrum of uk is calculated by
Equation (7). Eh

k is the amplitude energy corresponding to the k-th fault frequency of Sk( f ):

sk(t) = |uk(t) + j · Hilbert[uk(t)]|
Sk( f ) = DFT[sk(t)]

(7)

where sk(t) is the envelope signal of the k-th mode component uk(t), DFT[·] denotes the
Fourier transform operator and Sk( f ) represents the envelope spectrum of the k-th mode
component uk(t).

Secondly, the reconstruction weight βk of each mode component and the normalized
reconstruction weight β̂k are calculated:

βk =
FERk

∑k
k=1 FERk

(8)

β̂k =
βk

max(β)
(9)

Finally, the reconstructed signal xFinal is obtained:

xFinal = β̂1x1 + β̂2x2 + . . . + β̂kxk (10)

where xk is uk and represents the k-th mode component.

2.3. Multiscale Permutation Entropy

MPE is an effective feature extraction method based on the PE. The calculation pro-
cess of this method is mainly divided into two steps [27]. Firstly, the multiscale coarse-
granulation time series is established. Secondly, the permutation entropy of coarse-grained
sequences at different scales is calculated. The specific calculation process is as follows:
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1. The original time series is set as X = {xi, i = 1, 2, . . . , N}, and the new sequence y(s)j
is obtained by coarse granulation:

y(s)j =
1
s ∑js

i=(j−1)s+1 xi, j = 1, 2, . . . , [N/S] (11)

where s represents the scale factor.
2. Ys

l is obtained by phase space reconstruction for each coarse-grained sequence y(s)j :

Ys
l =

{
y(s)l , y(s)l+τ , . . . , y(s)l+(m−1)τ

}
(12)

where m represents the embedded dimension, and τ represents the delay time.
3. Arrange the reconstructed time series in ascending order. There are m! possible permu-

tations for the phase space embedded in m dimensions. Count the number of possible
occurrences of the r-th permutation, denoted as Nr, where r = 1, 2, . . . , R(R ≤ m!).
Then, the probability of the occurrences of the r-th permutation is

Pr =
Nr

n
s −m + 1

(13)

4. Finally, the multiscale permutation entropy is obtained:

Hp = −∑R
r=1 Pr ln Pr (14)

2.4. Particle Swarm Optimization-Based SVM

SVM can effectively deal with small sample, nonlinear and local minimum problems.
In the SVM with the Gaussian kernel, the identification accuracy is closely related to the
penalty parameter c and the nuclear parameter g. It is difficult to choose the optimal
combination parameters c and g by virtue of expert experience. Therefore, some opti-
mization algorithms are adopted to find the optimal combination parameters c and g.
Common optimization algorithms include the genetic algorithm (GA) [28] and particle
swarm optimization algorithm (PSO) [29,30]. Xue et al. [31] used the PSO-SVM diagnostic
model to diagnose the tension of wire rope in the hoisting system and compared it with the
GA-SVM diagnostic model. The results show that the identification accuracy of PSO-SVM
is higher than GA-SVM. In addition, PSO has the characteristics of simple calculation, fast
convergence speed and strong convergence ability. Therefore, this paper adopts the PSO
algorithm to optimize the penalty parameter c and kernel parameter g of SVM. Figure 1
shows the algorithm flow of optimizing SVM parameters using PSO. The specific steps are
as follows:

Step 1. Initialize the particle swarm. Initialize the particle swarm parameters, includ-
ing particle number, learning factor, weighting coefficient, particle position and particle ve-
locity.

Step 2. Encode the SVM parameters. The penalty parameter c and kernel parameter g
of SVM are encoded as the position of the particle.

Step 3. Train the SVM model. The SVM model is trained with training samples. The
parameters c and g vary as the particle travels.

Step 4. Assess fitness values. Use Equation (13) to calculate and evaluate the fitness
value of particles. The fitness value is used to evaluate the validity of the fault diagnosis
model with the combined parameters c and g. A larger fitness value indicates a higher fault
diagnosis accuracy:

f (popi) = 1− yi
yc + yi

(15)

where f (popi) is the fitness used to determine the accuracy of the classifier, yi is the number
of wrongly classified and yc is the number of correctly classified.



Entropy 2021, 23, 762 6 of 23

Step 5. Determine the stop conditions. When the desired accuracy is reached, the
iteration is terminated, and the optimal combined parameters c and g of SVM are obtained.
Otherwise, continue iterating.

Steps 6. Update the parameters. Update pbest and gbest. The particle velocity and
particle position are updated according to Equations (14) and (15):

vk
id = ωvk−1

id + c1r1

(
pbestid − xk−1

id

)
+ c2r2

(
gbestd − xk−1

id

)
(16)

xk
id = xk−1

id + vk−1
id (17)

where vk
id is the motion velocity of the k-th iteration particle, xk

id is the position of the k-th
iteration particle in the current search space, c1 and c2 are acceleration factors, r1 and r2
are two random constants in the value range [0, 1], ω is the inertial weight, pbestid is the
historical optimal position of a single particle and gbestd is the historical optimal position
of the particle swarm.
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Figure 1. Algorithm flow chart of optimizing SVM parameters using PSO.

3. Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM

To realize accurate diagnosis of bearing faults, firstly, VMD is used to decompose the
vibration signal collected by the sensor, and FER is used to reconstruct the IMF component
of VMD decomposition. Secondly, the MPE of the reconstructed signals is calculated to
construct multidimensional feature vectors. Finally, PSO-SVM is used for bearing fault
diagnosis. Figure 2 shows the rolling bearing fault diagnosis process based on VMD-MPE
and PSO-SVM. The specific steps are as follows.
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Step 1. Bearing vibration signal collection. The vibration signals of various fault states
of rolling bearing are collected by using sensors.

Step 2. Signal decomposition and reconstruction. VMD is used to decompose bearing
vibration signals into several IMF components, and FER is used to reconstruct the original
bearing vibration signal, which can retain the useful fault characteristic information and
remove some interference frequency components.
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Step 3. Multiscale permutation entropy-based fault feature extraction. The multiscale
permutation entropy of the reconstructed signals is calculated to construct multidimen-
sional feature vectors.

Step 4. Pattern recognition based on PSO-SVM. The extracted multidimensional
feature vector is randomly divided into the training sample set and testing sample set,
where the training sample set is used for training the PSO-SVM model, and the testing
sample set is input into the well-trained PSO-SVM model to identify different health
conditions of bearings and automatically output the recognition results.

4. Experimental Verification
4.1. Case 1: Bearing Data from CWRU
4.1.1. Data Collection and Sample Selection

The data used in the experiment came from the rolling bearing database provided
by the Electrical Engineering Laboratory of Case Western Reserve University (CWRU).
Figure 3 shows the rolling bearing experimental system. The adopted rolling bearing
is SKF6205 in case 1. The single fault types consist of inner race fault (IRF), outer race
fault (ORF) and ball fault (BF) with the fault diameters of 0.1778, 0.3556 and 0.5334 mm.
These single faults are caused by the electrodischarge machine (EDM). The data used
in this paper are under the condition that the motor load is 1 horsepower, the sampling
frequency is 12 kHz, the sampling location and fault location are both at the driving end
and the motor speed is 1772 r/min. Eight kinds of vibration signals collected at the driving
end are regarded as experimental data in case 1. Fifty groups of samples are taken for
each classification, and the length of each group is 2048 points. Thirty groups of data
are randomly selected as a training sample set, and the rest are used as a test sample set.
Table 1 shows the specific information of sample selection. Figure 4 shows the time-domain
waveform and spectrum of vibration signals of eight types of bearings in case 1. Due to
the similarity of the time-domain waveform and spectrum components, it is not easy to
automatically identify the fault types and degrees of bearings through observing Figure 4.
Therefore, an intelligent diagnosis algorithm is needed to realize automatic identification
of bearing fault types and degrees.

Table 1. Sample information of rolling bearing data in case 1.

Fault Type Fault
Size/mm

Number of
Training Samples

Number of
Test Samples Category Label

Normal (N) 0 30 20 1
IRF1 0.1778 30 20 2
IRF2 0.3556 30 20 3
IRF3 0.5334 30 20 4
ORF1 0.1778 30 20 5
ORF2 0.3556 30 20 6
ORF3 0.5334 30 20 7

BF 0.3556 30 20 8
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Figure 3. Rolling bearing fault simulation experimental device.
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Figure 4. Time-domain waveform and spectrum of 8 bearing vibration signals in case 1.

4.1.2. Fault Diagnosis Results and Comparative Analysis

In order to verify the effectiveness of the proposed method, the bearing vibration data
of case 1 are analyzed by using the proposed method. First, according to the algorithm flow
chart shown in Figure 2, the original bearing vibration signal of case 1 is decomposed into
several IMF by using the VMD method. Take the bearing inner race fault (IRF1) signals
as an example. Figure 5 shows the VMD decomposition results of bearing inner race
fault signals. Then, the decomposed component of VMD is reconstructed. The feature
energy ratio FERk of each IMF component is calculated according to Equation (6). The
bearing inner race fault feature frequency in case 1 is 159.92 Hz. Theoretically, the higher
the order frequency is, the higher the recognition accuracy will be. However, in practical
application, the fault feature information is mainly concentrated in the first few order
frequencies. The higher the order frequency, the lower the operating efficiency. Considered
comprehensively, the first three order frequencies are selected for calculation in this paper.
Then, according to Equations (8) and (9), the reconstruction weight βk of each component
and the normalized reconstruction weight β̂k are calculated. Finally, reconstructed signal
xFinal is obtained according to Equation (10). Table 2 shows the calculation results of FERk,
βk and β̂k. Figure 6 shows the time-domain waveform and spectrum of the reconstructed
signal. Then, the MPE of the reconstructed signals is calculated and a multidimensional
eigenvector is established. Figure 7 shows the MPE at different scales. Finally, the extracted
multidimensional feature vectors are input into PSO-SVM for automatic fault classifica-
tion. Figure 8 shows the optimization results of SVM parameters using PSO. It can be
seen from Figure 8 that the optimal combination parameters of SVM determined by the
PSO algorithm are c = 20.42 and g = 6.35, and the accuracy of cross-validation is 99.58%.
Figure 9 shows the classification results of the proposed method. As can be seen from
Figure 9, the fault identification accuracy of the proposed method is as high as 100%. The
effectiveness of the proposed method in the classification and degree identification of
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bearing faults is preliminarily demonstrated. In addition, the validity of the proposed
method is further verified from the following six angles.
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Figure 5. Time-domain waveform and spectrum of IMF component obtained using VMD for inner
race fault signal in case 1.

Table 2. Calculation results of FERk, βk and β̂k in case 1.

IMF FERk βk
^
βk

1 0.1320 0.1150 0.4243
2 0.3111 0.2711 1
3 0.2098 0.1828 0.6742
4 0.2395 0.2087 0.7698
5 0.1050 0.0915 0.3377
6 0.1497 0.1304 0.4811
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Figure 6. Time-domain waveform and spectrum of the inner race fault signal before and after
reconstruction in case 1.
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(1) The influence of the embedding dimension and scale factor on the diagnosis results
of the proposed method is investigated. MPE depends on the embedding dimension m and
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scale factor s. When m is too large, the calculation efficiency of MPE is slow. When m is too
small, small changes in time series cannot be detected [32]. According to literature [33], it
can be seen that generally, m is between 3 and 7, and s is greater than 10. Figure 10 shows
the identification results of the proposed method under different embedding dimensions
and scale factors. It can be seen from Figure 10 that when the embedding dimension m = 3
and the scale factor s = 15, the proposed method achieves the highest identification accuracy.
The validity of the parameter selection of the proposed method is verified in case 1.
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Figure 10. Identification results of the proposed method under different embedding dimensions and
scale factors in case 1.

(2) The influence of different training sample ratios on the identification results of
rolling bearing fault states is analyzed. This article selects a total of 400 samples of the
above eight types of data. Randomly take 20%, 30%, 40%, 50% and 60% samples of each
category as the training set and the rest as the test set. Table 3 shows the identification
results under different training samples. Seen from Table 3, with the increase of the number
of training samples, the identification accuracy of the proposed method also increases.
When the training samples reach 60% of the total samples, that is, the number of training
samples in each classification is 30, the fault identification accuracy of the proposed method
in this paper can reach 100%. In case 1, this proves the effectiveness and feasibility of the
number of training samples selected in the proposed method.

Table 3. Identification results of the proposed method under different training sample ratios in case 1.

Training Samples Ratio 20% 30% 40% 50% 60%

Identification Accuracy (%) 93.75 95.00 96.25 98.50 100

(3) To verify the effectiveness of the proposed method using VMD and MPE, the
proposed method (VMD-MPE-PSOSVM) and some similar available methods (e.g., EMD-
MPE-PSOSVM, WT-MPE-PSOSVM, VMD-MSE-PSOSVM, VMD-MFE-PSOSVM) are used
to analyze the abovementioned same experimental data. Table 4 shows the identification
results of the five methods. It can be seen from Table 4 that the average identification accu-
racy of the proposed method is 99.87%, which is significantly higher than the identification
accuracy of the other four methods. It can also be seen from Table 4 that the standard
deviation of the proposed method is the smallest compared with other methods, which
verifies that the proposed method runs stably. This fully verifies the effectiveness of using
VMD and MPE in the proposed method in case 1.
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Table 4. Identification results of different feature extraction methods with PSO-SVM in case 1.

Feature Extraction
Method

Identification Accuracy (%) Average Identification
Accuracy (%)

Standard
Deviation1 2 3 4 5

VMD-MPE 100 100 100 100 99.37 99.87 0.06
EMD-MPE 98.75 98.12 98.75 98.75 98.12 98.49 0.10
WT-MPE 41.25 41.25 41.87 41.25 41.87 41.64 0.11

VMD-MSE 93.75 92.50 94.37 92.50 92.50 93.12 0.62
VMD-MFE 93.75 94.37 94.37 95.00 95.62 94.62 0.41

(4) To illustrate the superiority of using PSO to optimize the important parameters of
the SVM model used in the proposed method, VMD-MPE-PSOSVM and VMD-MPE-SVM
are adopted to analyze the same bearing experimental data. Table 5 lists the comparative
results of the two methods. It is obvious from Table 5 that the choice of parameters c and g
has a great influence on the classification results. The randomly selected parameters c and
g cannot guarantee that the classification accuracy of SVM achieves the desired effect, but
the combination parameters (i.e., c and g) of SVM in the proposed method are determined
automatically by applying the PSO method, which can achieve a higher identification
accuracy. This further verifies the superiority of using PSO to optimize SVM parameters in
the proposed method in case 1.

Table 5. Identification accuracy of the proposed method with optimized and unoptimized parameters
in case 1.

Classifier Penalty Parameter c Nuclear Parameter g Identification Accuracy (%)

PSO-SVM 20.42 6.35 100

SVM

4.36 10 96.25
22 70.17 62.50

48.25 51.36 70.62
90 35 80.62
30 100 51.87

(5) To investigate the effect of order frequency on the identification accuracy of the
proposed method, the first three, four, five, six and seven order frequencies are employed
to analyze the bearing data of case 1. Figure 11 shows the identification results of running
five times at different order frequencies. It can be seen from Figure 11 that the order
frequency has little effect on the identification accuracy. The identification accuracy of case
1 is mainly between 98% and 100%. It is demonstrated that the selection of order frequency
of the proposed method is appropriate in case 1.

(6) To discuss the effect of the VMD method, VMD-MPE-PSOSVM and MPE-PSOSVM
are used to analyze the same bearing experimental data. Table 6 gives the comparative
results of the two methods. It can be seen from Table 6 that the identification accuracy
with the VMD method is significantly higher than that without the VMD method. It is
demonstrated that the VMD method has advantages in the signal decomposition process
and can improve the fault identification accuracy.

Table 6. Identification accuracy with VMD method and without VMD method in case 1.

Fault Diagnosis
Method

Identification Accuracy (%) Average Identification
Accuracy (%)1 2 3 4 5

VMD-MPE-PSOSVM 100 100 100 100 99.37 99.87
MPE-PSOSVM 93.75 90.62 95.00 92.50 95.00 93.37
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4.2. Case 2: Bearing Data from Laboratory
4.2.1. Data Collection and Sample Selection

The data used in case 2 come from the author’s laboratory. ABLT-1A as the experimen-
tal device is shown in Figure 12a, which is mainly composed of a computer control system,
a test head (as shown in Figure 12b), a lubrication system, a transmission system, a loading
system, a motor control system and a data acquisition system. The motor speed is adjusted
by the motor control system. The motor drives the shaft to rotate, and the fault bearing is
installed on the shaft. The corresponding parameters of the rolling bearing used in case 2
are shown in Table 7. The whole data set includes seven fault states of the rolling bearing:
normal (N), outer race fault (ORF), inner race fault (IRF), ball fault (BF), outer-inner races
compound fault (OIF), outer race and ball compound fault (OBF) and outer-inner races
and ball compound fault (OIBF). These faults are caused by the electrodischarge machine
(EDM). Figure 13 shows the three faults in this case. The flaw size of inner race, outer race
and ball is 1 mm in width. The NI9234 data acquisition card and two PCB accelerometers
(i.e., sensor-1 and sensor-2) are adopted to collect the bearing vibration data, where one
PCB accelerometer (sensor-2) is moved and mounted at a certain distance from the faulty
bearing to simulate the weak fault signal. The motor load is 5.1 kN. The rotating speed
and sampling frequency set as 1050 r/min and 12 kHz, respectively. Fifty groups of sam-
ples collected in sensor-2 are selected for each health condition, where 30 groups of data
samples are randomly selected as the training sample set, and the rest are used as the test
sample set. Note that the length of each group of samples is 2048 points. Table 8 shows the
specific information of sample selection. Figure 14 shows the time-domain waveform and
frequency spectra of seven bearing vibration signals. It can be seen from Figure 14 that the
fault type of the bearing cannot be identified by observing the time-domain waveform and
frequency spectrum. Therefore, it is necessary to employ an intelligent diagnosis algorithm
to automatically identify bearing fault types.

Table 7. The corresponding parameters of rolling bearing.

Bearing
Type

Inside
Diameter

Roll
Diameter

Outside
Diameter

Number of
the Roller

Contact
Angle (◦)

HRB 6205 25 mm 7.94 mm 52 mm 9 0
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Table 8. Sample information of rolling bearing data in case 2.

The Fault Types Number of
Training Samples

Number of
Test Samples Category Label

Normal (N) 30 20 1
ORF 30 20 2
IRF 30 20 3
BF 30 20 4

OIF 30 20 5
OBF 30 20 6
OIBF 30 20 7

4.2.2. Fault Diagnosis Results and Comparative Analysis

In order to prove the superiority of the proposed method, the proposed method in
this paper is used to analyze the bearing vibration data of case 2. First, according to the
algorithm flow chart shown in Figure 2, the original bearing vibration signal of case 2 is
decomposed into several IMF by using the VMD method. Take the case 2 bearing inner ring
fault (IRF) signal as an example. Figure 15 shows the VMD decomposition result of the fault
signal of the bearing inner ring in case 2. Subsequently, the reconstruction method based on
the FER criterion is used to reconstruct the IMF components. The feature energy ratio FERk
of each IMF component is calculated according to Equation (6). The feature frequency of
the inner race fault in case 2 is 94.76 Hz. Theoretically, the higher the order frequency is,
the higher the recognition accuracy will be. However, in practical application, the fault
feature information is mainly concentrated in the first few order frequencies. The higher the
order frequency, the lower the operating efficiency. Considered comprehensively, the first
three order frequencies are selected for calculation in this paper. Then, the reconstruction
weight βk of each component and the normalized reconstruction weight β̂k are calculated
according to Equations (8) and (9). Finally, the reconstructed signal xFinal is obtained from
Equation (10). Table 9 shows the calculation results of FERk, βk and β̂k. Figure 16 shows the
result of the reconstructed signal. Then, the MPE of the reconstructed signal is calculated
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to form a multidimensional feature vector. Figure 17 shows the MPE at different scales.
Finally, the extracted multidimensional feature vectors are input into PSO-SVM for pattern
identification. Figure 18 shows the optimization results of SVM parameters using PSO. It
can be seen from Figure 18 that the optimal combination parameters of the SVM by the
PSO algorithm are c = 100 and g = 0.17, and the cross-validation accuracy rate is 93.80%.
Figure 19 shows the classification results of the proposed method. It can be seen from
Figure 19 that the proposed method can achieve a fault identification rate of 96.42%. This
is mainly because the vibration data of single faults and compound faults are collected in
case 2. Moreover, their fault feature information is not obvious. Concretely, compared with
case 1, the difference of the time-domain waveform of each bearing fault type is relatively
small in case 2. That is, in case 2, it is more difficult to identify bearing fault patterns
by directly observing the time-domain waveform of the bearing vibration signal, which
indicates that the identification accuracy of the bearing fault may be reduced (i.e., less than
100%) by using the proposed method to analyze the bearing vibration data of case 2. The
effectiveness of the proposed method in identifying bearing fault types is preliminarily
verified. In addition, the validity of the proposed method is further verified from the
following six angles.
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Figure 14. Time-domain waveform and spectrum of 7 bearing vibration signals in case 2.

Table 9. Calculation results of FERk, βk and β̂k in case 2.

IMF FERk βk
^
βk

1 0.0146 0.2139 0.6691
2 0.0094 0.1385 0.4332
3 0.0078 0.1150 0.3597
4 0.0219 0.3198 1.0000
5 0.0051 0.0739 0.2311
6 0.0095 0.1386 0.4336
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Figure 15. Time-domain waveform and spectrum of IMF components obtained using VMD for inner
race fault signal in case 2.
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Figure 16. Time-domain waveform and spectrum of the inner race fault signal before and after
reconstruction in case 2.

(1) The influence of the embedding dimension and scale factor on the diagnosis result
of the proposed method is analyzed. Figure 20 shows the identification results of the
proposed method under different embedding dimensions and scale factors. It can be seen
from Figure 20 that when the embedding dimension m = 6 and the scale factor s = 14,
the proposed method achieves the highest identification accuracy. The validity of the
parameter selection of the proposed method is verified in case 2.
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Figure 20. Identification results of the proposed method under different embedding dimensions and
scale factors in case 2.

(2) In order to study the influence of different training sample on the accuracy of
rolling bearing fault state identification, 350 samples of case 2 data are selected for analysis.
Randomly take 20%, 30%, 40%, 50% and 60% samples of each category as the training
sample set, and the rest as the test sample set. Table 10 shows the identification results
under different training samples. It can be observed from Table 10 that when the number of
training samples increases, the identification accuracy also increases. When the number of
training samples reaches 60% of the total samples, the number of training samples for each
classification is 30, and the fault identification accuracy of the method proposed in this
paper can reach 96.42%. This proves the effectiveness of selecting the number of training
samples of the proposed method in case 2.

Table 10. Identification results of the proposed method under different training sample ratios in
case 2.

Training Sample Ratio 20% 30% 40% 50% 60%

Identification Accuracy (%) 79.64 86.50 90.00 89.14 96.42

(3) In order to examine the effects of using VMD and MPE in the proposed method,
five methods (e.g., VMD-MPE-PSOSVM, VMD-MSE-PSOSVM, VMD-MFE-PSOSVM, EMD-
MPE-PSOSVM and WT-MPE-PSOSVM) are adopted to compare the same comparative
analysis of the bearing experimental data. Table 11 shows the diagnosis results of the
different methods. It can be clearly observed from Table 11 that the proposed method has
the highest average identification accuracy (96.56%) compared with the other methods. It
can also be seen from Table 9 that the standard deviation of the proposed method is the
smallest compared with other methods, which verifies that the proposed method runs
stably. This further proves the superiority of combining VMD and MPE of the proposed
method in bearing health condition identification.

(4) To verify the effectiveness of using PSO to optimize SVM parameters in this
method, VMD-MPE-PSOSVM and VMD-MPE-SVM are used to analyze the same bearing
experimental data. Table 12 lists the comparison results of the two methods. It is obvious
from Table 12 that the parameters c and g selected by experience cannot be guaranteed to
achieve the highest classification accuracy of SVM, but the combination parameters (i.e., c
and g) of SVM are obtained by utilizing the PSO method, which can assure identification
accuracy is the highest. This fully verifies the effectiveness of employing PSO to optimize
SVM parameters in the proposed method in case 2
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Table 11. Identification results of different feature extraction methods with PSO-SVM in case 2.

Feature Extraction
Method

Identification Accuracy (%) Average Identification
Accuracy (%)

Standard
Deviation1 2 3 4 5

VMD-MPE 96.42 96.42 96.42 97.14 96.42 96.56 0.08
EMD-MPE 32.85 32.85 28.57 32.85 32.85 31.99 2.93
WT-MPE 88.57 90.00 90.00 88.57 87.87 89.00 0.73

VMD-MSE 85.70 84.28 82.14 82.14 84.28 83.71 1.91
VMD-MFE 80.71 82.14 80.71 81.42 80.71 81.14 0.33

Table 12. Identification accuracy of the proposed method with optimized and unoptimized parame-
ters in case 2.

Classifier Penalty Parameter c Nuclear Parameter g Identification Accuracy (%)

PSO-SVM 100 0.17 96.42

SVM

31.23 15.46 77.87
58 5 92.14
42 49.87 48.57
89 30 63.57

98.52 81 35.00

(5) To study the effect of order frequency on the identification accuracy of the proposed
method, the first three, four, five, six and seven order frequencies are employed to analyze
the bearing data of case 2. Figure 21 shows the identification results of running 5 times at
different order frequencies. It can be seen from Figure 21 that with the increase of order
frequency, the identification accuracy has no obvious change. The identification accuracy
of case 2 is between 94% and 97%. It is verified that the selection of the order frequency of
the proposed method is reliable in case 2.
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Figure 21. Identification results of five trials of the proposed method at different order frequencies in
case 2.

(6) To discuss the effect of the VMD method, VMD-MPE-PSOSVM and MPE-PSOSVM
are used to analyze the same bearing experimental data. Table 13 gives the comparative
results of the two methods. It can be seen from Table 13 that the identification accuracy
with the VMD method is significantly higher than that without the VMD method. It is
demonstrated that the VMD method has advantages in the signal decomposition process
and can improve the fault identification accuracy.
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Table 13. Identification accuracy with VMD method and without VMD method in case 2.

Fault Diagnosis
Method

Identification Accuracy (%) Average Identification
Accuracy (%)1 2 3 4 5

VMD-MPE-PSOSVM 96.42 96.42 96.42 97.14 96.42 96.56
MPE-PSOSVM 90.00 91.42 89.28 91.42 89.28 90.28

4.3. Further Discusses

Through the comparison and analysis of different methods, it is concluded that the
proposed method combines the advantages of VMD, MPE and SVM, which can effectively
improve the identification accuracy of rolling bearings. It is fully proven that the proposed
method has a certain application value for bearing fault diagnosis. Our future research
directions are summarized as the following four points.

Firstly, although the identification accuracy of the proposed method is relatively high,
some key parameters (e.g., the embedding dimension m and scale factor s of MPE) have
a great impact on the identification results. Therefore, in our future research, we will
adopt some appropriate optimization algorithms (e.g., grasshopper optimization algorithm
(GOA), grey wolf optimization algorithm (GWO) and bat algorithm (BA)) to find the
optimal parameters of MPE.

Secondly, in this paper, bearing health status under constant speed is analyzed. How-
ever, the diagnostic performance of the proposed method may also be affected when the
rotational speed and load are dynamically changing. Hence, our next study will investigate
how to use the proposed method to solve this problem.

Thirdly, for a small number of samples, SVM has a prominent diagnostic effect, but
the identification performance of SVM may be reduced when it is faced with a big data
scenario. Therefore, in future research, we will use deep learning (DL) [34,35] instead of
SVM to identify bearing fault patterns.

Finally, from the prospect of application, the method proposed in this paper will
be further studied and extended to detect more mechanical equipment faults (e.g., wind
turbine generator, locomotive fault detection) in future work.

5. Conclusions

This paper proposes a bearing fault diagnosis method based on variational mode
decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm
optimization-based support vector machine (PSO-SVM). Experiments and comparative
analysis verify the effectiveness and superiority of the proposed method. The main work
and innovation of this paper are summarized as follows:

(1) The variational mode decomposition method based on the feature energy ratio
(FER) criterion is applied to decompose and reconstruct the original bearing vibration
signal, which can retain the useful fault characteristic information and remove some
interference frequency components.

(2) The particle swarm optimization algorithm is adopted to optimize the combination
parameters of the support vector machine, which can reduce the influence of manual
parameters on the classification performance and improve the generalization performance
of the support vector machine. Compared with the support vector machine, the particle
swarm optimization-based support vector machine has obvious superiority in identifying
bearing fault patterns.

(3) The analysis results of two experimental examples show that the identification
accuracy of the proposed method can achieve, respectively, 100% and 96.42% in identifying
bearing fault categories and severities. Furthermore, compared with some similar diag-
nostic methods (e.g., EMD-MPE-PSOSVM, WT-MPE-PSOSVM, VMD-MSE-PSOSVM and
VMD-MFE-PSOSVM), the proposed method can achieve a higher identification accuracy,
which proves the validity of the proposed method in bearing health condition identification.
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Nomenclature

VMD Variational mode decomposition
WT Wavelet transform
FER Feature energy ratio
EMD Empirical mode decomposition
SVM Support vector machine
NB Naive bayes
MSE Multiscale sample entropy
IMF Intrinsic mode functions
EEMD Ensemble empirical mode decomposition
PE Permutation entropy
DL Deep learning
ANN Artificial neural network
ELM Extreme learning machine
WOA Whale optimization algorithm
PSO Particle swarm optimization
MFE Multiscale fuzzy entropy
GA Genetic algorithm
MPE Multiscale permutation entropy
MFCNN Multichannel fusion convolutional neural network
HMDSOF Self-organizing fuzzy classifier based on harmonic mean difference
LMFO Moth-flame optimization algorithm based on Lévy flight
GCMSDE Generalized compound multiscale symbolic dynamic entropy
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