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Abstract: Control loop performance assessment (CPA) is essential in the operation of industrial
systems. In this paper, the shortcomings of existing performance assessment methods and indicators
are summarized firstly, and a novel evaluation method based on generalized correntropy criterion
(GCC) is proposed to evaluate the performance of non-Gaussian stochastic systems. This criterion
could characterize the statistical properties of non-Gaussian random variables more fully, so it
can be directly used as the assessment index. When the expected output of the given system is
unknown, generalized correntropy is used to describe the similarity of two random variables in
the joint space neighborhood controlled and take it as the criterion function of the identification
algorithms. To estimate the performance benchmark more quickly and accurately, a hybrid-EDA
(H-EDA) combined with the idea of “wading across the stream algorithm” is proposed to obtain the
system parameters and disturbance noise PDF. Through the simulation of a single loop feedback
control system under different noise disturbances, the effectiveness of the improved algorithm and
new indexes are verified.

Keywords: performance assessment indicators; hybrid-EDA; non-Gaussian systems; generalized
correntropy criterion

1. Introduction

With the continuous improvement of automation in the industrial process, the produc-
tion process is becoming more and more complex. Control loops play the most important
role in automation systems. Product quality, operation safety, material consumption and
energy consumption are closely related to the performance of control system. Excellent
control loop performance will ensure the effectiveness of the control systems, thus ensuring
product quality and reducing product cost. The significance of performance assessment
is to realize, restore and maintain the optimal performance of the control loops at all
times. Therefore, it is of great practical value to evaluate the system performance quickly
and accurately in industrial operation. At present, control loop performance assessment
(CPA) has become an essential technology to ensure the smooth progress of industrial
production [1].

Noise is unavoidable during the performance evaluation [2]. Most of the current
performance evaluation methods assume that the noise obeys the Gaussian distribution.
The research focuses on the first or second-order moments of the target output (i.e., the
mean and variance). Harris [3] proposed a CPA index based on minimum variance control
(MVC). This method is regarded as a milestone in the performance assessment research,
so we named the index after the researcher, Harris. Later researchers have made great
progress on this fundamental. The MVC-based performance evaluation index has been
applied to various types of control systems, and this index has been improved for different
situations [4–6]. At present, methods of system performance assessment based on MVC are
very mature and has a remarkable application effect when the noise disturbance conforms
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to Gaussian. However, most of the disturbances in the actual industrial process obey
non-Gaussian. The traditional MVC methods are no longer applicable for this case. A more
suitable indicator should be chosen to reflect the higher-order statistical characteristics of
variables rather than mean and variance in the closed-loop control systems.

For a stochastic system with non-Gaussian noises, the probability density function
(PDF) of the output data is approximated by B-spline in the early research direction [7]. A
stochastic distributed control algorithm based on minimum entropy control (MEC) was
proposed by Zhang and Chu [8]. Information entropy has a more general meaning for
any stochastic variable than mean or variance. All higher-order moments (not just second-
order) can be minimized by minimizing entropy rather than mean square error. Therefore,
the application effect of MEC control strategy is much better than MVC in non-Gaussian
systems. On this basis, some significant progress has been made in the field of CPA with
non-Gaussian noise [9–14]. When the expected output PDF is not given in advance, it
is necessary for the CPA methods of the controlled system based on MEC to identify
the associated system model effectively and systematically based on closed-loop data.
Minimum entropy criterion was introduced into the feedback control system by Jiang [9],
and a new performance assessment method came into being. In work [9], the model of
the associated system is identified by the estimation of distribution algorithm (EDA) to
obtain the optimal parameters, then the mathematical model and disturbance sequence
between output and disturbance is obtained. It is verified that the new benchmark is
appropriate for both Gaussian and non-Gaussian systems. However, the method given by
Jiang [9] is not detailed enough, the specific calculation methods of minimum entropy for
discrete and continuous disturbances are not given. Fortunately, an improved minimum
entropy calculation method was proposed by Zhou [10,11] to correct the defects of Jiang’s
method. In work [10], Zhou and Zhang analyzed the defects of Shannon entropy in CPA
process and proposed a new entropy index, rational entropy. The method given in [10]
can calculate the theoretical benchmark value. In work [11], the traditional EDA has been
improved to identify the system parameters and estimate the noise PDF better and the
estimation method of benchmark value is also given. In reference [12], the rational entropy
index is used to evaluate a typical cascade control system. However, entropy has the
property of translation invariance, that is, the size of entropy is only determined by the
shape of its distribution. When the mean of error distribution is not around zero, the wrong
assessment result may be caused. For this case, Zhou proposed the performance index
of mean-constraint, while a CPA method based on mixture correntropy was proposed by
Zhang [13]. The problem of the minimum entropy translation invariance can be solved by
adjust the kernel width and weight coefficient of mixture correntropy. Similarly, to avoid
the defect of Renyi entropy indicator is insensitive to mean shift, Zhang [14] combined
the Renyi entropy benchmark with the mean value to construct a new indicator that can
reflect the mean shift of non-Gaussian system. In conclusion, the main breakthrough of the
performance assessment method based on MEC is the improvement of the identification
algorithm and the selection of some new entropy indicators.

Correntropy is a measure of the generalized similarity of two random variables using
information from the statistical properties of higher-order signals [15]. The kernel function
of mixture correntropy CPA [13] is Gaussian kernel by default. However, it can only
reflect a specific type of noise with Gaussian function, and the shape of entropy cannot
be changed freely. Therefore, the Gaussian kernel is not always the best choice [16]. A
more general correntropy, generalized correntropy (GC) is proposed. The generalized
Gaussian density function is used to replace the traditional Gaussian kernel function
for correlation analysis. With greater flexibility, generalized correntropy could describe
the statistical characteristics of non-Gaussian random variables better and more fully. In
recent years, generalized correntropy has been widely used to design the robust adaptive
filters to adapt to different applications [17–20]. For instance, to improve the accuracy and
stability of the traditional multi-kernel filtering algorithms, the multi-kernel generalized
maximum correntropy (MKGMC) filtering algorithm is developed by Sun [17] under the
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generalized maximum correntropy criterion. Wang [18] applied generalized correntropy to
the design of sparse Gaussian Hermite orthogonal filters. Qiu [19] replaced the mean square
error loss with generalized correntropy loss (GCL) in the original unscented Kalman filter
(UKF) framework, which combines the strength of GCL developed in robust information
theoretic learning to solve the non-Gaussian interference and the strength of the UKF
in handing strong model nonlinearities. Therefore, it is very promising to study the
performance assessment of non-Gaussian stochastic systems by replacing entropy criterion
with generalized correntropy.

To estimate the performance benchmark better, this paper integrates the idea of
wading across the stream algorithm (WSA) into the traditional EDA to improve the local
convergence ability of the algorithm. In the iterative process of the algorithm, the center
of some excellent individuals is selected to cross with the best solution to fully retain the
information of the best individuals. Generalized correntropy is used as the fitness value of
H-EDA to identify the parameters of the controlled auto regression and moving average
(CARMA) model of the controlled system, which accelerate the algorithm and improves
the accuracy. The effectiveness of the hybrid algorithm is verified through the simulation
of a single loop feedback control system under different noise disturbances.

In the next section, the CPA index based on MEC is reviewed, and the generalized
correntropy index is proposed to overcome the shortcomings of the previous entropy
indexes. The third part introduces the performance evaluation process based on the H-EDA
in detail. In the fourth section, a detailed simulation of a single input single output (SISO)
system is carried out, and the final conclusion will be given in the last part.

2. Performance Assessment Based on MEC
2.1. Feedback Control Loop

A SISO feedback control system is considered in this paper for convenience of research,
the detailed description is given in Figure 1.

Figure 1. SISO feedback control loop system.

where, r represents the system set value; u represents the output of the controller; v
represents stationary independent identically distributed unmeasurable noise.

The system in Figure 1 could be described as a CARMA model as follows,

A(z−1)y(k) = z−τ B(z−1)u(k) + C(z−1)v(k) (1)

where y(k) , u(k) and v(k) are the output, input and unknown noise disturbance of CARMA
model process respectively,

A(z−1) = 1 + a1z−1 + a2z−2 + · · ·+ anaz−na

B(z−1) = b1z−1 + b2z−2 + · · ·+ bnbz−nb

C(z−1) = 1 + c1z−1 + c2z−2 + · · ·+ cncz−nc
(2)

where na, nb, nc and τ are the structural parameters of the model; na, nb, and nc are the
order of A(z−1), B(z−1) and C(z−1) respectively, τ is the system delay. The parameters
ana, bnb, and cnc can be estimated by the model identification, provided the structural
parameters are obtained.
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2.2. Minimum Entropy Index

Assuming that the input of the given system is 0, the output is,

yt =
Gv

1 + GpGc
vt =

Gv

1 + z−τG̃pGc
vt (3)

where, G̃p is the transfer function without delay. By solving the Diophantine equation, the
disturbance transfer function Gv could be further decomposed,

Gv(z−1) = F(z−1) + z−τ R(z−1) = (1 + n1z−1 + n2z−2 + · · ·+ nτ−1z−(τ−1)) + z−τ R(z−1) (4)

where, F(z−1
)

is the impulse response coefficient of the disturbance transfer function Gv

and R(z−1
)

is the remaining transfer function satisfying the identity (4),

y(t) = Fv(t) + Lv(t− τ) = (n0 + n1z−1 + n2z−2 + · · ·+ nvz−(τ−1))v(t)︸ ︷︷ ︸
feedback−invariant

+ (ndz−τ + nd+1z−(τ+1) + · · ·)v(t)︸ ︷︷ ︸
feedback−varying

(5)

where,

L =
R− FG̃pGc

1 + z−τG̃pGc
(6)

The control objective of the minimum entropy controller can be achieved by min-
imizing the entropy of the output variables when analyzing the linear non-Gaussian
system [21,22]. The feedback-invariant only depend on the characteristics of the distur-
bance in the process rather than the function of the process model or controller. The second
term on the right of Equation (5) is the feedback-varying, which means the controller Gv
can determine the entropy value of the process output. Since both sides of Equation (6) are
independent, therefore,

H(yt) = H(Fvt + Lvt−τ) ≥ H(Fvt) (7)

Just like the MVC method, the equal sign in Equation (7) holds only when L = 0, then
the output entropy reaches the minimum, that is the benchmark entropy,

Hmin(yt) = H(Fvt) (8)

The CPA based on MEC is to compare the actual system output entropy H(y t) with
the output entropy Hmin(y t

)
under MEC. To sum up, the CPA index based on MEC can be

expressed as,

η =
Hmin(yt)

H(yt)
=

H(Fvt)

H(yt)
(9)

This indicator is similar to MVC, which is always between 0 and 1. Generally, the
closer it is to 1, the closer the system to the ideal case, indicating that the system performs
better; conversely, the closer it is to 0, the worse the system performance is, even including
unstable control.

2.3. Prevenient Entropy Index and Generalized Correntropy

Entropy is a measure to describe the uncertainty of random variables, even for random
variables without mean or variance. The size of entropy is only determined by the shape of
the distribution rather than its location. There are many ways to describe entropy, such
as Shannon entropy (SE), rational entropy (RE), Renyi entropy and delta entropy. In the
researches based on the minimum entropy criterion, SE is widely used. For linear Gaussian
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systems, SE is equivalent to variance. For a continuous random variable x, Shannon
entropy can be expressed as,

HSE = −
∫

γ(x) lnγ(x)dx, x ∈ R (10)

where γ(x) is its probability density function (PDF). SE is one of the CPA criteria based on
MEC system in previous researches [10]. However, it does not meet the “consistency” princi-
ple, that is, the results must be the same when entropy could be calculated in many different
ways. These characteristics show that SE cannot be used as a new evaluation index.

Fortunately, the rational entropy (RE) criterion is proposed by Zhou [10], which has
most of the properties of Shannon entropy and satisfies the “consistency” principle. The
definition of rational entropy is,

HRE = −
∫

γ(x) log
γ(x)

1 + γ(x)
dx, x ∈ R (11)

where R is the domain of random variable x, and γ(x) is its PDF. RE is a suitable benchmark
for CPA of linear non-Gaussian systems. By comparing the output rational entropy under
MEC process with actual, a CPA index will be obtained.

Of course, RE is not perfect. The PDF of variable x is essential to calculate the output
RE. If the PDF is known, it is more convenient to use the RE criterion to calculate the CPA
index. However, when the PDF of the variable is unknown, this method is very complicated
in the actual calculation process. For instance, when the system parameters are estimated
by the EDA, RE as the fitness value, needs to be calculated for several times in each iteration
(usually 1000 s), and the operation will be repeated for many times in the identification
process. In the actual systems, the parameters and data will be more complex, this method
will waste a lot of time. Therefore, this method lacks practical engineering significance.

The mixture correntropy index is adopted by Zhang [13] to solve the problem of
translation invariance. However, the Gaussian kernel is applied to the kernel function
of mixture correntropy in [13], which is not comprehensive in describing the statistical
properties of non-Gaussian random variables [16]. As mentioned before, generalized
correntropy is a more appropriate indicator.

Correntropy is a measure of local similarity, which is directly related to the similarity
of two random variables in the joint space neighborhood controlled by kernel width. Given
two random variables X and Y, their correntropy is defined as [16],

Vσ(X, Y) = E[κσ(X, Y)] =
∫

κσ(x, y)dFXY(x, y) (12)

where E[·] is the expectation value, κσ is the kernel function with the width of σ(σ > 0)
and FXY(x, y) denotes the joint distribution function of (X, Y). Generally, Gaussian kernel
is chosen as the kernel function of correntropy,

κσ(x, y) = Gσ(e) =
1√
2πσ

exp
(
− e2

2σ2

)
=

1√
2πσ

exp
(
−λe2

)
(13)

where e = x− y and λ = 1/2σ2 is the kernel parameter. In this paper, a well-known GGD
function will be used as the kernel function in correntropy [23],

Gα,β(e) =
1

2βΓ(1/α)
exp

(
−
∣∣∣∣ e

β

∣∣∣∣α) = γα,β exp
(
−λ|e|α

)
(14)

where Γ(·) means the gamma function, α > 0 represents shape parameter; β > 0 is
bandwidth parameter, λ = 1/ β α is the kernel parameter and γα, β= α/(2 βΓ(1/a)) is the
normalization constant.
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The GGD function is used as the kernel function in the correntropy,

Vα,β(X, Y) = E[Gα,β(EX−Y)] = E[Gα,β(X−Y)] (15)

where, to distinguish the correntropy with Gaussian kernel, we define it as generalized
correntropy (GC). Clearly, it is an extension of correntropy.

If the joint distribution f (x, y) of X and Y is known, the correntropy could be
calculated by the following formula,

Vα,β(X, Y) =
∫ +∞

−∞

∫ +∞

−∞
Gα,β(x− y) f (x, y)dxdy (16)

Generally, the joint distribution of X and Y is hard to known. Similar to correntropy,
generalized correntropy is also calculated by sample estimation,

∧
VN,α,β(X, Y) =

1
N

N

∑
i=1

Gα,β(x(i)− y(i)) =
1
N

N

∑
i=1

Gα,β(e(i)) (17)

Next, some properties of generalized correntropy are summarized as follows to explain
the internal conditions for it to be used as a performance index:

Property 1: Vα, β(X, Y) is symmetric, that is Vα, β(X, Y) = Vα, β(X, Y);
Property 2: Vα, β (X, Y) is positive and bounded: 0 < VN, α, β(X, Y) ≤ Gα, β(0) = γα, β,

which reaches the maximum value if and only if X = Y;
Property 3: The generalized correntropy contains the absolute higher moments of

error variables, EX−Y = X−Y, Vα,β(X, Y) = γα,β
∞
∑

n=0

(−λ)n

n! E
[
|X−Y|αn].

These characteristics show that generalized correntropy can be applied to CPA. When
the expected output of the given system is known, the target PDF is expected to be tracked
by the controlled output PDF as much as possible, that is, the expected output Rk and the
actual output Yk are as consistent as possible, ek= Rk − Yk is close to 0 infinitely. Ideally,
the target PDF is tracked by the output completely, the performance of the control system
reaches the optimum, and the generalized correntropy reaches the maximum value γα, β.
Therefore, the new CPA index based on generalized correntropy can be defined as,

ηGC =
Vαβ(Rk −Yk)

γα,β
=

E [G α, β(e k)]

γα,β
(18)

where: E [G α, β(e k)] is the generalized correntropy of ek= Rk − Yk. Obviously, 0 ≤ ηGC ≤ 1,
closer the index is to 1, the better the control system performance is; otherwise, the system
performance is poor and needs to be improved.

When the expected output of the system is unknown, it is essential to identify the
associated systems. In this case, generalized correntropy could be combined with the EDA
to generate a new identification algorithm.

In data analysis of regression and classification, a measure called the correntropic loss
(C-loss) is always used instead of correntropy [24]. The GCL between X and Y could be
defined as,

JGC−loss(X, Y) = Gα,β(0)−Vα,β(X, Y)
= γα,β −Vα,β(X, Y)

(19)

Obviously, minimizing GCL corresponds to maximizing generalized correntropy.
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Assuming that {(xi, yi)}N
i=1 is a sample taken from pXY, the estimated value of GCL is,

∧
J GC−loss(X, Y) = Gα,β(0)−

∧
Vα,β(X, Y)

= γα,β − 1
N

N
∑

i=1
Gα,β(xi − yi)

= γα,β − 1
N

N
∑

i=1
Gα,β(ei)

(20)

GCL could be applied as the fitness value of the H-EDA to search for the optimal
parameters and estimate the noise PDF of the given system; the specific algorithm will be
given in Section 3.

3. Improvement and Application of EDA in CPA

In essence, the problem of system parameter identification is an alternative problem of
high-dimensional parameter space optimization, so the system parameters can be obtained
by the methods of high-dimensional parameters optimization. To obtain the noise PDFs,
we have to know the order, time delay and the parameters of the given system.

For the estimation of delay, the simplest and most commonly used method is to
analyze the correlation between the input ut and output yt signals [25], which can be
expressed as,

τ̂d = max
τ

E[y(τ)u(τ − τ d)] (21)

When τ = τd, Ry, u(τ) reaches the peak, the corresponding time is the estimated value
of delay.

The Akaike information criterion [26] is applied to get the order of the system in this
paper. For the given CARMA model, AIC criterion is as follows, nc is the order of the
noise model,

AIC(n) = Llgσ2
e + a(na + nb + nc) (22)

3.1. EDA and Improved

Estimation of distribution algorithm (EDA) is a randomized search heuristic algorithm,
which is used to create a probabilistic model of solution space. This model is updated
iteratively based on the quality of the solutions sampled by the model [27]. In recent years,
EDA as an optimization method has received great attention, and applied to scheduling,
project, machine learning and identification problems successfully [27–30]. Wang [28]
proposed a hybrid algorithm named estimation of particle swarm distribution algorithm
(EPSDA), which combines PSO (the local search method) with the EDA (the global search
method) to improve the efficiency of solving nonlinear bilevel programming problems
(NBLP). To overcome the instability of model updating in the iterative process, a novel
EDA based on the classic compact genetic algorithm (cGA) is proposed by [27] to optimize
the benchmark function ONEMAX. Liang [29] developed a new variant of Gaussian EDA
(GEDA) to solve the problem of premature convergence in traditional GEDA. In the process
of CPA, EDA is mainly devoted to estimate the parameters of the given systems. Through
appropriate improvements, the given system can be identified faster and more accurately,
so as to obtain a more accurate benchmark.

3.2. Parameter Identification Based on Hybrid-EDA

As the previous work shows, the traditional EDA still has some shortcomings in the
optimization process, such as a large amount of calculation, poor accuracy, etc. Therefore,
based on the traditional EDA, the space for parameter identification is first obtained through
preliminary estimation. To improve the local convergence ability, incorporating WSA [31]
ideas into the EDA. In the iterative process, the centers of some excellent individuals
are selected to cross-operate with the best individuals, the information of outstanding
individuals could be retained more fully.
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3.2.1. Acquisition of Parameter Identification Space

The initialization of parameter space is of positive significance to improve the identi-
fication accuracy and shorten the time required, so it is necessary to estimate the model
parameters preliminarily. The recursive extended least squares (RELS) algorithm is selected
in this paper.

The above CARMA model can be expressed as,

y(k) = ϕT(k)θ + v(k) (23)

where,{
ϕ(k)= [− y(k− 1), · · ·,−y(k− na), u(k− τ), · · ·, u(k− τ − nb), v(k− 1), · · ·, v(k− nc)]

T

θ = [a1, . . . , ana , b0, . . . , bnb , c1, . . . , cnc ]
T ∈ R(na+nb+1+nc)×1 (24)

Since v(k) is unmeasurable, it can only be replaced by its estimated value v̂(k),

v̂(k) = y(k)− ŷ(k) = y(k)− ϕ̂T(k)θ̂ (25)

where,{
ϕ̂(k)= [− y(k− 1), · · ·,−y(k− na), u(k− τ), · · ·, u(k− τ − nb), v̂(k− 1), · · ·, v̂(k− nc)]

T

θ̂ = [â1, . . . , âna , b̂0, . . . , b̂nb , ĉ1, . . . , ĉnc ]
T ∈ R(na+nb+1+nc)×1 (26)

The purpose is to obtain the parameter vector θ̂ when the objective function J(θ̂)
reaches the minimum value. J(θ̂) is defined as follows,

J(θ̂) =
L

∑
k=1

v2(k) =
L

∑
k=1

[y(k)− ϕT(k)θ̂]2 (27)

Based on the estimation of Gaussian system parameters, the initial estimates of vari-
ance σ̂v and parameters θ̂ could be obtained, then the parameter identification space ΩW
could be taken as θ̂ ± 3σ̂v.

3.2.2. The Idea of Wading Across Stream Algorithm

Wading across stream algorithm (WSA) [31] is inspired by the idea of “crossing the
river with stones”. This algorithm examines the “shore” carefully to select an initial starting
point firstly, several solutions are randomly searched out in the neighborhood near the
starting point to get the best one as the iterative result. Then take this result as the starting
point and continue search for several solutions in the nearby neighborhood, select the
optimal solution as the third iterations result, and so on until the termination condition is
satisfied. The WSA is similar to the simulated annealing algorithm but the effect is better,
and the algorithm idea is simple with good local convergence ability, so we integrate this
algorithm idea into the EDA to improve its computational efficiency.

(1) Choose the initial starting point carefully

When the parameter identification space is known, the initially selected solution will
have a greater impact on the entire algorithm. Firstly, generate R solutions in the parameter
space with uniform random values, and select the optimal solution as the initial. For
the parameter vector θ̂ = [â1, . . . , âna , b̂0, . . . , b̂nb , ĉ1, . . . , ĉnc ] to be identified, it is necessary
to uniformly and randomly take values in the interval [θ̂ − 3σ̂v, θ̂ + 3σ̂v] to generate R
solutions (vectors) to form a parameter space A,

A = [θ̂1; θ̂2; · · ·; θ̂R] =


â11 · · · â1na b̂10 · · · b̂1nb ĉ11 · · · ĉ1nc
â21 · · · â2na b̂20 · · · b̂2nb ĉ21 · · · ĉ2nc
...

...
...

...
...

...
...

. . .
...

âR1 · · · âRna b̂R0 · · · b̂Rnb ĉR1 · · · ĉRnc

 (28)
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To calculate the fitness value of these R solutions, select the optimal individual θ̂∗ as
the initial starting point according to the fitness value. For ease of description, denote the
starting point is as θ̂∗= [x 1

∗, x2
∗, · · ·, xn

∗ ], where n = na + nb + nc + 1.

(2) Search strategy

Due to the complexity of parameter identification in high-dimensional space, the
design of an effective local search strategy could improve the quality of the solution
significantly. According to the idea of “crossing the river with stones”, when you touch a
“stone”, you must take that “stone” as the starting point to explore other “stones” around it.
Similarly, search for m individuals in the neighborhood radius Lk around the starting point
θ̂∗ to form a new parameters space B,

B = [θ̂′1; θ̂′2; · · ·; θ̂′m]

=


â′11 · · · â′1na b̂′10 · · · b̂′1nb ĉ′11 · · · ĉ′1nc
â′21 · · · â′2na b̂′20 · · · b̂′2nb ĉ′21 · · · ĉ′2nc

...
...

...
...

...
...

...
. . .

...
â′m1 · · · â′mna b̂′m0 · · · b̂′mnb ĉ′m1 · · · ĉ′mnc

 =


x′11 x′12 · · · x′1n
x′21 x′22 · · · x′2n

...
...

. . .
...

x′m1 x′m2 · · · x′mn

 (29)

where x
′
ij= xj

∗ +Lk · rij, rij represents uniformly distributed random numbers in the
interval [–1, 1]. Generally, the initial value L0 of neighborhood radius is taken as one
tenth of the whole parameters space, that is L0 = (0.1 ∼ 0.3)σ̂v. To accelerate the later
convergence of the algorithm, reduce the neighborhood radius gradually with the iterative
process. The simplest method is to set Lk= αLk−1, α is the shrinkage coefficient, generally
[0.90, 0.99]. The latest optimal individual θ̂∗ can be obtained by calculating the fitness
values of these m solutions.

3.2.3. Crossover Operation

The optimal individual obtained by traditional identification algorithm only contains
the information of one individual, which ignores the information contained in other
excellent individuals to a certain extent. The improved method is crossover operation, sort
the above m individuals according to the fitness value, select the top N∗ (N∗ < m) excellent
solutions (individuals with the best fitness value) D,

D = [θ̂′ ′1; θ̂′ ′2; · · ·; θ̂′ ′N∗ ]

=


â′ ′11 · · · â′ ′1na b̂′ ′10 · · · b̂′ ′1nb ĉ′ ′11 · · · ĉ′ ′1nc
â′ ′21 · · · â′ ′2na b̂′ ′20 · · · b̂′ ′2nb ĉ′ ′21 · · · ĉ′ ′2nc

...
...

...
...

...
...

...
. . .

...
â′ ′N∗1 · · · â′ ′N∗na b̂′ ′N∗0 · · · b̂′ ′N∗nb ĉ′ ′N∗1 · · · ĉ′ ′N∗nc



=


x′ ′11 x′ ′12 · · · x′ ′1n
x′ ′21 x′ ′22 · · · x′ ′2n

...
...

. . .
...

x′ ′N∗1 x′ ′N∗2 · · · x′ ′N∗n


(30)

Calculate the center point of D,
θ = [x1, x2, . . . , xn]

T

xi =
1

N∗ ·
N
∑

j=1
xji

(31)

Then, the center point is crossed with the best solution, and the optimal individual θ̂∗

is modified as follows,
θ̂∗ = aθ̂∗ + (1− a)θ (32)

where: a is a random number between 0 to 1.
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Through the crossover operation, the information of excellent individuals could be
retained to the maximum extent, which can avoid falling into the local optimum.

3.2.4. Selection of Fitness Value

From Equation (23), for the CARMA model in this paper, the error at time k could be
defined as,

e(k) = y(k)− ŷ(k) = y(k)− ϕ̂T(k)θ̂ (33)

For the estimated error sequence e = [e1, e2, . . . eL], the GCL could be defined as,

∧
J GC−loss(e) = γα, β −

1
N

N

∑
i=1

Gα,β(e) (34)

The optimal model parameters and the relationship between output and disturbance
could be obtained by minimizing GCL. When the GCL reaches the minimum, the corre-
sponding parameters are also optimal, namely,

θ̂opt = arg min
θ∈ΩW

JGC(ek) (35)

where: ΩW is the parameter identification space.

3.2.5. Algorithm Summary

The following Algorithm 1 is the program steps of the H-EDA identification algorithm.

Algorithm 1 Program steps for the identification algorithm.

1. Describe the system by CARMA model; estimate the system delay τ by analyzing the
correlation between u(t) and y(t); determine the model order (na, nb, nc).
2. Preliminary estimate. Rough model parameters are obtained by RELS, determine the
identification space ΩW as θ̂ ± 3σ̂v.
3. Choose the initial starting point carefully. Randomly generate R individuals from the
parameter space ΩW , A =[θ̂1; θ̂2; . . . ; θ̂R], calculate the fitness value (error entropy) of these
solutions in A and select the optimal one θ̂0

∗

according to the fitness value (corresponding error entropy is minimum).
4. Search for m individuals B0 = [θ̂1; θ̂2; . . . ; θ̂m] within the neighborhood radius L0 of θ̂0

∗; I = 1;
While I <= nmax

(1) Calculate the fitness value (error entropy) of m individuals and sorted
CI = [θ̂1

(I)∗ ; θ̂2
(I)∗ ; . . . ; θ̂m

(I)∗ ] based on the fitness value. Extract the optimal one θ̂∗ I and top N∗

individuals DI = [θ̂1
(I)∗ ; θ̂2

(I)∗ ; . . . ; θ̂N∗
(I)∗ ] from CI ;

(2) Modify the optimal individual θ̂∗ I . Calculate the center point (mean value)
θ = [x1, x2, . . . , xn]

T of DI . Modify the optimal individual as, θ̂∗ I = aθ̂∗ I+(1 − a)θ, a = rand
(3) If the termination conditions is met

The difference between two adjacent iterations error entropy is less than 0.0001, end the cycle.
Else

LI= αLI−1;
Search for m individuals BI = [θ̂1

(I); θ̂2
(I); . . . ; θ̂m

(I)] within the neighborhood radius LI
of θ̂∗ I ;

I = I + 1;
End

End
5. Get the estimation of parameters θ̂ and noise PDF v̂.

After the coefficient F̂ and noise v̂t of the feedback-invariant are obtained, the bench-
mark entropy and output entropy could be obtained by Equations (8) and (11), and the
CPA index could be obtained by Equation (9),

η̂ =
H(yt

mjc)

H(yt)
=

Hmin(F̂v̂t)

H(yt)
(36)
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3.3. Algorithm Validation and Sensitivity Analysis of Initial Parameters

In this section, a model example is given to illustrate the initial parameters of im-
proved algorithm, which further analyses the H-EDA and traditional EDA, consider the
following system,

y(k) =
1 + 1.5z−1 + 0.9z−2

1− 1.7z−1 + 0.7z−2 v(k) (37)

For the above example, the parameter vector to be identified is θ= [−1 .7, 0.7, 1.5, 0 .9].
Most of the initial parameters are based on the previous works [12–14,31–33]. Generally,
in the EDA, the number of individuals in the initial population is N = 1000; the optimal
number of individuals for each iteration is m = 200; and the maximum number of iterations
is nmax= 120. In WSA, the number of excellent individuals for crossover operation is
N∗ = 30, R = 800.

In this section, we focus on the sensitivity of shrinkage coefficient α and the initial
value of neighborhood radius L0. As mentioned before, the initial neighborhood radius is
generally L0 = (0.1 ∼ 0.3)σ̂v, and the shrinkage coefficient α is between 0.90 to 0.99. To
find a proper set of parameters as much as possible, we have carried out a large number
of experiments and some representative results are selected and attached in Table 1. In
addition, we analyze the significance of a to the algorithm, a is a random number between
[0, 1]. If a == 1, it means that the crossover operation is not carried out. A novel parameter
vector is defined as P = [L0, α,a].

Table 1. Model identification results based on the parameters sensitivity analysis (partial).

Project Parameter Configuration Identification Results Iterations

EDA N = 1000, m = 200 [−1.4922, 0.5527, 1.6509, 0.6267] 120

H-EDA

L0 = 0.1σ̂v

α = 0.93
a = rand [−1.7209, 0.7241, 1.4680, 0.8668] 75
a == 1 [−1.7398, 0.7529, 1.4099, 0.7911] 105

α = 0.95
a = rand [−1.7309, 0.7227, 1.4219, 0.8113] 82
a == 1 [−1.6675, 0.6728, 1.4003, 0.7849] 109

α = 0.97
a = rand [−1.7273, 0.7305, 1.4085, 0.8173] 91
a == 1 [−1.6631, 0.6645, 1.4204, 0.8054] 120

L0 = 0.15σ̂v

α = 0.93
a = rand [−1.7197, 0.7218, 1.5160, 0.8851] 76
a == 1 [−1.7749, 0.7735, 1.4595, 0.8299] 87

α = 0.95
a = rand [−1.6919, 0.6975, 1.5009, 0.9104] 62
a == 1 [−1.7181, 0.7184, 1.5090, 0.8544] 79

α = 0.97
a = rand [−1.7304, 0.7310, 1.5164, 0.8964] 95
a == 1 [−1.6643, 0.6654, 1.4698, 0.8605] 113

L0 = 0.2σ̂v

α = 0.93
a = rand [−1.7112, 0.7176, 1.3935, 0.8291] 71
a == 1 [−1.7672, 0.7689, 1.1863, 0.5712] 97

α = 0.95
a = rand [−1.6734, 0.6737, 1.5061, 0.9069] 104
a == 1 [−1.7462, 0.7504, 1.4771, 0.8579] 117

α = 0.97
a = rand [−1.6823, 0.7446, 1.4500, 0.8403] 109
a == 1 [−1.7769, 0.7789, 1.4058, 0.8304] 120

The test results show that the H-EDA is obviously superior to the traditional EDA. The
global search capability of the algorithm is mainly determined by the neighborhood radius
Lk. Too small a value of Lk prompts the algorithm to get trapped in local optima, while
too large of a value of Lk slows down the algorithm; α can accelerate the later convergence
of the algorithm, but too small of an α leads to rapid convergence and bad accuracy; the
main function of a is to reduce iterations and prevent local optimality. In short, the setting
of initial parameters must rely on a large number of experiments and the summary of
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previous works. For this test case, the optimal initial parameter vector can be selected as
P = [0.15σ̂v, 0.95, rand].

4. Simulation and Verification

To verify the effectiveness of the identification algorithm and the rationality of the
performance assessment index, the following system is considered and the numerical
simulation is carried out with Gaussian and non-Gaussian noise signals.

y(t) = u(t− 2) +
1− 0.2z−1

1− z−1 v(t) (38)

The transfer function of the controller is as follows,

Gc =
K

1− 0.2z−1 − 0.8z−2 (39)

It is easy to know that the parameter vector of the system is θ = [−1, 1,−1,−0.2],
system delay τ = 2, feedback-invariants F = [1, 0.8], and the controller gain in the
simulation is K = 1.2.

For more precise description, the follow-up content is divided into the following parts:
in Section 4.1, the effect of the improved algorithm and the improved benchmark entropy
on the performance evaluation are explained respectively when the expected output is
unknown, and their effectiveness are verified respectively. In Section 4.2, the tracking
index is used to evaluate the system performance when the expected output of the system
is known.

4.1. Simulation When Expected Output Distribution Is Unknown

It can be concluded from Section 3 that the system parameter identification and noise
PDF estimation should be carried out firstly when the expected output is unknown, then
the benchmark value could be obtained according to the feedback invariant coefficient
estimation F̂ and noise estimation v̂, and the performance evaluation index can be obtained
finally. The specific process is shown in Figure 2.

Figure 2. Flow chart of performance assessment.

According to the analysis ideas in Section 3.3, the parameters of the algorithms in this
section are set as follows:
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In the EDA, the number of individuals in the initial population is N = 1000, the
optimal number of individuals for each iteration is m = 200, and the maximum number of
iterations is nmax = 120. Correspondingly, the parameters of H-EDA are set as, N∗ = 30,
L0 = 0.15σ̂v, α = 0.95, R = 800, the rests are consistent with the EDA. As the comparison
algorithm, the parameters of the improved PSO (IPSO), particles N = 50, acceleration
factor c1 = 2, c2 = 2, Vmax = 0.5.

The termination condition is
∣∣∣J(l) − J(l−1)

∣∣∣≤ 0.0001 or reaches the specified number

of iterations nmax, J(l) is the l-generation GCL.
The noises distribution are subject to normal N(0, 0.255), Beta B(2, 9), exponential

E(0.5) and bimodal,

v ∼ f (x) = a · r
σ1

√
2π

e
− (x−µ1)

2

2σ1
2 + b · 1− r

σ2

√
2π

e
− (x−µ2)

2

2σ2
2 (40)

where µ1= −3, µ2= 3, σ1 = 1, σ2 = 0.4, r = 0.7.

(1) When the fitness value is fixed as the GCL, compare the H-EDA with the traditional
EDA and the IPSO.

Combine the above three algorithms with GCL, respectively. The probability distribu-
tions of the four kinds of noise are shown in Figure 3. It can be determined that the other
three kinds of noise are non-Gaussian except for normal distribution. The results of the
system parameter identification are shown in Table 2.

Figure 3. Probability distribution of different noises.
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The results in Table 2 show that the H-EDA could estimate the parameters of CARMA
model under different noises when the fitness value is determined, and the identification
accuracy and speed are better. Moreover, the fitness value of the algorithm is the general-
ized correntropy loss function, which proves the effectiveness of the novel criterion in the
identification process. It is evident that the noises distribution estimated by the H-EDA in
Figures 4 and 5 are very close to the real values. IPSO, as the comparison, is inferior to the
H-EDA and cannot estimate the noise of bimodal distribution. Therefore, the superiority
of the H-EDA is proved by the simulation results.

Figure 4. Actual and estimated probability distribution histograms of different noises.

According to the noise PDF v̂t and the feedback invariant coefficient F̂, we can get
the performance assessment indexes, as shown in Table 3, where ηME represents the
theoretical benchmark index; η̂MJ−EDA is the index obtained by identification results of the
traditional EDA based on GCL; η̂MJ−H−EDA corresponds to the H-EDA index. Obviously,
η̂MJ−H−EDA is closer to the theoretical value, which proves the effectiveness of the hybrid-
algorithm again.
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Table 2. Identification results of two algorithms under different noise distributions.

Actual Value
N (0, 0.255) B (2, 9)

EDA H-EDA EDA H-EDA

a1 −1 −0.9342 −0.9873 −1.0529 −1.0027
b0 1 0.9186 0.9968 1.0848 1.0003
b1 −1 −0.9337 −0.9816 −0.9466 −0.9992
c1 −0.2 −0.0879 −0.1991 −0.2365 −0.2014
F [1, 0.8] [1, 0.7011] [1, 0.7782] [1, 0.8596] [1, 0.8035]

Time(s) 29.9517 15.2724 35.4492 13.6584

E (0.5) Bimodal Noise

EDA H-EDA EDA H-EDA

a1 −1 −0.9158 −0.9884 −0.9173 −1.0097
b0 1 0.9389 0.9961 0.9377 1.0643
b1 −1 −0.9323 −0.9924 −0.8946 −1.0853
c1 −0.2 −0.0865 −0.1935 −0.1556 −0.2037
F [1, 0.8] [1, 0.7595] [1, 0.7857] [1, 0.6987] [1, 0.8138]

Time(s) 30.9885 14.2616 29.6255 14.7962

Figure 5. Actual and estimated PDF of different noises.
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Table 3. CPA indexes of two comparison algorithms.

Index N (0, 0.255) B (2, 9) E (0.5) Bimodal Noise

ηME 0.8809 0.9357 0.9408 0.9332
η̂MJ−EDA 0.8345 0.9016 09134 0.9267

η̂MJ−H−EDA 0.8794 0.9388 0.9399 0.9336

(2) When the identification algorithm is fixed as the H-EDA, compare the traditional
correntropy (TC) with the generalized correntropy criterion (GCL).

In the previous section, we have proved the effectiveness of generalized correntropy
criterion in the performance assessment process. Next, we compare the superiority of GCL
with TC based on the H-EDA. The parameters of algorithms, identified objects and noise
PDFs are consistent with (1). The simulation results are illustrated in Table 4 and Figure 6.

Figure 6. Actual and estimated PDF with different noises.
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Table 4. Estimated parameters and evaluation indexes under two different entropy benchmarks.

Actual Value

N (0, 0.255) B (2, 9)

Results of
Traditional

Correntropy

Results of
Generalized
Correntropy

Results of
Traditional

Correntropy

Results of
Generalized
Correntropy

a1 −1 −0.9312 −0.9873 −1.0148 −1.0027
b0 1 1.0061 0.9968 1.0254 1.0003
b1 −1 −1.1073 −0.9816 −1.1995 −0.9992
c1 −0.2 −0.1635 −0.1991 −0.1837 −0.2014
F [1, 0.8] [1, 0.7149] [1, 0.7782] [1, 0.8434] [1, 0.8035]
η̂ 0.8566 0.8794 0.8927 0.9388

Time(s) 18.9443 15.2724 15.1667 13.6584

E (0.5) Bimodal Noise

a1 −1 −0.9838 −0.9884 −0.9945 −1.0097
b0 1 0.9246 0.9961 1.0852 1.0643
b1 −1 −0.9697 −0.9924 −1.0521 −1.0853
c1 −0.2 −0.2194 −0.1935 −0.1798 −0.2037
F [1, 0.8] [1, 0.7520] [1, 0.7857] [1, 0.8102] [1, 0.8138]
η̂ 0.9071 0.9399 0.9462 0.9336

Time(s) 18.9936 14.2616 18.5615 14.7962

The results show that when the disturbance obeys Gaussian, non-Gaussian and bi-
modal distribution, the identification results based on GCL are more accurate, and the time
required to obtain the evaluation index is shorter.

4.2. Simulation When the Expected Output Distribution Is Known

Assumed that the known expected output distribution is Gaussian with mean value
of 0 and variance of 1, as described in Section 2, the output PDF is expected to track the
target PDF as much as possible.

The system under Gaussian and non-Gaussian noise disturbance are simulated re-
spectively when the expected output distribution of the system is known. The output PDF
tracks the input PDF as shown in Figure 7. The noise in (a) obeys normal distribution,
while the noise in (b) obeys the non-Gaussian distribution. The generalized correntropy
performance assessment index could be calculated by Formula (18) and shown in Table 5.

Figure 7. Expected and actual output PDF under different noises.
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Table 5. Generalized correntropy performance index under expected output distribution is known.

Index Gaussian Noise Non-Gaussian Noise

K = 0.8
ηC 0.8406 0.6554

ηGC 0.8215 0.6021

K = 1.0
ηC 0.8698 0.7077

ηGC 0.8520 0.6641

K = 1.2
ηC 0.8874 0.7447

ηGC 0.8162 0.6429

In Table 5, ηGC is the generalized correntropy index and ηC is the traditional cor-
rentropy index. Assessment results of generalized correntropy are consistent with the
traditional correntropy index when the controller gain K is different, which also proves the
effectiveness of the new index.

5. Conclusions

A new CPA method for linear non-Gaussian systems based on generalized corren-
tropy is proposed by analyzing the limitations of existing performance evaluation methods
and indicators. The simple tracking index based on generalized correntropy is given
directly when the expected output is known. When the expected output is unknown,
the generalized correntropy loss function is used as the fitness value of the H-EDA to
estimate the system parameters and noise distribution, so as to calculate the system per-
formance benchmark more quickly and accurately, and then the performance assessment
results can be obtained. The single variable method is used to simulate the SISO control
system under different noise disturbances, and the effectiveness of the new index and
H-EDA is verified respectively. The results show that generalized correntropy index is
superior to the traditional correntropy in evaluating the control loop performance of linear
systems with non-Gaussian stochastic disturbances, and the H-EDA could also identify
the system parameters more quickly and accurately. Then, the follow-up research still
focuses on the selection of the new performance assessment index and the improvement of
identification algorithm.
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