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Abstract: This paper considers the periodic self-exciting threshold integer-valued autoregressive
processes under a weaker condition in which the second moment is finite instead of the innovation
distribution being given. The basic statistical properties of the model are discussed, the quasi-
likelihood inference of the parameters is investigated, and the asymptotic behaviors of the estimators
are obtained. Threshold estimates based on quasi-likelihood and least squares methods are given.
Simulation studies evidence that the quasi-likelihood methods perform well with realistic sample
sizes and may be superior to least squares and maximum likelihood methods. The practical applica-
tion of the processes is illustrated by a time series dataset concerning the monthly counts of claimants
collecting short-term disability benefits from the Workers’ Compensation Board (WCB). In addition,
the forecasting problem of this dataset is addressed.

Keywords: periodic autoregression; integer-valued threshold models; parameter estimation

1. Introduction

There has been considerable interest in integer-valued time series because of their wide
range of applications, including epidemiology, finance, and disease modeling. Examples
of such data are as follows: the number of major global earthquakes per year, monthly
crimes in a particular country or region, and patient numbers in a hospital per month over
a period of time, etc. Following the first-order integer-valued autoregressive (INAR(1))
models introduced by Al-Osh and Alzaid [1], INAR models have been widely used, see Du
and Li [2], Jung et al. [3], Weiß [4], Ristić et al. [5], Zhang et al. [6], Li et al. [7], Kang et al. [8]
and Yu et al. [9], among others. However, for so-called piecewise phenomenon such as
high thresholds, sudden bursts of large values, and time volatility, the INAR model will
not work well. The threshold models (Tong [10]; Tong and Lim [11]) have attracted much
attention and have been widely used to model nonlinear phenomena. To capture the
piecewise phenomenon of integer-valued time series, Monteiro et al. [12] introduced a
class of self-exciting threshold integer-valued autoregressive (SETINAR) models driven
by independent Poisson-distributed random variables. Wang et al. [13] proposed a self-
excited threshold Poisson autoregressive (SETPAR) model. Yang et al. [14] considered
a class of SETINAR processes that properly capture flexible asymmetric and nonlinear
responses without assuming the distributions for the errors. Yang et al. [15] introduced
an integer-valued threshold autoregressive process based on a negative binomial thinning
operator (NBTINAR(1)).

In addition, there are many sources of business, economic and meteorology time
series data showing a periodically varying phenomenon that repeats itself after a reg-
ular period of time. It may be affected by seasonal factors and human activities. For
dealing with the processes exhibiting periodic patterns, Bennett [16] and Gladyshev [17]
proposed periodically correlated random processes. Then, Bentarzi and Hallin [18], Lund
and Basawa [19], Basawa and Lund [20], and Shao [21], among other authors, studied
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the periodic autoregressive moving-average (PARMA) models in some detail. To capture
the periodic phenomenon of integer-valued time series, Monteiro et al. [22] proposed the
periodic integer-valued autoregressive models of order one (PINAR(1)) with period T,
driven by a periodic sequence of independent Poisson-distributed random variables. Hall
et al. [23] considered the extremal behavior of periodic integer-valued moving-average
sequences. Santos et al. [24] introduced a multivariate PINAR model with time-varying
parameters. The analysis of periodic self-exciting threshold integer-valued autoregressive
(PSETINAR(2; 1, 1)T) processes was introduced by Pereira et al. [25]. Manaa and Ben-
tarzi [26] established the existence of high moment and the strict periodic stationarity for
the PSETINAR(2; 1, 1)T processes. The CLS and CML methods are applied to estimate
the parameters while using the nested sub-sample search (NeSS) algorithm proposed
by Li and Tong [27] to estimate the periodic threshold parameters. A drawback of this
PSETINAR(2; 1, 1)T model is that the mean and variance of Poisson distribution are equal,
which is not always true in the real data. Therefore, in this paper, we remove the assump-
tion of Poisson distribution, only specify the relationship between mean and variance of
observations, develop quasi-likelihood inference for the PSETINAR(2; 1, 1)T processes, and
consider the estimation of thresholds.

Quasi-likelihood is a non-parametric inference method proposed by Wedderburn [28].
It is very useful in cases where the exact distributional information is not available, while
only the relation between mean and variance of the observation is given, and it enjoys
a certain robustness of validity. Quasi-likelihood has been widely applied. For exam-
ple, Azrak and Mélard [29] proposed a simple and efficient algorithm to evaluate the
exact quasi-likelihood of ARMA models with time-dependent coefficients; Christou and
Fokianos [30] studied probabilistic properties and quasi-likelihood estimation for nega-
tive binomial time series models; Li et al. [31] studied the quasi-likelihood inference for
the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under
a weaker condition; Yang et al. [32] modeled overdispersed or underdispersed count
data with generalized Poisson integer-valued autoregressive (GPINAR(1)) processes and
investigated the maximum quasi- likelihood estimators.

The remainder of this paper is organized as follows. In Section 2, we redefine the
PSETINAR(2; 1, 1)T processes under weak conditions and discuss their basic properties.
In Section 3, we consider the quasi-likelihood inference for the unknown parameters.
Thresholds estimation is also discussed. Section 4 presents some simulation results for the
estimates. In Section 5, we give an application of the proposed processes to a real dataset.
The forecasting problem of this dataset is addressed. Concluding remarks are given in
Section 6. All proofs are postponed to the Appendix A.

2. The Model and Its Properties

The periodic self-exciting threshold integer-valued autoregressive model of order one
with two regimes (PSETINAR(2; 1, 1)T) (originally proposed by Pereira et al. [25], and
further studied by Manaa and Bentarzi [26]) is defined by the recursive equation:

Xt =

α
(1)
t ◦ Xt−1 + Zt, Xt−1 ≤ rt,

α
(2)
t ◦ Xt−1 + Zt, Xt−1 > rt,

t ∈ Z (1)

with threshold parameters rt = rj, autoregressive coefficients α
(k)
t = α

(k)
j ∈ (0, 1), for

k = 1, 2, t = j + sT, j = 1, 2, . . . , T, s ∈ Z, and T ∈ N0. Note that Equation (1) admits the
representation

Xj+sT =
(

α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1 +

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1 + Zj+sT , (2)

where
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(i) I(1)j+sT−1 := I{Xj+sT−1 ≤ rj}, I(2)j+sT−1 := 1− I(1)j+sT−1 = I{Xj+sT−1 > rj}, in which
{rj, j = 1, 2, . . . , T} is a set of thresholds value;

(ii) The thinning operator “◦” is defined as

α
(k)
j ◦ Xj+sT−1 =

Xj+sT−1

∑
i=1

Ui,j+sT

(
α
(k)
j

)
, (3)

in which {Ui,j+sT

(
α
(k)
j

)
, j = 1, 2, . . . , T, s ∈ Z} is a sequence of independent periodic

Bernoulli random variables with P
(

Ui,j+sT

(
α
(k)
j

)
= 1

)
= 1− P

(
Ui,j+sT

(
α
(k)
j

)
= 0

)
= α

(k)
j , k = 1, 2;

(iii) {Zj+sT , j = 1, 2, . . . , T, s ∈ Z} constitutes a sequence of independent periodic random
variables with E

(
Zj+sT

)
= λj, Var

(
Zj+sT

)
= σ2

z,j, which is assumed to be independent

of {Xj+sT−1} and {α(k)j ◦ Xj+sT−1}.

Remark 1. The innovation of PSETINAR(2; 1, 1)T process defined by Pereira et al. [25] and
Manaa and Bentarzi [26] is a sequence of independent periodic Poisson-distributed random variables
with mean λj, that is {Zt} ∼ P

(
λj
)
, where t = j + sT, j = 1, 2, . . . , T, s ∈ Z. In this paper, we

use E
(
Zj+sT

)
= λj, Var

(
Zj+sT

)
= σ2

z,j instead of the assumption of periodic Poisson distribution
for {Zj+sT}, so that the model is more flexible.

The following proposition establishes the conditional mean and the conditional vari-
ance of the PSETINAR(2; 1, 1)T process, which plays an important role in the study of the
process properties and parameter estimations.

Proposition 1. For any fixed j = 1, 2, . . . , T, with T ∈ N0, the conditional mean and the
conditional variance of the process {Xt} for t = j + sT and s ∈ Z defined in (2) are given by

(i) E
(
Xj+sT |Xj+sT−1

)
= α

(1)
j Xj+sT−1 I(1)j+sT−1 + α

(2)
j Xj+sT−1 I(2)j+sT−1 + λj,

(ii) Var
(
Xj+sT |Xj+sT−1

)
=

2
∑

k=1
α
(k)
j

(
1− α

(k)
j

)
Xj+sT−1 I(k)j+sT−1 + σ2

z,j.

The following theorem states the ergodicity of the PSETINAR(2; 1, 1)T process (2).
This property is useful in deriving the asymptotic properties of the parameter estimators.

Theorem 1. For any fixed j = 1, 2, . . . , T, with T ∈ N0, the process {Xt} for t = j + sT and
s ∈ Z defined in (2) is an ergodic Markov chain.

3. Parameters Estimation

Suppose we have a series of observations {Xj+sT , j = 1, 2, . . . , T, s ∈ N0} generated
from the PSETINAR(2; 1, 1)T process. The goal of this section is to estimate the unknown

parameters vector β = (β1, . . . , β3T)
′ , (α

(1)
1 , α

(2)
1 , λ1, α

(1)
2 , α

(2)
2 , λ2, . . . , α

(1)
T , α

(2)
T , λT)

′ and
threshold parameters vector r = (r1, r2, . . . , rT)

′. This section is divided into two sub-
sections. In Section 3.1, we estimate the parameters vector β by using the maximum
quasi-likelihood (MQL) method when the thresholds value is known. We consider the max-
imum quasi-likelihood (MQL) and conditional least square (CLS) estimators of thresholds
r in Section 3.2.

3.1. Estimation of Parameters β

As described in Proposition 1 (ii), we have the variance of Xt conditional on Xt−1,
let θj ,

(
θ
(1)
j , θ

(2)
j , σ2

z,j

)
′ with θ

(k)
j = α

(k)
j

(
1− α

(k)
j

)
, k = 1, 2, j = 1, 2, . . . , T, then the

Var
(
Xj+sT |Xj+sT−1

)
admits the representation
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Vθj

(
Xj+sT|Xj+sT−1

) 4
= Var

(
Xj+sT|Xj+sT−1

)
= θ

(1)
j Xj+sT−1I(1)j+sT−1 + θ

(2)
j Xj+sT−1I(2)j+sT−1 + σ2

z,j,

for ∀j = 1, 2, . . . , T, s ∈ N0.
As discussed in Wedderburn [28], we have the set of standard quasi-likelihood esti-

mating equations:

L(β) =
N−1

∑
s=0

T

∑
j=1

Xj+sT − E
(
Xj+sT |Xj+sT−1

)
Vθj

(
Xj+sT |Xj+sT−1

) ∂E
(
Xj+sT |Xj+sT−1

)
∂βi

= 0, (4)

for i = 1, . . . , 3T, where N is the total number of cycles. By solving (4), the quasi-likelihood
estimator can be obtained.

This method is essentially a two-step estimation, if θj is unknown, we propose substi-
tuting a suitable consistent estimator of θj obtained by other means, getting modified quasi-
likelihood estimating equations and then solving them for the primary parameters of inter-
est. In the modified quasi- likelihood estimating equations, we replace θj with a suitable

consistent estimator θ̂j. For simplicity in notation, we define V−1
θ̂j

4
= V−1

θ̂j

(
Xj+sT |Xj+sT−1

)
.

This approach leads to the modified quasi-likelihood estimator β̂MQL of β (see Zheng,
Basawa and Datta [33]):

β̂MQL = Q−1
N qN , (5)

where

QN =


Q1,N 0 · · · 0

0 Q2,N · · · 0
...

...
. . .

...
0 0 · · · QT,N

,

and

qN =
(

q1,N , q2,N , . . . , qT,N

)
′,

moreover, the 0’s are (3× 3)-null matrices, Qj,N and qj,N (j = 1, 2, . . . , T) given by

Qj,N =



N−1
∑

s=0
V−1

θ̂j
X2

j+sT−1 I(1)j+sT−1 0
N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(1)j+sT−1

0
N−1
∑

s=0
V−1

θ̂j
X2

j+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(1)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j

,

qj,N =

(
N−1
∑

s=0
V−1

θ̂j
Xj+sTXj+sT−1 I(1)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sTXj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT

)
′.

Note that we use consistent estimator θ̂j =
(

α̂
(1)
j

(
1− α̂

(1)
j

)
, α̂

(2)
j

(
1− α̂

(2)
j

)
, σ̂2

z,j

)
′ in-

stead of θj.
Next, the proposition gives consistent estimators σ̂2

z,j of σ2
z,j, which depends on some

consistent estimators α̂
(k)
j and λ̂j with k = 1, 2, j = 1, 2, . . . , T.
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Proposition 2. The following variance estimators for {Zj+sT} with j = 1, 2, . . . , T, s ∈ N0 are
consistent:

(i) σ̂2
1,z,j =

1
N

N−1

∑
s=0

(
Xj+sT −

2

∑
k=1

α̂
(k)
j Xj+sT−1 I(k)j+sT−1 − λ̂j

)2

− 1
N

2

∑
k=1

N−1

∑
s=0

α̂
(k)
j

(
1− α̂

(k)
j

)
Xj+sT−1 I(k)j+sT−1, (6)

(ii) σ̂2
2,z,j = σ̂2

x,j − p̂j

[
α̂
(1)2

j σ̂2(1)
j + α̂

(1)
j

(
1− α̂

(1)
j

)
µ̂
(1)
j

]
−
(
1− p̂j

)[
α̂
(2)2

j σ̂2(2)
j + α̂

(2)
j

(
1− α̂

(2)
j

)
µ̂
(2)
j

]
− p̂j

(
1− p̂j

)(
α̂
(1)
j µ̂

(1)
j − α̂

(2)
j µ̂

(2)
j

)2
, (7)

for k = 1, 2, j = 1, 2, . . . , T, s ∈ N0, in which α̂
(k)
j and λ̂j are consistent estimators of α

(k)
j and λj

(for example, we can use the CLS estimators given in Theorem 3.1 of Pereira et al. [25]), furthermore

X̄j =
1
N

N−1

∑
s=0

Xj+sT , σ̂2
x,j =

1
N

N−1

∑
s=0

(
Xj+sT − X̄j

)2,

N(k)
j =

N−1

∑
s=0

I(k)j+sT−1, µ̂
(k)
j =

1

N(k)
j

∑
s∈{I(k)j+sT−1=1}

Xj+sT ,

p̂j =
1
N

N−1

∑
s=0

I(1)j+sT−1, σ̂2(k)
j =

1

N(k)
j

∑
s∈{I(k)j+sT−1=1}

(
Xj+sT − µ̂

(k)
j

)2
.

The two estimations are based on conditional variance Var
(
Xj+sT |Xj+sT−1

)
and variance Var

(
Xj+sT

)
,

respectively. The details can be found in the Appendix A.

To study the asymptotic behavior of the estimator β̂MQL, we make the following
assumptions about the process of {Xt}:
(C1) By Proposition 1 in Pereira et al. [25], we assume the {Xt} is a strictly ciclostationary process;
(C2) E|Xt|4 < ∞.

Now for the asymptotic properties of the quasi-likelihood estimator β̂MQL given by
(5), we have the following asymptotic distribution.

Theorem 2. Let {Xt} be a PSETINAR(2; 1, 1)T process defined in (2), then under the assumptions
(C1)-(C2), the estimator β̂MQL given by (5) is asymptotically normal,

√
N
(

β̂MQL − β
)
→ N

(
0, H−1(θ)

)
,

where

H(θ) =


H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)

,

with matrices H j (j = 1, 2, . . . , T) given by
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H j(θ) =


E
(

V−1
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1

)
0 E

(
V−1

θj

(
Xj|Xj−1

)
Xj−1 I(1)j−1

)
0 E

(
V−1

θj

(
Xj|Xj−1

)
X2

j−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(1)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

))
.

It is worth mentioning that this theorem reflects the consistency of the estimator β̂MQL.

3.2. Estimation of Thresholds Vector r

Note that in the real data application, the threshold values are also unknown. In this
subsection, we estimate the thresholds vector r = (r1, r2, . . . , rT)

′. Here, we further promote
the nested sub-sample search (NeSS) algorithm (see, e.g., Yang et al. [15], Li and Tong [27],
and Li et al. [31]) and use conditional least squares (CLS) and modified quasi-likelihood
(MQL) principles to estimate r.

For some fixed λ = (λ1, λ2, . . . , λT)
′, the application of the conditional least squares

principle yields the sum of squared errors:

SN(r, λ)

=
N−1

∑
s=0

T

∑
j=1

Xj+sT −
2

∑
k=1

N−1
∑

s=0

(
Xj+sT Xj+sT−1 I(k)j+sT−1 − λjXj+sT−1 I(k)j+sT−1

)
N−1
∑

s=0
X2

j+sT−1 I(k)j+sT−1

Xj+sT−1 I(k)j+sT−1 − λj


2

,

and then the thresholds vector r can be estimated by minimizing SN(r, λ),

r̂ = arg min
r∈[r,r]

SN(r, λ), (8)

where r and r are some known lower and upper bounds of r. In practice, they can be
selected as the minimum and maximum values in each cycle of the sample. For convenience,
we consider an alternative objective function

JN(r, λ) = SN − SN(r, λ),

where

SN =
N−1

∑
s=0

T

∑
j=1

Xj+sT −

N−1
∑

s=0

(
Xj+sT Xj+sT−1 − λjXj+sT−1

)
N−1
∑

s=0
X2

j+sT−1

Xj+sT−1 − λj


2

.

Now, the optimization in (8) is equivalent to

r̂CLS = arg max
r∈[r,r]

JN(r, λ), (9)

where r̂CLS is the conditional least squares estimator of the thresholds vector r.
Inspired by the method of conditional least squares, we investigate the performances

of r by using the quasi-likelihood principle. The modified quasi-likelihood estimator r̂MQL
of r is obtained by maximizing the expression

J̃N(r, λ) = S̃N − S̃N(r, λ),

which yields
r̂MQL = arg max

r∈[r,r]
J̃N(r, λ), (10)

where
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S̃N(r, λ)

=
N−1

∑
s=0

T

∑
j=1

V−1
θ̂j

Xj+sT−
2

∑
k=1

N−1
∑

s=0
V−1

θ̂j
·
(

Xj+sT Xj+sT−1 I(k)j+sT−1−λjXj+sT−1 I(k)j+sT−1

)
N−1
∑

s=0
V−1

θ̂j
· X2

j+sT−1 I(k)j+sT−1

Xj+sT−1 I(k)j+sT−1−λj


2

,

and

S̃N =
N−1

∑
s=0

T

∑
j=1

V−1
θ̂j

Xj+sT −

N−1
∑

s=0
V−1

θ̂j
·
(

Xj+sT Xj+sT−1 − λjXj+sT−1

)
N−1
∑

s=0
V−1

θ̂j
· X2

j+sT−1

Xj+sT−1 − λj


2

.

It is worth mentioning that there are unknown parameters λj with j = 1, . . . , T
when we use (9) and (10) to estimate thresholds vector r. As argued in Li and Tong [27],
Yang et al. [14], and Yang et al. [15], when λ and r are one-dimensional parameters,
we can choose any positive number as the value of λ without worrying about getting a
wrong result of r̂. Fortunately, we also find out by simulations that the estimations of r
by maximizing J̃N(r, λ) and JN(r, λ) do not depend on the value of λ. In order to give
an intuitive impression of J̃N(r, λ)/N, we generate a set of data with Model I (given in
Section 4, i.e., T = 2, N = 50, β = (0.2, 0.1, 3, 0.8, 0.1, 7)′, r = (8, 4)′), and plot the shapes
of J̃N(r, λ)/N. From Figure 1, we can see that for different values of λ, the shape of
J̃N(r, λ)/N changes, but the maximum value in each subfigure is obtained at the true
thresholds vector r = (8, 4)′. In practice, we can choose the mean in each cycle of the
samples for λj, j = 1, 2, . . . , T.

Actually, using the quasi-likelihood method to estimate the thresholds is a three-step
estimation procedure, and we now present the algorithm to implement our estimation
procedure as follows:

Step 1: Choose the upper bound r and lower bound r of r, solve (9) to get the r̂CLS with λj = X̄j =
1
N ∑N−1

s=0 Xj+sT , j = 1, 2, . . . , T;

Step 2: Fix r̂CLS at the current value, solve (6) or (7) to get the σ̂2
z,j, j = 1, 2, . . . , T, where α

(k)
j and

λj with k = 1, 2 can be estimated by other methods, then solve (5) to get β̂MQL.

Step 3: Fix θ̂j =
(

α̂
(1)
j,MQL

(
1− α̂

(1)
j,MQL

)
, α̂

(2)
j,MQL

(
1− α̂

(2)
j,MQL

)
, σ̂2

z,j

)
′, j = 1, 2, . . . , T at its esti-

mated value from Step 2, choose the same upper bound r and lower bound r as in Step 1,
solve (10) to get r̂MQL.
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(a) Shape of J̃N(r, λ)/N with λ = (3, 7) (b) Shape of J̃N(r, λ)/N with λ = (3, 8)

(c) Shape of J̃N(r, λ)/N with λ = (2, 7) (d) Shape of J̃N(r, λ)/N with λ = (2, 8)

Figure 1. The shapes of J̃N(r, λ)/N.

4. Simulation Study

In this section, we conduct simulation studies to illustrate the finite sample perfor-
mances of the estimates. The initial value X0 is fixed at 0. In order to capture the character-
istics of the data from the PSETINAR(2; 1, 1)T process, we first generate a set of data with
the distribution of innovations {Zt} given by Model I (mentioned below in this section)
and parameters β = (0.2, 0.45, 1, 0.2, 0.45, 2, 0.65, 0.45, 1, 0.65, 0.45, 2, 0.2, 0.45, 3, 0.2, 0.45,
7, 0.8, 0.45, 7, 0.2, 0.1, 3, 0.8, 0.1, 7, 0.2, 0.1, 7, 0.8, 0.45, 2)′, r = (3, 3, 3, 1, 3, 3, 5, 9, 3, 6, 7)′, T = 11,
N = 50. The parameter vectors we choose here are randomly selected, and there are slight
differences between the parameters of each cycle, the thresholds vector of r was chosen
such that there are enough data in each regime. We give the sample path in the first six
cycles in Figure 2, of which N = 6. We can see that even if there are slight differences
between the parameters of each cycle, the dataset still exhibits periodic characteristics.

To report the performances of the estimates, we conduct simulation studies under the
following three models:

Model I. Assume that {Zt} is a sequence of i.i.d periodic Poisson distributed random
variables with mean E(Zt) = Var(Zt) = λj for t = j + sT, j = 1, 2, . . . , T, s ∈ N0.

Model II. Assume that {Zt} is a sequence of i.i.d. periodic Geometric distributed
random variables with p.m.f. given by

p
(
Zj+sT = z

)
=

λz
j(

1 + λj
)1+z , z = 0, 1, 2, . . .

with E(Zt) = λj, Var(Zt) = λj
(
1 + λj

)
for t = j + sT, j = 1, 2, . . . , T, s ∈ N0.

Model III. Assume that {Zt} is a sequence of i.i.d mixed distributed random variables,
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Zt = ∆tZ1t + (1− ∆t)Z2t,

where {∆t} is a sequence of i.i.d periodic Bernoulli distributed random variables with
P(∆t = 1) = 1− P(∆t = 0) = ρj, ρ = (ρ1, ρ2, . . . , ρT) for t = j + sT, j = 1, 2, . . . , T, s ∈ N0,
which is independent of {Zit}, i = 1, 2.

For {Z1t} given in Model I and {Z2t} given in Model II, we can easily see that
E(Zt) = λj, Var(Zt) = λ2

j
(
1− ρj

)
+ λj.

For each model, we generate the data with X0 = 0, set T = 3 and the sample sizes
n = NT = 150, 300, 900. All the calculations are performed under theR3.6.2 software with
1000 replications. We use the command constrOptim to optimize the objective function of
the maximum likelihood estimation. The threshold vector is calculated by the algorithms
discussed in Section 3.2. Other algorithms are based on the explicit expressions.

Figure 2. Sample path of the first six cycles.

4.1. Performances of the β̂CLS , β̂MQL and β̂CML

Pereira et al. [25] provided a theoretical basis for the conditional least squares (CLS)
and conditional maximum likelihood (CML) estimators of the parameters vector β in
the PSETINAR(2; 1, 1)T process but did not conduct simulation research. Manaa and
Bentarzi [26] provided the asymptotic properties of the estimators and compared their per-
formance through a simulation study. To compare the performance of the three estimators
β̂CLS, β̂CML and β̂MQL (given in Section 3), we conduct simulation studies for these three
estimators under Models I to III. The parameters are selected as follows:

Series A. β = (0.2, 0.45, 1, 0.2, 0.45, 2, 0.8, 0.45, 2)′, r = (3, 2, 2)′.
Series B. β = (0.65, 0.45, 1, 0.65, 0.45, 2, 0.35, 0.45, 2)′, r = (2, 2, 3)′.
Series C. β = (0.2, 0.45, 3, 0.2, 0.45, 7, 0.8, 0.45, 7)′, r = (12, 7, 9)′.
To eliminate the influence of the change of parameters on estimates, we choose the

series randomly and change the parameters with fixed α(k), k = 1, 2 or λ separately. The
selection of these thresholds ensures there are enough data in each regime.

Spectral analysis starts from finding hidden periodicity, and it is an important subject
of time series frequency domain analysis. The approach for studying hidden periods based
on frequency domain analysis is the periodogram method, proposed by Schuster [34];
the rigorous examination is shown in Fisher [35]. For a series of observations {Xt},
t = 1, 2, . . . , n, the periodogram is defined as
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In( fk) =
1
n
|

n

∑
t=1

Xte−i2π fkt|2 = a2
k + b2

k , (11)

where

ak =


1√
n (∑

n
t=1 Xt cos(2π fkt))2, k = 1, 2, . . . ,

[
n−1

2

]
,

1√
n ∑n

t=1(−1)tXt, k = n
2 ,

bk =

{
1√
n (∑

n
t=1 Xt sin(2π fkt))2, k = 1, 2, . . . ,

[
n−1

2

]
,

0, k = n
2 ,

and the period T = [1/argmax f In( fk)], where [·] denotes the integer part of a number.
The sample path and periodogram of the Series A, B and C under Model I are plotted

in Figure 3 to show the periodic characteristics. Because the period is three and short, it is
difficult to see the period from the sample path, but the periodogram can show the period
very well. In addition, the simulation results are summarized in Tables 1–9.

As expected, biases and MSE of the estimators decrease as the sample size N increases,
which is in agreement with the asymptotic properties of the estimators: asymptotic unbi-
asedness and consistency. Most of the biases and MSE in Model II are larger than those in
Model I. Maybe this is because the variance of {Zt} in Model II is larger than that in Model
I, which leads to the fluctuation of data.

Tables 1–6 summarize the simulation results for different series under Model I and
Model II. From these tables, we can see that most of the biases and MSE of β̂MQL are smaller
than β̂CLS. Perhaps it is because that the MQL method uses more information about the
data than the CLS method. Therefore, the MQL method can obtain the optimal value
more accurately. In addition, most of the biases of β̂MQL are smaller than β̂CML, while
the MSE is larger, which is because the CML uses the distribution. If the distribution is
correct, it is indeed better than the MQL. It is worth mentioning that the CML method is
more complicated and time-consuming than the MQL method in the simulation procedure.
We can conclude that the MQL estimators are better than CLS estimators, and the CML
estimators are not unanimously better than MQL estimators.

Table 1. Bias and MSE for Series A of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.001 −0.001 0.001 −0.018 −0.004 0.006 0.008 0.005 −0.025
(0.052) (0.014) (0.253) (0.131) (0.024) (0.230) (0.160) (0.024) (0.326)

MQL 0.000 −0.002 0.006 −0.015 −0.004 0.002 0.011 0.006 −0.030
(0.054) (0.014) (0.266) (0.126) (0.023) (0.220) (0.156) (0.024) (0.316)

CML 0.024 0.010 −0.047 0.054 0.019 −0.079 0.003 0.007 −0.027
(0.024) (0.008) (0.117) (0.062) (0.016) (0.126) (0.047) (0.013) (0.134)

100 CLS 0.004 0.000 −0.006 0.013 −0.001 −0.005 0.002 −0.003 0.008
(0.026) (0.007) (0.132) (0.058) (0.011) (0.108) (0.085) (0.012) (0.168)

MQL 0.004 0.000 −0.006 0.013 −0.001 −0.006 −0.001 −0.004 0.012
(0.024) (0.007) (0.120) (0.057) (0.011) (0.105) (0.082) (0.011) (0.162)

CML 0.012 0.004 −0.023 0.036 0.007 −0.034 0.003 0.000 −0.001
(0.014) (0.004) (0.067) (0.036) (0.008) (0.073) (0.024) (0.006) (0.066)

300 CLS −0.003 −0.002 0.009 0.002 0.000 −0.005 −0.002 0.000 −0.001
(0.010) (0.003) (0.051) (0.020) (0.004) (0.034) (0.028) (0.004) (0.055)

MQL −0.002 −0.001 0.007 0.001 0.000 −0.004 −0.003 0.000 0.000
(0.009) (0.002) (0.045) (0.019) (0.004) (0.033) (0.027) (0.003) (0.053)

CML 0.000 0.000 0.000 0.003 0.001 −0.007 0.001 0.002 −0.006
(0.005) (0.001) (0.025) (0.014) (0.003) (0.024) (0.007) (0.002) (0.020)
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Table 2. Bias and MSE for Series B of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.001 0.003 0.014 0.003 −0.015 −0.013 −0.009 0.032
(0.119) (0.015) (0.238) (0.166) (0.031) (0.365) (0.105) (0.026) (0.525)

MQL 0.010 0.001 0.003 0.013 0.003 −0.014 −0.012 −0.009 0.031
(0.129) (0.015) (0.241) (0.161) (0.030) (0.354) (0.104) (0.026) (0.516)

CML 0.006 0.003 0.001 0.014 0.006 −0.020 0.008 0.003 −0.019
(0.043) (0.007) (0.090) (0.062) (0.016) (0.150) (0.045) (0.014) (0.229)

100 CLS 0.007 0.000 −0.001 −0.022 −0.009 0.042 −0.004 −0.002 0.003
(0.061) (0.008) (0.133) (0.076) (0.014) (0.173) (0.046) (0.012) (0.222)

MQL 0.008 0.000 −0.003 −0.023 −0.010 0.044 −0.004 −0.002 0.003
(0.055) (0.007) (0.116) (0.076) (0.014) (0.172) (0.045) (0.012) (0.216)

CML 0.002 0.000 −0.001 −0.004 −0.001 0.013 0.000 0.001 −0.008
(0.018) (0.003) (0.040) (0.031) (0.008) (0.078) (0.027) (0.007) (0.127)

300 CLS 0.003 0.000 −0.003 0.002 0.000 0.002 −0.003 −0.001 −0.001
(0.020) (0.003) (0.043) (0.026) (0.005) (0.060) (0.017) (0.004) (0.081)

MQL 0.003 −0.001 −0.002 0.001 0.000 0.004 −0.002 0.000 −0.004
(0.019) (0.002) (0.039) (0.025) (0.005) (0.058) (0.016) (0.004) (0.077)

CML −0.002 −0.002 0.003 0.003 0.001 −0.001 −0.003 0.000 −0.002
(0.006) (0.001) (0.014) (0.009) (0.002) (0.025) (0.009) (0.003) (0.043)

Table 3. Bias and MSE for Series C of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.013 −0.010 0.146 −0.010 −0.003 0.053 −0.010 −0.007 0.054
(0.022) (0.011) (2.088) (0.082) (0.022) (1.915) (0.078) (0.026) (3.823)

MQL −0.010 −0.008 0.117 −0.010 −0.003 0.052 −0.014 −0.009 0.079
(0.022) (0.010) (2.000) (0.082) (0.021) (1.913) (0.075) (0.025) (3.709)

CML 0.003 0.001 −0.015 0.044 0.021 −0.201 0.003 0.000 −0.033
(0.012) (0.006) (1.119) (0.044) (0.013) (1.054) (0.025) (0.010) (1.286)

100 CLS 0.001 −0.002 0.015 −0.003 0.001 0.013 0.002 −0.003 0.022
(0.014) (0.006) (1.323) (0.043) (0.011) (1.046) (0.038) (0.012) (1.772)

MQL 0.000 −0.003 0.034 −0.002 0.001 0.008 0.001 −0.003 0.027
(0.012) (0.006) (1.203) (0.042) (0.011) (1.027) (0.037) (0.012) (1.726)

CML 0.006 0.001 −0.029 0.018 0.010 −0.085 0.011 0.003 −0.043
(0.007) (0.003) (0.672) (0.026) (0.007) (0.657) (0.012) (0.005) (0.620)

300 CLS 0.000 0.000 0.006 0.002 0.002 −0.014 0.006 0.003 −0.040
(0.006) (0.003) (0.586) (0.014) (0.004) (0.350) (0.013) (0.004) (0.606)

MQL 0.001 0.000 0.002 0.001 0.001 −0.010 0.005 0.002 −0.032
(0.005) (0.002) (0.527) (0.014) (0.004) (0.341) (0.012) (0.004) (0.589)

CML 0.002 0.001 −0.013 0.005 0.003 −0.030 0.003 0.002 −0.026
(0.003) (0.001) (0.262) (0.011) (0.003) (0.267) (0.004) (0.002) (0.201)

Table 4. Bias and MSE for Series A of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.013 −0.005 0.021 −0.016 −0.014 0.024 −0.025 −0.011 0.044
(0.073) (0.011) (0.247) (0.291) (0.032) (0.408) (0.330) (0.024) (0.449)

MQL −0.011 −0.005 0.019 −0.012 −0.013 0.019 −0.020 −0.010 0.040
(0.067) (0.011) (0.228) (0.287) (0.032) (0.402) (0.330) (0.024) (0.439)

CML 0.014 0.005 −0.026 0.041 0.011 −0.050 0.004 0.008 −0.016
(0.016) (0.005) (0.076) (0.040) (0.010) (0.158) (0.020) (0.007) (0.153)

100 CLS 0.003 0.003 −0.011 −0.013 −0.011 0.027 −0.002 0.001 −0.005
(0.032) (0.005) (0.116) (0.145) (0.016) (0.195) (0.170) (0.012) (0.219)

MQL 0.001 0.002 −0.006 −0.011 −0.010 0.024 −0.001 0.001 −0.006
(0.030) (0.005) (0.104) (0.143) (0.016) (0.194) (0.169) (0.011) (0.215)

CML 0.006 0.004 −0.014 0.020 0.006 −0.021 0.005 0.004 −0.019
(0.007) (0.002) (0.039) (0.022) (0.005) (0.080) (0.011) (0.003) (0.072)
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Table 4. Cont.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

300 CLS 0.001 0.000 −0.005 −0.003 0.000 0.009 −0.001 0.000 −0.001
(0.011) (0.002) (0.039) (0.050) (0.006) (0.067) (0.052) (0.004) (0.077)

MQL 0.000 0.000 −0.005 −0.003 −0.001 0.010 0.000 0.000 −0.002
(0.010) (0.001) (0.034) (0.049) (0.006) (0.067) (0.052) (0.004) (0.076)

CML 0.005 0.001 −0.011 0.000 0.004 0.000 0.002 0.002 −0.007
(0.003) (0.001) (0.013) (0.008) (0.002) (0.026) (0.004) (0.001) (0.026)

Table 5. Bias and MSE for Series B of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.003 −0.019 0.005 −0.012 0.016 0.006 −0.003 −0.002
(0.038) (0.007) (2.068) (0.382) (0.043) (5.495) (0.217) (0.026) (5.702)

MQL 0.008 0.003 −0.017 −0.055 −0.022 0.070 0.009 −0.002 −0.008
(0.037) (0.006) (1.995) (0.378) (0.043) (5.461) (0.220) (0.026) (5.718)

CML 0.007 0.004 −0.017 0.015 0.004 −0.025 0.014 0.007 −0.031
(0.005) (0.002) (0.590) (0.025) (0.006) (1.380) (0.008) (0.004) (1.326)

100 CLS −0.001 −0.002 0.007 −0.006 −0.004 0.007 −0.006 −0.002 0.011
(0.019) (0.003) (1.143) (0.190) (0.023) (3.017) (0.114) (0.011) (2.871)

MQL 0.000 −0.002 0.004 −0.005 −0.004 0.007 −0.006 −0.003 0.012
(0.018) (0.003) (1.091) (0.189) (0.023) (3.001) (0.115) (0.012) (2.882)

CML 0.006 0.002 −0.012 0.008 0.004 −0.017 0.001 0.007 −0.017
(0.002) (0.001) (0.238) (0.012) (0.003) (0.691) (0.004) (0.002) (0.660)

300 CLS −0.003 −0.001 0.004 −0.004 −0.001 −0.006 0.003 −0.002 −0.006
(0.006) (0.001) (0.361) (0.062) (0.007) (0.889) (0.033) (0.004) (0.848)

MQL −0.003 0.000 0.003 −0.002 0.000 −0.008 0.004 −0.002 −0.007
(0.006) (0.001) (0.345) (0.062) (0.007) (0.887) (0.033) (0.004) (0.849)

CML 0.000 0.001 −0.001 0.001 0.001 −0.011 0.004 0.002 −0.015
(0.001) (0.000) (0.069) (0.004) (0.001) (0.205) (0.001) (0.001) (0.222)

Table 6. Bias and MSE for Series C of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.004 −0.002 0.069 −0.019 −0.008 0.061 −0.011 −0.008 0.131
(0.038) (0.007) (2.068) (0.382) (0.043) (5.495) (0.217) (0.026) (5.702)

MQL −0.004 −0.002 0.067 −0.016 −0.007 0.051 −0.009 −0.007 0.122
(0.037) (0.006) (1.995) (0.378) (0.043) (5.461) (0.220) (0.026) (5.718)

CML 0.010 0.005 −0.019 0.037 0.014 −0.152 0.013 0.009 −0.038
(0.005) (0.002) (0.590) (0.025) (0.006) (1.380) (0.008) (0.004) (1.326)

100 CLS 0.000 0.000 −0.005 −0.020 −0.004 0.054 0.001 −0.008 0.046
(0.019) (0.003) (1.143) (0.190) (0.023) (3.017) (0.114) (0.011) (2.871)

MQL −0.002 −0.001 0.006 −0.020 −0.004 0.054 0.002 −0.008 0.045
(0.018) (0.003) (1.091) (0.189) (0.023) (3.001) (0.115) (0.012) (2.882)

CML 0.008 0.003 −0.059 0.016 0.005 −0.068 0.009 0.003 −0.047
(0.002) (0.001) (0.238) (0.012) (0.003) (0.691) (0.004) (0.002) (0.660)

300 CLS 0.000 −0.001 −0.007 −0.005 −0.001 0.010 −0.014 −0.004 0.071
(0.006) (0.001) (0.361) (0.062) (0.007) (0.889) (0.033) (0.004) (0.848)

MQL 0.000 −0.001 −0.008 −0.005 −0.001 0.011 −0.014 −0.004 0.072
(0.006) (0.001) (0.345) (0.062) (0.007) (0.887) (0.033) (0.004) (0.849)

CML 0.000 0.000 −0.012 0.005 0.001 −0.020 0.004 0.002 −0.021
(0.001) (0.000) (0.069) (0.004) (0.001) (0.205) (0.001) (0.001) (0.222)

To demonstrate the robustness of the MQL method, we consider the simulations about
Model III with different series by using CLS, MQL and CML methods, and set N = 300,
ρ = (0.9, 0.9, 0.9), (0.8, 0.8, 0.8), respectively. From Tables 7–9, we can see that when ρ
varies from (0.9, 0.9, 0.9) down to (0.8, 0.8, 0.8), the effect on CLS and MQL estimators is
slight. Most of the biases and MSE of MQL estimators are smaller than CLS. But due to
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incorrect distribution used, the biases and MSE of CML estimators increase. This indicates
that the MQL method is more robust than CLS and CML methods.

Table 7. Bias and MSE for Series A of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.002 0.002 −0.004 0.009 0.004 −0.014 −0.007 0.000 0.002
(0.010) (0.002) (0.049) (0.022) (0.004) (0.041) (0.026) (0.004) (0.055)

MQL 0.002 0.002 −0.004 0.009 0.004 −0.014 −0.007 −0.001 0.003
(0.009) (0.002) (0.042) (0.021) (0.004) (0.040) (0.026) (0.004) (0.053)

CML −0.021 −0.009 0.046 −0.043 −0.018 0.057 −0.055 −0.022 0.081
(0.006) (0.001) (0.027) (0.013) (0.003) (0.030) (0.012) (0.003) (0.034)

(0.8, 0.8, 0.8) CLS −0.001 −0.001 0.000 0.005 −0.004 0.005 −0.005 −0.004 0.012
(0.010) (0.002) (0.048) (0.026) (0.004) (0.044) (0.030) (0.004) (0.056)

MQL −0.001 −0.001 0.000 0.005 −0.004 0.006 −0.008 −0.005 0.016
(0.009) (0.002) (0.042) (0.026) (0.004) (0.043) (0.030) (0.004) (0.054)

CML −0.042 −0.018 0.088 −0.080 −0.040 0.122 −0.121 −0.049 0.183
(0.007) (0.002) (0.033) (0.015) (0.004) (0.041) (0.028) (0.004) (0.067)

Table 8. Bias and MSE for Series B of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.003 0.001 −0.001 0.001 0.000 0.000 0.004 0.000 −0.006
(0.020) (0.003) (0.041) (0.031) (0.005) (0.068) (0.018) (0.004) (0.083)

MQL 0.002 0.001 0.001 0.001 −0.001 0.001 0.003 −0.001 −0.003
(0.018) (0.002) (0.036) (0.030) (0.005) (0.065) (0.017) (0.004) (0.080)

CML −0.023 −0.009 0.041 −0.080 −0.033 0.122 −0.065 −0.030 0.140
(0.007) (0.001) (0.018) (0.019) (0.004) (0.050) (0.014) (0.003) (0.069)

(0.8, 0.8, 0.8) CLS 0.001 0.001 −0.006 −0.005 −0.005 0.017 −0.002 −0.002 0.009
(0.023) (0.003) (0.045) (0.033) (0.006) (0.070) (0.018) (0.004) (0.083)

MQL 0.002 0.002 −0.008 −0.004 −0.005 0.016 −0.002 −0.002 0.010
(0.021) (0.002) (0.039) (0.032) (0.005) (0.067) (0.017) (0.004) (0.078)

CML −0.043 −0.015 0.064 −0.156 −0.065 0.240 −0.122 −0.054 0.263
(0.009) (0.001) (0.021) (0.040) (0.008) (0.104) (0.023) (0.005) (0.119)

Table 9. Bias and MSE for Series C of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.003 0.001 −0.024 −0.014 −0.007 0.078 −0.002 −0.002 0.021
(0.006) (0.002) (0.534) (0.020) (0.005) (0.485) (0.014) (0.004) (0.643)

MQL 0.003 0.001 −0.020 −0.013 −0.007 0.077 −0.001 −0.002 0.018
(0.005) (0.002) (0.472) (0.020) (0.005) (0.484) (0.014) (0.004) (0.630)

CML −0.044 −0.028 0.432 −0.122 −0.064 0.631 −0.186 −0.097 1.250
(0.005) (0.002) (0.470) (0.020) (0.006) (0.595) (0.044) (0.013) (2.143)

(0.8, 0.8, 0.8) CLS 0.001 −0.001 −0.003 −0.008 −0.003 0.036 0.000 −0.001 0.005
(0.005) (0.002) (0.448) (0.023) (0.005) (0.494) (0.016) (0.004) (0.668)

MQL 0.000 −0.001 0.002 −0.008 −0.002 0.034 −0.001 −0.002 0.007
(0.005) (0.002) (0.407) (0.023) (0.005) (0.490) (0.015) (0.004) (0.661)

CML −0.074 −0.045 0.706 −0.158 −0.085 0.811 −0.296 −0.144 1.907
(0.008) (0.003) (0.754) (0.027) (0.009) (0.800) (0.098) (0.024) (4.230)
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Figure 3. The sample path and periodogram of Series A(top), B(middle) and C(bottom) in Model I.
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4.2. Performances of r̂MQL and r̂CLS

As discussed in Section 3.2, we estimate the thresholds vector by using conditional
least squares and modified quasi-likelihood methods. The performances of r̂MQL and r̂CLS
are compared in this subsection through simulation studies. From the simulation results in
Section 4.1, we find that the contaminated data generated from Model III has little influence
on least squares and quasi-likelihood estimators, so we only simulate thresholds estimation
for different series under Model I and Model II. We assess the performance of r by the bias,
MSE and bias median, where the bias median is defined by:

Bias median = median
i∈{1,2,...,K}

(r̂ij − r0j), j = 1, 2, . . . , T,

where r̂ij is the estimator of r0j, r0j is the true value with j = 1, 2, . . . , T, and K is the number
of replications. The simulation results are summarized in Tables 10–15.

Table 10. Bias, bias median and MSE for Series A of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.167 0 0.447 0.042 0 0.550
r2 0.422 0 1.986 0.723 0 2.841
r3 0.457 0 1.975 0.947 0 3.779

100 r1 −0.107 0 0.151 −0.003 0 0.137
r2 0.224 0 1.378 0.570 0 2.428
r3 0.245 0 0.861 0.505 0 1.903

300 r1 −0.007 0 0.007 0.000 0 0.002
r2 0.027 0 0.283 0.117 0 0.477
r3 0.021 0 0.035 0.066 0 0.200

Table 11. Bias, bias median and MSE for Series B of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 0.499 0 2.129 1.294 1 4.176
r2 0.538 0 2.320 0.868 0 3.142
r3 0.139 0 2.687 0.634 0 3.610

100 r1 0.555 1 1.933 1.301 1 3.597
r2 0.283 0 1.437 0.643 0 2.473
r3 0.107 0 2.537 0.599 0 3.431

300 r1 0.480 1 1.518 1.215 1 2.485
r2 0.021 0 0.213 0.141 0 0.489
r3 −0.095 0 1.191 0.261 0 1.825
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Table 12. Bias, bias median and MSE for Series C of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.012 0 0.588 0.023 0 0.661
r2 0.268 0 5.378 0.541 0 5.909
r3 0.155 0 1.433 0.216 0 1.750

100 r1 0.015 0 0.079 0.023 0 0.081
r2 0.072 0 2.332 0.254 0 2.972
r3 0.041 0 0.325 0.050 0 0.330

300 r1 0.000 0 0.000 0.000 0 0.000
r2 −0.015 0 0.317 0.027 0 0.457
r3 0.002 0 0.004 0.002 0 0.004

Table 13. Bias, bias median and MSE for Series A of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 0.027 0 1.231 0.407 0 2.227
r2 1.025 0 4.897 1.293 1 6.051
r3 1.582 1 7.600 2.003 1 9.905

100 r1 −0.013 0 0.489 0.185 0 0.723
r2 0.944 0 4.808 1.271 0 6.215
r3 1.539 0 8.391 2.005 1 11.269

300 r1 −0.042 0 0.066 0.022 0 0.070
r2 0.652 0 3.560 0.940 0 5.088
r3 0.605 0 3.243 1.062 0 6.540

Table 14. Bias, bias median and MSE for Series B of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 1.231 1 5.527 2.134 2 9.638
r2 1.307 1 6.063 1.633 1 7.439
r3 0.840 0 6.658 1.237 1 8.211

100 r1 1.070 1 3.954 1.972 2 8.050
r2 1.208 0 5.772 1.561 1 7.375
r3 0.998 0 7.652 1.488 1 9.644

300 r1 1.059 1 3.143 1.829 2 5.611
r2 0.717 0 3.465 1.031 0 4.961
r3 0.617 0 5.925 1.153 0 8.549
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Table 15. Bias, bias median and MSE for Series C of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −1.066 0 11.494 −0.859 0 12.671
r2 0.006 0 18.430 0.149 0 19.137
r3 −0.337 −1 27.211 −0.206 −1 27.764

100 r1 −0.130 0 4.220 0.078 0 5.250
r2 0.538 0 22.610 0.696 0 23.536
r3 0.241 0 26.911 0.386 0 28.340

300 r1 −0.040 0 0.236 −0.016 0 0.262
r2 1.213 0 26.909 1.389 0 28.515
r3 0.794 0 19.586 0.961 0 21.521

From Tables 10–15, we can see that all the simulation results perform better as sam-
ple size N increases, which implies that the estimators are consistent. The results in
Tables 10–12 have smaller biases, bias medians and MSE than in Tables 13–15. This might
be because the variance of Model II is larger than Model I for each series. Moreover, almost
all the biases, bias medians and MSE of MQL estimators are smaller than CLS estimators,
and the MSE of some MQL estimators are even half of the CLS. Because the thresholds are
integer values, when we assess the accuracy of the estimators, the bias medians estimated
can be more reasonable. It is concluded that it is much better to estimate the thresholds
with the MQL method than CLS.

In the process of simulation, we generate the data with X0 = 0; however, 0 is not the
mean of the process, so we generate a set of data, discard some data generated first, and
use the remaining data for inference, namely, “burn in” samples. Here, we generate a set
of data with a length of 1800. We do the simulations for Series A of Model I, Model II
and Model III (ρ = (0.8, 0.8, 0.8)). Other simulation settings are the same as before. The
simulation results are listed in Tables 16–20. From these tables, we can see that under the
“burn in” samples, the estimated results are similar to that when the initial value is 0, which
indicates that the initial value will not affect our estimated results.

Table 16. Bias and MSE for Series A of Model I with “burn in” samples (MSE in parentheses): CLS,
MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.002 −0.008 0.012 −0.018 −0.012 0.029 0.001 0.004 −0.008
(0.067) (0.017) (0.338) (0.132) (0.024) (0.241) (0.168) (0.025) (0.351)

MQL 0.001 −0.006 0.006 −0.016 −0.012 0.027 0.002 0.004 −0.007
(0.066) (0.017) (0.331) (0.134) (0.024) (0.240) (0.174) (0.024) (0.347)

CML 0.032 0.008 −0.061 0.043 0.007 −0.044 0.000 0.004 −0.005
(0.027) (0.008) (0.124) (0.056) (0.015) (0.125) (0.046) (0.012) (0.125)

100 CLS −0.005 −0.006 0.014 −0.011 −0.005 0.012 −0.001 −0.002 0.011
(0.030) (0.009) (0.153) (0.063) (0.011) (0.106) (0.081) (0.012) (0.166)

MQL −0.006 −0.006 0.017 −0.012 −0.006 0.013 0.000 −0.002 0.008
(0.028) (0.008) (0.138) (0.061) (0.010) (0.103) (0.078) (0.012) (0.158)

CML 0.006 −0.001 −0.010 0.025 0.006 −0.031 0.000 0.001 0.003
(0.015) (0.004) (0.069) (0.035) (0.007) (0.069) (0.021) (0.006) (0.061)

300 CLS −0.001 −0.002 0.002 −0.003 −0.001 0.009 0.002 0.001 0.000
(0.010) (0.003) (0.052) (0.019) (0.004) (0.034) (0.024) (0.004) (0.050)

MQL 0.000 −0.001 0.000 −0.003 −0.001 0.008 0.001 0.001 0.002
(0.009) (0.002) (0.047) (0.019) (0.003) (0.033) (0.024) (0.003) (0.049)

CML 0.001 −0.001 −0.003 0.003 0.001 0.001 0.001 0.001 0.000
(0.006) (0.002) (0.027) (0.015) (0.003) (0.025) (0.007) (0.002) (0.021)
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Table 17. Bias and MSE for Series A of Model II with “burn in” samples (MSE in parentheses): CLS,
MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.000 −0.017 0.023 −0.011 0.005 −0.011 −0.004 0.005
(0.067) (0.011) (0.242) (0.306) (0.035) (0.424) (0.303) (0.026) (0.479)

MQL 0.010 0.000 −0.017 0.028 −0.010 0.000 −0.018 −0.005 0.012
(0.065) (0.010) (0.227) (0.302) (0.035) (0.420) (0.355) (0.026) (0.505)

CML 0.022 0.006 −0.042 0.053 0.013 −0.048 0.007 0.007 −0.032
(0.015) (0.004) (0.075) (0.045) (0.010) (0.151) (0.022) (0.007) (0.148)

100 CLS −0.011 −0.001 0.026 −0.013 0.000 0.015 −0.024 −0.007 0.022
(0.034) (0.005) (0.123) (0.151) (0.016) (0.210) (0.157) (0.012) (0.223)

MQL −0.011 −0.001 0.026 −0.013 −0.001 0.016 −0.022 −0.006 0.019
(0.033) (0.005) (0.117) (0.148) (0.016) (0.208) (0.156) (0.012) (0.219)

CML 0.006 0.005 −0.004 0.018 0.007 −0.013 0.009 0.003 −0.015
(0.008) (0.002) (0.039) (0.025) (0.005) (0.075) (0.010) (0.003) (0.076)

300 CLS −0.004 −0.001 0.005 −0.001 −0.002 0.008 0.000 −0.005 0.006
(0.010) (0.002) (0.037) (0.050) (0.005) (0.069) (0.052) (0.003) (0.074)

MQL −0.003 −0.001 0.004 −0.001 −0.002 0.009 0.001 −0.005 0.004
(0.010) (0.001) (0.034) (0.049) (0.005) (0.068) (0.051) (0.003) (0.073)

CML 0.001 0.001 −0.005 0.007 0.001 −0.001 0.000 −0.001 −0.002
(0.003) (0.001) (0.013) (0.008) (0.002) (0.028) (0.003) (0.001) (0.028)

Table 18. Bias and MSE for Series A of Model III (ρ = (0.8, 0.8, 0.8)) with “burn in” samples (MSE in
parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.087 −0.040 0.214 0.018 −0.004 −0.007 0.019 0.002 −0.030
(0.068) (0.016) (0.339) (0.153) (0.025) (0.248) (0.203) (0.026) (0.381)

MQL −0.011 −0.007 0.026 0.019 −0.003 −0.008 0.019 0.002 −0.031
(0.065) (0.014) (0.292) (0.155) (0.024) (0.244) (0.203) (0.026) (0.376)

CML −0.016 −0.009 0.039 −0.012 −0.024 0.047 −0.109 −0.045 0.153
(0.022) (0.007) (0.118) (0.042) (0.015) (0.140) (0.091) (0.017) (0.245)

100 CLS −0.044 −0.017 0.103 −0.015 −0.006 0.020 −0.005 −0.003 0.008
(0.033) (0.008) (0.162) (0.075) (0.012) (0.132) (0.100) (0.013) (0.199)

MQL −0.008 −0.002 0.013 −0.015 −0.006 0.020 −0.004 −0.003 0.008
(0.030) (0.007) (0.137) (0.074) (0.012) (0.129) (0.099) (0.012) (0.197)

CML −0.043 −0.017 0.088 −0.057 −0.033 0.093 −0.129 −0.048 0.186
(0.014) (0.004) (0.073) (0.027) (0.008) (0.083) (0.062) (0.010) (0.156)

300 CLS −0.016 −0.006 0.036 0.000 −0.002 0.000 0.004 −0.001 −0.003
(0.010) (0.002) (0.048) (0.026) (0.004) (0.043) (0.030) (0.004) (0.057)

MQL −0.003 −0.001 0.003 −0.001 −0.002 0.003 0.004 −0.001 −0.003
(0.009) (0.002) (0.043) (0.025) (0.004) (0.042) (0.029) (0.004) (0.054)

CML −0.047 −0.020 0.097 −0.081 −0.037 0.113 −0.112 −0.046 0.169
(0.007) (0.002) (0.035) (0.016) (0.004) (0.038) (0.025) (0.004) (0.061)
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Table 19. Bias, bias median and MSE for Series A of Model I with “burn in“ samples.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.180 0 0.400 0.053 0 0.393
r2 0.390 0 1.960 0.720 0 2.894
r3 0.580 0 2.322 0.963 0 3.583

100 r1 −0.099 0 0.143 −0.007 0 0.081
r2 0.198 0 1.142 0.491 0 1.975
r3 0.218 0 0.800 0.455 0 1.585

300 r1 −0.015 0 0.015 −0.004 0 0.004
r2 0.018 0 0.268 0.098 0 0.416
r3 0.018 0 0.036 0.058 0 0.170

Table 20. Bias, bias median and MSE for Series A of Model II with “burn in" samples.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.071 0 0.835 0.252 0 1.394
r2 1.156 0 5.640 1.436 1 6.878
r3 1.616 1 7.974 2.046 1 10.284

100 r1 −0.110 0 0.320 0.099 0 0.473
r2 1.172 0 5.662 1.477 1 7.063
r3 1.518 1 7.508 1.947 1 10.059

300 r1 −0.041 0 0.055 0.027 0 0.055
r2 0.648 0 3.364 0.940 0 4.884
r3 0.574 0 3.532 0.854 0 5.338

5. Real Data Example

In this section, we use the PSETINAR(2; 1, 1)T process to fit the series of monthly
counts of claimants collecting short-term disability benefits. In the dataset, all the claimants
are male, have cuts, lacerations or punctures, and are between the ages of 35 and 54. In
addition, they all work in the logging industry and collect benefits from the Workers’
Compensation Board (WCB) of British Columbia. The dataset consists of 120 observations,
from 1985 to 1994 (Freeland [36]). The simulations were performed on theR3.6.2 software.
The threshold vector was calculated by the algorithms (the three-step algorithm of NeSS
combined with quasi-likelihood principle and the algorithm of NeSS combined with least
squares principle) described in Section 3.2. We uses the command constrOptim to optimize
the objective function of the maximum likelihood estimation. Figure 4 shows the sample
path, ACF and PACF plots of the observations. It can be seen from Figure 4 that this dataset
is a dependent counting time series with periodic characteristic.
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Figure 4. The sample path plot (a), ACF and PACF plots (b,c) for the counts of claimants.

We use the periodogram method to determine the period about this dataset and draw
Figure 5, from which it can be seen that In( fk) reach maximum at fk = 1/12, and concluded
that T = 12. This displays the periodic characteristic of the data and exhibits a form of
periodic change per year.
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Figure 5. The periodogram plot for the monthly counts of claimants.
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Table 21 displays the descriptive statistics for the monthly counts of claimants collect-
ing short-term disability benefits from WCB. From Table 21, we can see that the mean and
variance are approximately equal in some months. We can assume that the distribution of
the innovations is a periodic Poisson. However, some months and the total data indicate
overdispersion. We find that the dataset has no zero and the minimum value is one. This
leads us to consider the periodic Poisson, periodic Geometric, zero-truncated periodic
Poisson and zero-truncated periodic Geometric distributions for the innovations to fit the
model, respectively. Before the model fitting, we first estimate the threshold vector. The
r̂CLS is calculated by (9) and the r̂MQL is calculated through (10) by using the three-step
algorithm. Table 22 summarizes the fitting results of r̂CLS and r̂MQL. Due to the lesser data,
to fit the model better, when the number of data in each regime is relatively smaller than
two or the threshold is the maximum or minimum value of the boundary, we think that
these monthly data do not have a piecewise phenomenon, that is, March, July, and August
do not have piecewise phenomena.

Table 21. Summary statistics for the monthly counts of claimants.

Whole Dataset Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Mean 6.1 4.2 3.8 4.6 4.9 7.0 7.1 8.5 7.5 7.2 7.2 7.2 4.4
Variance 11.8 2.2 3.3 1.8 9.0 14.7 5.9 28.9 12.5 12.0 12.2 14.8 6.9

Maximum 21 6 7 8 10 14 12 21 12 12 12 14 19
Minimum 1 2 1 3 1 2 3 3 2 2 2 2 1

Table 22. Threshold estimators for the monthly counts of claimants.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

r̂CLS 3 4 7 5 5 6 10 4 9 6 7 6
r̂MQL 3 4 7 5 5 6 10 4 9 6 7 5

To capture the piecewise phenomenon of this time series dataset, we use PINAR(1)T
and PSETINAR(2; 1, 1)T models with period T = 12 to fit the dataset, respectively. The
PINAR(1) process proposed by Monteiro et al. [22] with the following recursive equation

Xt = αt ◦ Xt−1 + Zt, (12)

with αt = αj ∈ (0, 1) for t = j + sT(j = 1, . . . , T, s ∈ N0), the definition of thinning operator
“◦" and innovation process {Zt} is the same as the PSETINAR(2; 1, 1)T process.

It is worth mentioning that for this dataset, the conditional least squares and quasi-
likelihood methods produce non-admissible estimators for some months, so we use the
conditional maximum likelihood approach to estimate the parameters. Next, we use
PSETINAR(2; 1, 1)12 and PINAR(1)12 models to fit the dataset in combination with the four
innovation distributions mentioned before. Here, the threshold vectors are based on r̂MQL.
The AIC and BIC are listed in Table 23. When we fit the dataset, we hope to get smaller AIC
and BIC values. From the results in Table 23, we can conclude that the PSETINAR(2; 1, 1)12
model with zero-truncated periodic Poisson distribution is more suitable. Then, we do
the conditional maximum likelihood estimation, and the results are listed in Table 24.
Some estimators of the parameters in Table 24, for example, the α(2) of January, May, June,
September, October and November, are not statistically significant, suggesting that on
those months, the number of claims is mainly modeled through the innovation process.
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Table 23. The AIC and BIC of the claims data.

PSETINAR(2; 1, 1)12 AIC BIC PINAR(1)12 AIC BIC
Pois. 586.63 596.61 Pois. 592.12 599.38

Zero-truncated Pois. 581.65 591.64 Zero-truncated Pois. 594.44 601.71
Geom. 610.45 620.43 Geom. 605.56 612.82

Zero-truncated Geom. 586.36 596.34 Zero-truncated Geom. 595.15 602.42

Table 24. CML estimators in the dataset.

Month α(1) α(2) λ

Jan. 0.112 8.907× 10−08 3.819
Feb. 0.227 0.032 3.060
Mar. 0.692 - 1.969
Apr. 0.999 0.240 2.048
May 0.586 8.521× 10−09 4.889
Jun. 0.265 4.316× 10−08 5.507
Jul. 0.360 - 5.942

Aug. 0.390 - 4.186
Sep. 0.380 3.366× 10−07 5.218
Oct. 0.502 1.027× 10−07 4.044
Nov. 0.433 2.776× 10−08 4.990
Dec. 0.508 0.222 1.000

Remark: “-” stand for not available.

To check the predictability of the PSETINAR(2; 1, 1)T model, we carry out the h-
step-ahead forecasting for varying h of the PSETINAR(2; 1, 1)T model. The h-step-ahead
conditional expectation point predictor of the PSETINAR(2; 1, 1)T model is given by

X̂j+sT+h = E
[

Xj+sT+h|Xj+sT

]
, h = 1, 2, . . . .

Specifically, the one-step-ahead conditional expectation point predictor is given by

X̂j+sT+1 = E
[
Xj+sT+1|Xj+sT

]
= α

(1)
j+1Xj+sT I(1)j+sT + α

(2)
j+1Xj+sT I(2)j+sT + λj+1.

However, the conditional expectation will seldom produce integer-valued forecasts.
Recently, coherent forecasting techniques have been recommended, which only produce
forecasts in N0. This is achieved by computing the h-step-ahead forecasting conditional
distribution. As pointed out by Möller et al. [37], this approach leads to forecasts themselves
being easily obtained from the median or the mode of the forecasting distribution. In
addition, Li et al. [38] and Kang et al. [8] have applied this method to forecast the
integer-valued processes. Homburg et al. [39] discussed the prediction methods based
on conditional distributions and Gaussian approximations and applied them to some
integer-valued processes and compared them. For the PSETINAR(2; 1, 1)T process, the
one-step-ahead conditional distribution of Xj+sT+1 given Xj+sT is given by

P
(
Xj+sT+1 = xj+sT+1|Xj+sT = xj+sT

)
=

min{xj+sT ,xj+sT+1}
∑
i=1

2

∑
k=1

(
xj+sT

i

)
α
(k)i

j+1

(
1− α

(k)
j+1

)xj+sT−i
I(k)j+sT P

(
Zj+sT+1 = xj+sT+1 − i

)
.

Due to the existence of the threshold, while we use the conditional expectation method
to predict Xj+sT+h, h > 1, we have to predict the previous moment of Xj+sT+h−1 first and
compare it with the corresponding threshold before we do the next prediction. We do the
same for the conditional distribution method. (To prevent confusion, we call this method a
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point-wise conditional distribution forecast. The predictors completely based on h-step-
ahead conditional distribution without intermediate step prediction will be discussed later.)
The mode of h-step-ahead point-wise conditional distribution can be viewed as the point
prediction. Here we compare the two forecasting methods, a standard descriptive measure
of forecasting accuracy, namely, h-step-ahead predicted root mean squared error (PRMSE)
is adopted. This measure can be given by

PRMSE =

√√√√ 1
K− K0

K

∑
t=K0+1

(
Xt+h − X̂t+h

)2, h = 1, 2, . . . ,

where K is the full sample size, we split the data into two parts, and the last K − K0
observations as a forecasting evaluation sample. We forecast the value of the last year
when h = 1, 2, 3, 12.

The PRMSEs of the h-step-ahead point predictors are list in Table 25. For conditional
expectation point predictors, the PRMSEs of PSETINAR(2; 1, 1)12 with zero-truncated
periodic Poisson distribution are smaller than the PINAR(1)12 with periodic Poisson and
zero-truncated periodic Poisson distributions. This further shows the superiority of our
model. The PRMSEs of the one-step-ahead point predictors are smaller than others. This is
very natural because we use the value of the previous moment as the explanatory variable.
For PSETINAR(2; 1, 1)12 with zero-truncated periodic Poisson distribution, the PRMSEs
of twelve-step-ahead predictors are smaller than other h-step-ahead predictors except for
one-step-ahead. This may be because our period is 12. The PRMSE of one-step-ahead
conditional expectation point predictors is smaller than point-wise conditional distribution
point predictors. Thus, the former method is better for this dataset.

The PRMSEs of the one-step-ahead fitted series calculated by conditional expectation
and conditional distribution are 2.434 and 3.565, respectively. This further illustrates
that for our dataset, one-step-ahead forecasting conditional expectation is better than
conditional distribution. The original data and the fitted series (calculated by the one-step-
ahead conditional expectation based on the observations of the previous moments) by the
PSETINAR(2; 1, 1)12 model with zero-truncated periodic Poisson distribution are plotted
in Figure 6. It is observed that the trend is similar to the original data. Except for the points
with large value (the unexpected prediction may be due to the wrong judgement of regime),
this model fits the data well.
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Figure 6. Plot of fitted curves of the claims data.
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Table 25. PRMSE of the h-step-ahead point predictors.

h 1 2 3 12

Conditional expectation PSETINAR(2; 1, 1)12 (Zero-truncated Pois.) 2.641 3.019 3.433 2.929
PINAR(1)12 (Zero-truncated Pois.) 2.753 3.377 3.567 3.788

PINAR(1)12 (Pois.) 2.724 3.407 3.704 4.008
Conditional distribution PSETINAR(2; 1, 1)12 (Zero-truncated Pois.) 2.814 3.000 3.109 2.930

Actually, we can get the h-step-ahead conditional distribution; here, we list the two-
step-ahead and three-step-ahead conditional distributions as an example,

P
(
Xj+sT+2 = xj+sT+2|Xj+sT = xj+sT

)
=

n

∑
m=0

P
(
Xj+sT+1 = m|Xj+sT = xj+sT

)
P
(
Xj+sT+2 = xj+sT+2|Xj+sT+1 = m

)
,

and

P
(
Xj+sT+3 = xj+sT+3|Xj+sT = xj+sT

)
=

n

∑
m=0

P
(
Xj+sT+2 = m|Xj+sT = xj+sT

)
P
(
Xj+sT+3 = xj+sT+3|Xj+sT+2 = m

)
,

where m ∈ {0, 1, . . . , n} is the possible domain of Xj+sT , j = 1, . . . , T, and s ∈ N0. When
h = 1, 2, 3, we show the plots of the h-step-ahead conditional distribution in Figure 7, where
xj+sT represents the count of claimants in December 1993 and February 1994, respectively.
The mode of h-step-ahead conditional distribution can be viewed as the point prediction.
The PRMSEs of the two-step-ahead and three-step-ahead point predictors for the last year
are 3.227 and 3.215, respectively, which is larger than the point-wise conditional distribution
method described before. Maybe for other datasets or models, the h-step-ahead forecasting
conditional distribution will show some advantages. We will not go into details here.
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Figure 7. The h-step-ahead forecasting conditional distribution for the counts of claimants: (a–c) conditional on the count of
claimants in December 1993; (d–f) conditional on the count of claimants in February 1994.
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6. Conclusions

This paper extended the PSETINAR(2; 1, 1)T process proposed by Pereira et al. [25],
by removing the assumption of Poisson distribution of {Zt} and considered the PSETINAR
(2; 1, 1)T process under weak conditions that the second moment of {Zt} is finite. The
ergodicity of the process is established. MQL-estimators of the model parameters vector
β, MQL-estimators and CLS-estimators of the thresholds vector r are obtained. Moreover,
through simulation, we can see the advantages of the quasi-likelihood method by com-
paring with the conditional maximum likelihood and conditional least square methods.
An application to a real dataset is presented. In addition, the forecasting problem of this
dataset is addressed.

In this paper, we only discuss the PSETINAR(2; 1, 1)T process for univariate time series.
Hence, an extension for the multivariate PSETINAR(2; 1, 1)T process with a diagonal or
cross-correlation autoregressive matrix is a topic for future investigation. Furthermore, it
is also important to stress that beyond this extension, there are a number of interesting
problems for future research in this area. For example, even a simple periodic model can
have an inordinately large number of parameters. This is also true for PSETINAR(2; 1, 1)T
models and even multi-period models. Therefore, the development of procedures of
dimensionality reduction to overcome the computational difficulties is an impending
problem. This remains a topic of future research.
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Appendix A

Proof of Theorem 1. According to Theorem 2 of Tweedie [40] (see also, Zheng and Ba-
sawa [41]), for the process defined by (2), and ∀j = 1, 2, . . . , T, s ∈ Z, we have

E
(
Xj+sT |Xj+sT−1 = x

)
= α

(1)
j xI(1)j+sT−1 + α

(2)
j xI(2)j+sT−1 + λj ≤ αj,maxx + λj,

where αj,max = max{α(1)j , α
(2)
j } < 1.

Let K =
[

1+λj
1−αj,max

]
+ 1, where [·] denotes the integer part of a number. Then for x ≥ K, we

have
E
(
Xj+sT |Xj+sT−1 = x

)
≤ x− 1,

and for x < K,

E
(
Xj+sT |Xj+sT−1 = x

)
≤ αj,maxx + λj ≤ K + λj < ∞.

Therefore, the process {Xt} for t = j + sT defined in (2) is an ergodic Markov chain.
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Proof of Proposition 2. (i) From Proposition 1, we have

Var
(
Xj+sT |Xj+sT−1

)
= E

{
Xj+sT − E

(
Xj+sT |Xj+sT−1

)}2

= E
(

Xj+sT − α
(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)2
,

and

Var
(
Xj+sT |Xj+sT−1

)
=

2

∑
k=1

α
(k)
j

(
1− α

(k)
j

)
Xj+sT−1 I(k)j+sT−1 + σ2

z,j,

with k = 1, 2, j = 1, . . . , T, s ∈ N0, so by substituting suitable consistent estimators of α
(k)
j

and λj, we can get the consistent estimation of σ2
z,j,

σ̂2
1,z,j =

1
N

N−1

∑
s=0

(
Xj+sT −

2

∑
k=1

α̂
(k)
j Xj+sT−1 I(k)j+sT−1 − λ̂j

)2

− 1
N

2

∑
k=1

N−1

∑
s=0

α̂
(k)
j

(
1− α̂

(k)
j

)
Xj+sT−1 I(k)j+sT−1.

(ii) Moreover, from model (2), we have

Var
(
Xj+sT

)
=

2

∑
k=1

Var
{(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1

}
+ Var

(
Zj+sT

)
+ 2Cov

{(
α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1,

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
,

where

Var
{(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1

}
=Var

{
E
[(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1|Xj+sT−1

]}
+ E

{
Var

[(
α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1|Xj+sT−1

]}
=α

(k)
j

2
Var

(
Xj+sT−1 I(k)j+sT−1

)
+ α

(k)
j

(
1− α

(k)
j

)
E
(

Xj+sT−1 I(k)j+sT−1

)
,

and

2Cov
{(

α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1,

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
=−2E

{(
α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1

}
E
{(

α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
=− 2α

(1)
j α

(2)
j E

{
Xj+sT−1 I(1)j+sT−1

}
E
{

Xj+sT−1 I(2)j+sT−1

}
.

Note that

E
{

Xj+sT−1 I(1)j+sT−1

}
=E
{

E
[

Xj+sT−1 I(1)j+sT−1|I
(1)
j+sT−1 = 1

]}
=E
{

Xj+sT−1 I(1)j+sT−1|I
(1)
j+sT−1 = 1

}
P
(

I(1)j+sT−1 = 1
)

=E
{

Xj+sT−1|Xj+sT−1 ≤ rj
}

P
(

I(1)j+sT−1 = 1
)

.
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Let pj = P
(

I(1)j+sT−1 = 1
)

with j = 1, . . . , T, s ∈ N0, we can estimate it with p̂j =
1
N

N−1
∑

s=0
I(1)j+sT−1.

Therefore, by substituting a suitable consistent estimator of α
(k)
j , based on moment estima-

tion, we can get the estimator σ̂2
2,z,j in Proposition 2.

Proof of Theorem 2. Let Fj+sT = σ
(
X0, X1, . . . , Xj+sT

)
with j = 1, . . . , T, s ∈ N0. First, we

suppose θ is known, for the following estimation equations:

S(1)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(1)j+sT−1,

we have

E
[
V−1

θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(1)j+sT−1|Fj+sT−1

]
= V−1

θj
Xj+sT−1 I(1)j+sT−1E

[(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))
|Fj+sT−1

]
= V−1

θj
Xj+sT−1 I(1)j+sT−1E

[(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))
|Xj+sT−1

]
= 0,

and

E
[
S(1)

s,j
(
θj, β j

)
|Fj+sT−1

]
= E

[
V−1

θj

(
Xj+sT−α

(1)
j Xj+sT−1 I(1)j+sT−1−α

(2)
j Xj+sT−1 I(2)j+sT−1−λj

)
Xj+sT−1 I(1)j+sT−1 + S(1)

s−1,j
(
θj, β j

)
|Fj+sT−1

]
= E

[
S(1)

s−1,j
(
θj, β j

)
|Fj+sT−1

]
= S(1)

s−1,j
(
θj, β j

)
,

so {S(1)
s,j
(
θj, β j

)
,Fj+sT , j = 1, 2, . . . , T, s ∈ N0} is a martingale. By Theorem 1.1 of Billings-

ley [42], we have

1
N

N−1

∑
s=0

V−2
θj

(
Xj+sT |Xj+sT−1

)(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)2
X2

j+sT−1 I(1)j+sT−1

a.s.−→ E
[

V−2
θj

(
Xj|Xj−1

)(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1

]
= E{E

[
V−2

θj

(
Xj|Xj−1

)(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1|Xj−1

]
}

= E{V−2
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1E
[(

Xj − α
(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
|Xj−1

]
}

= E{V−1
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1}

, Hj,11
(
θj
)
.

Thus, by the central limit theorem of martingale, we get

1√
N

S(1)
N,j
(
θj, β j

) L−→ N
(
0, Hj,11

(
θj
))

.

Similarly,

1√
N

S(2)
N,j
(
θj, β j

) L−→ N
(
0, Hj,22

(
θj
))

,



Entropy 2021, 23, 765 28 of 32

1√
N

S(3)
N,j
(
θj, β j

) L−→ N
(
0, Hj,33

(
θj
))

,

where

S(2)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(2)j+sT−1,

and

S(3)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
.

For any c = (c1, c2, . . . , cT)
′ ∈ R3T \ (0, 0, . . . , 0), cj =

(
c(1)j , c(2)j , c(3)j

)′
with j = 1, 2, . . . , T,

to simplify, let

j + sT 6= i + kT, i, j = 1, 2, . . . , T, s, k ∈ N0,

uj,s = c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j ,

wj,s = Xj+sT − E
(
Xj+sT |Xj+sT−1

)
= Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj,

and n(T, N) is a constant associated with N and T, then

E

[
T

∑
j=1

N−1

∑
s=0

V−1
θj

(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))(
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)]2

=
T

∑
j=1

N−1

∑
s=0

E
[
V−2

θj
w2

j,su2
j,s

]
+ n(T, N)E

[
V−1

θj
V−1

θi
wj,swi,kuj,sui,k

]
, (A1)

for the first item in the right side of Equation (A1), we have

E
[
V−2

θj
w2

j,su2
j,s

]
=E{E

[
V−2

θj
w2

j,su2
j,s|Xj+sT−1

]
}

=E{V−2
θj

u2
j,sE
[
w2

j,s|Xj+sT−1

]
}

=E
[

V−1
θj

(
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)2
]

,

for the second item in the right side of Equation (A1), we have

E
[
V−1

θj
V−1

θi
wj,swi,kuj,sui,k

]
=E{V−1

θj
V−1

θi
uj,sui,kE

[
wj,swi,k|Xj+sT−1, Xi+kT−1

]
}

=0,

which imply that Cov
(
SN,j, SN,i

)
= 0, where SN,j =

(
S(1)N,j

(
θj, βj

)
, S(2)N,j

(
θj, βj

)
, S(3)N,j

(
θj, βj

))′
,

∀i, j = 1, 2, . . . , T, i 6= j, then we have
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cT
j√
N

(
S(1)

N,j
(
θj, β j

)
, S(2)

N,j
(
θj, β j

)
, S(3)

N,j
(
θj, β j

))′
=

1√
N

3

∑
i=1

c(i)j S(i)
N,j
(
θj, β j

)
=

1√
N

N−1

∑
s=0

V−1
θj

[
Xj+sT − E

(
Xj+sT |Xj+sT−1

)](
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)
L−→ N

(
0, E
[

V−1
θj

(
Xj|Xj−1

)(
c(1)j Xj−1 I(1)j−1 + c(2)j Xj−1 I(2)j−1 + c(3)j

)2
])

, as N → ∞,

therefore, the
cT

j√
N

(
S(1)

N,j
(
θj, β j

)
, S(2)

N,j
(
θj, β j

)
, S(3)

N,j
(
θj, β j

))′
converges to a normal distribu-

tion with mean zero and variance E
[

V−1
θj

(
Xj|Xj−1

)(
c(1)j Xj−1 I(1)j−1 + c(2)j Xj−1 I(2)j−1 + c(3)j

)2
]

.

Thus, by Cramer-wold device, it follows that

1√
N



S(1)
N,1(θ1, β1)

S(2)
N,1(θ1, β1)

S(3)
N,1(θ1, β1)

...
S(1)

N,T(θT , βT)

S(2)
N,T(θT , βT)

S(3)
N,T(θT , βT)


L−→ N

0,


H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)


,

the 0’s are (3× 3)-null matrices. Now, we replace Vθj

(
Xj+sT|Xj+sT−1

)
by Vθ̂j

(
Xj+sT|Xj+sT−1

)
,

where θ̂j is a consistent estimator of θj. We aim to get the result

1√
N



S(1)
N,1
(
θ̂1, β1

)
S(2)

N,1
(
θ̂1, β1

)
S(3)

N,1
(
θ̂1, β1

)
...

S(1)
N,T
(
θ̂T , βT

)
S(2)

N,T
(
θ̂T , βT

)
S(3)

N,T
(
θ̂T , βT

)


L−→ N

0,


H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)


. (A2)

To prove (A2), we need to check the following conclusion

1√
N

S(i)
N,j
(
θ̂j, β j

)
− 1√

N
S(i)

N,j
(
θj, β j

) P−→ 0, j = 1, 2, . . . , T, i = 1, 2, 3, N → ∞. (A3)

For ∀ε > 0, ∃δ > 0, we have

P
(
| 1√

N
S(1)

N
(
θ̂j, β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
≤

2

∑
k=1

P
(
|θ(k)j1
− θ

(k)
j | > δ

)
+ P

(
|σ2

z,j1 − σ2
z,j| > δ

)
+ P

(
sup

D
| 1√

N
S(1)

N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
,
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where θj1 =
(

θ
(1)
j1

, θ
(2)
j1

, σ2
z,j1

)′
, D = {θj1 : |θ(1)j1

− θ
(1)
j | < δ, |θ(2)j1

− θ
(2)
j | < δ, σ2

z,j1
− σ2

z,j| < δ}.
If θ̂j is a consistent estimator of θj, then we just need to prove that

P
(

sup
D
| 1√

N
S(1)

N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
P−→ 0, N → ∞.

By the Markov inequality,

P
(

sup
D
| 1√

N
S(1)

N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
≤ 1

ε2 E

(
sup

D

(
1√
N

S(1)
N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β

))2
)

≤ 1
ε2 E{sup

D

1
N

[
N−1

∑
s=0

(
V−1

θj1
−V−1

θj

)2(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))2X2
j+sT−1 I(1)j+sT−1

]
}

=
1
ε2 E

[
sup

D

(
V−1

θj1

(
Xj|Xj−1

)
−V−1

θj

(
Xj|Xj−1

))2(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1

]

=
1
ε2 E{sup

D

[(
θ
(1)
j − θ

(1)
j1

)
Xj−1 I(1)j−1 +

(
θ
(1)
j − θ

(2)
j1

)
Xj−1 I(2)j−1 +

(
σ2

z,j − σ2
z,j1

)]2

V2
θj1

(
Xj|Xj−1

)
Vθj

(
Xj|Xj−1

) X2
j−1 I(1)j−1}

≤ 1
ε2 sup

D
{[
(

θ
(1)
j − θ

(1)
j1

)2
m1 +

(
θ
(2)
j − θ

(2)
j1

)2
m2 +

(
σ2

z,j − σ2
z,j1

)2
m3 + 2m4|θ

(1)
j − θ

(1)
j1
||θ(2)j − θ

(2)
j1
|

+ 2m5|θ
(1)
j − θ

(1)
j1
||σ2

z,j − σ2
z,j1 |+ 2m6|θ

(2)
j − θ

(2)
j1
||σ2

z,j − σ2
z,j1 |]X

2
j−1 I(1)j−1}

≤ cδ2

ε2 ,

where m1, m2, . . . , m6 are some finite moments of process {Xt} under assumption (C2),
and c is a positive constant. A similar argument can be used for 1√

N
S(2)

N,j
(
θj, β j

)
and

1√
N

S(3)
N,j
(
θj, β j

)
, j = 1, . . . , T. Let δ→ 0, we can get (A3).

By the ergodic theorem, we have

1
N

QN
P−→ H(θ).

After some calculation, we have

QN

(
β̂MQL − β

)
=
(

S(1)
N,1
(
θ̂1, β1

)
, S(2)

N,1
(
θ̂1, β1

)
, S(3)

N,1
(
θ̂1, β1

)
, . . . , S(1)

N,T
(
θ̂T , βT

)
, S(2)

N,T
(
θ̂T , βT

)
, S(3)

N,T
(
θ̂T , βT

))′
,

Therefore,

√
N
(

β̂MQL − β
)

L−→ N
(

0, H−1(θ)
)

.

This completes the proof. �
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