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Abstract: Modeling of wall-bounded turbulent flows is still an open problem in classical physics,
with relatively slow progress in the last few decades beyond the log law, which only describes the
intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius
R. Here, we propose a fundamentally new approach based on fractional calculus to model the
entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent
the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the
distance from the wall. Surprisingly, we find that this variable fractional order has a universal form
for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe
flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-
order function and subsequently we test it against other DNS data and experimental measurements,
including the Princeton superpipe experiments. Taken together, our findings reveal the continuous
change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent
interactions that intensify away from the wall. Moreover, we propose alternative formulations,
including a divergence variable fractional (two-sided) model for turbulent flows. The total shear
stress is represented by a two-sided symmetric variable fractional derivative. The numerical results
show that this formulation can lead to smooth fractional-order profiles in the whole domain. This
new model improves the one-sided model, which is considered in the half domain (wall to centerline)
only. We use a finite difference method for solving the inverse problem, but we also introduce the
fractional physics-informed neural network (fPINN) for solving the inverse and forward problems
much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent
boundary layers and discuss how the streamwise variation affects the universal curve.

Keywords: fractional conservations laws; variable fractional model; turbulent flows; fractional PINN;
physics-informed learning

1. Introduction

Reynolds [1] was the first to statistically describe turbulence by decomposing the in-
stantaneous velocity vector into an average field and its fluctuation. Upon substitution into
the Navier–Stokes equations and averaging, assuming quasi-stationarity, a new modified
equation emerged for the average velocity that includes an additional term, namely, the
averaged dissipation tensor leading to the turbulence-closure problem [2]. Addressing
the closure complexity has been a century-long pursuit, starting with the seminal work
of Prandtl [3], who proposed a simplified mixing length model analogous with Fick’s law
of local diffusion. Interestingly, at about the same time, Richardson [4], in an attempt to
unify turbulent diffusion with molecular diffusion, combined geophysical measurements
with Brownian motion to produce the famous scaling law on turbulent pair diffusivity.
While ingenious, both approaches assume implicitly locality in turbulent interactions,
which limits the universality of the derived correlations—an open standing question for
over a century. As stated by Kraichnan [5], Prandtl’s approach is valid only when the
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spatial scale of inhomogeneity of the mean field is large compared to the mixing length.
This assumption is clearly violated in most turbulent flows, e.g., in Reynolds’ pipe flow,
where the turbulent eddies are of the size of the pipe radius. This has motivated research
in nonlocal constitutive equations of turbulence, and Prandltl, in subsequent work [6],
developed a turbulent shear-layer model in an attempt to introduce non-locality in his
approach. Kraichnan [5] pioneered such non-local approximations and, based on his work,
more recently generalized versions of the second Prandtl non-local model were proposed
in the literature [7].

Fractional calculus is an effective tool to solve complex problems with nonlocality
and scale-free self-similar processes as well as non-Gaussian statistics. Lévy statistics lead
to anomalous diffusion [8] and can effectively model turbulent intermittency [9]. Hence,
it is possible that turbulent eddy diffusion could be accurately modeled by fractional
Reynolds stresses [10]. Based on physical arguments, in order to represent nonlocality and
intermittency, Chen [11] proposed a fractional Laplacian as a model for representing the
Reynolds stress with a fixed fractional exponent α = 2/3. More recently, starting with
the Boltzmann equation, Epps et al. [12] rigorously derived the fractional Navier–Stokes
equations by replacing the Maxwell–Boltzmann distribution with the more general Levy α-
stable distribution; see a recent extension of this work in [13]. For α = 2, the new equations
revert to the standard Navier–Stokes equations, while for α = 1, we obtain the logarithmic
velocity profile known as the law of the wall [14]. The work of Epps et al. [12] laid a new
framework for turbulence modeling that may lead to new fundamental understanding of
turbulence, but it is only valid in an open domain and thus ignores the important issue of
nonlocal boundary conditions encountered in defining fractional Laplacians in bounded
domains [15].

The work we include here incorporates our first paper [16] published in the archives,
and is a significant extension. We also refer to the work of [17], who modeled the total
shear stress directly in wall units by formulating a one-sided variable-order model using
the Caputo fractional derivative for Couette flow [17] and in ongoing work on transitional
and turbulent boundary layers. For the case of Couette flow, universality was found. We
note that directly formulating the problem in wall units does not require modeling of any
additional coefficients, unlike the formulation in the present study.

The remainder of this paper is organized as follows: Since the small-scale components
can be described as an anomalous diffusion [11], we introduce the variable-order fractional
calculus in the next section. Then, we formulate the inverse optimization problem corre-
sponding to the governing equations. We present the fractional differential equations to
model different turbulent flows (e.g., channel flow, Couette flow, and pipe flow) in Section
2. The inverse problem is solved by a finite difference (FD) method to obtain the fractional
order. Moreover, we introduce the fractional physics-informed neural network for solving
the inverse problem to find the variable-orders. In Section 3, we present the numerical
results that show that the universal fractional-order profiles of the channel and pipe flow as
a function of the distance from the wall, a unique capability enabled by fractional calculus.
In particular, we discovered that this fractional-order function is universal for all Reynolds
numbers and for different geometries. Finally, we provide a short summary in Section 4.

2. Variable-Order Fractional Models for Turbulent Flows

The first fractional model for the Reynolds averaged Navier–Stokes equations was
developed by Chen [11], who proposed a fractional Laplacian to model the Reynolds
stresses and to account for intermittency [18,19] as follows:

∂U
∂t

+ U · ∇U = −1
ρ
∇P + ν0∆U − γ(−∆)1/3U, (1)

where U is the average velocity and γ is the turbulent diffusion coefficient. Hence, the ef-
fective fractional order in this model is fixed at α = 2/3. This value is consistent with the
Richardson superdiffusion scaling for homogeneous turbulence that leads to a t3 scaling
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for the mean square displacement, but it is not valid for wall-bounded turbulence where
anisotropy and the distance from the wall determine the effective rate of turbulent diffusion.
Defining a fractional Laplacian in multiple dimensions and in bounded domains is still
an open issue in fractional calculus and extending it to variable orders is challenging [15].
However, other somewhat equivalent definitions based on tempered fractional calculus [20]
may lead to satisfactory nonlocal representations as well; specifically, in a Boltzmannian
framework, Samiee et al. [13] developed a tempered fractional subgrid-scale model to cap-
ture high-order structures at the inertial and dissipative ranges. As Richardson first noted,
the velocity field in the atmosphere shares a number of properties with the Weierstrass
function, i.e., it appears to be continuous but non-differentiable, and this provides a strong
case for fractional modeling of turbulence in the atmosphere but also in wall-bounded
flows in engineering applications.

In this section, we present a variable-order fractional model for turbulent flows. We
firstly consider a one-sided model for channel and pipe flows. Furthermore, we formulate
an inverse problem for the fractional order α(y). We present a finite difference method and
design a physics-informed neural network (PINN) to obtain the fractional order. Finally,
we propose a divergence variable fractional (two-sided) model for turbulent flows.

2.1. Turbulent Channel Flow and Pipe Flow
2.1.1. One-Sided Fractional Derivative Modeling

For wall-bounded turbulence, the effective rate of diffusion varies with distance from
the wall. Hence, we exploit the power of fractional calculus that allows variable fractional
order, and we propose a variable-order fractional differential equation for modeling the
Reynolds stresses, i.e., α(y), where y is the distance from the wall. In particular, we consider
fully developed turbulent flows with one-dimensional (dimensionless) averaged velocity
U(y) = u/V (where V is the characteristic velocity), including channel flows and pipe
flows for which we apply a unified fractional modeling approach. Specifically, assuming
that the flow direction is along x and y is the wall-normal direction (distance from the wall),
we consider the variable fractional model (VFM-I) in the normalized interval [0, 1]:

(VFM-I)
∂

∂y
(ν0

∂U
∂y
− u′v′) = ν(y)Dα(y)

y U = f , ∀y ∈ Λ = (0, 1], (2)

with α(0) = 1, 0 ≤ α(y) ≤ 1, Dα
y is the (Caputo) fractional derivative, f = − 1

ρ ∂P/∂x is
a constant pressure gradient, U(y) is the mean velocity we want to model, and ν0 is the
kinematic viscosity. The Caputo derivative is defined as:

Dα
yU(y) =

1
Γ(1− α)

∫ y

0
(y− τ)−αU′(τ)dτ,

and it is identical to the Riemann–Liouville left-sided derivative because U(0) = 0. Inter-
estingly, we can obtain the scalar coefficient ν(y) (we refer to it as turbulent diffusivity,
although it does not have the correct units) explicitly in terms of the fractional order
α(y) from:

ν(y) = f Γ(2− α(y))Re−α(y)
τ V/uτ , (3)

where Reτ = uτ R/ν0 is the friction Reynolds number, R is the radius of the pipe (or the half
channel width), and uτ is the wall friction velocity uτ =

√
τw/ρ, where τw = µ∂U/∂y|y=0

is the wall shear stress with µ being the dynamic viscosity.
We discuss an alternative model, where the variable fractional order α(y) is between

one and two instead of the VFM-I we presented, where 0 < α(y) ≤ 1; this model is
analogous to VFM-I and is defined by:

(VFM-II)
∂

∂y
(ν0

∂U
∂y
− u′v′) = ν(y)Dα(y)

y U = f , ∀y ∈ Λ = (0, 1], (4)
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with α(0) = 2, and the variable-order 1 ≤ α(y) ≤ 2 is an unknown function to be
determined by the data. The scalar coefficient ν(y) can also be computed from a similar
formula as before, i.e.,

ν(y) = lim
y0→ 1

Reτ

f

Dα(y)
y (U|y0)

. (5)

2.1.2. Numerical Method

We assume that we know the mean velocity U(y) (also U+(y+)) from the DNS data
or experimental results. The VFM-I can be written in the form:

ν(y)Dα(y)
y U = f , (6)

where f = − 1
ρ ∂P/∂x. Since the fractional order α(y) is unknown in Equation (6), we

need to solve a nonlinear problem to obtain α(y). Alternatively, we consider the following
optimization problem: given U and f , find the α(y) that satisfies

J(α(y)) = inf
α(y)∈S

‖ν(y)Dα(y)
y U − f ‖2, (7)

where, S(Λ) := {0 ≤ a(y) ≤ 1, a(y) ∈ C0(Λ)}. If α∗(y) satisfies Equation (6), then we
obtain J(α∗(y)) ≡ 0.

Next, we present a numerical method for solving the optimization problem (7).
The fractional derivative is discretized with the finite difference method. Then, the frac-
tional order α(y) can be solved point-by-point; for each point yn = n∆y, ∆y = 1/N, n =

1, 2, · · · , N, we calculate the fractional derivative Dα(yn)
y Un with the DNS data using the

finite difference method [21]

Dα(yn)
y Un =

1
Γ(2− α(yn))

n

∑
j=0

bn
j

Un+1−j −Un−j

∆yα(yn)
, (8)

where bn
j := (j + 1)α(yn) − jα(yn) and Un = U(yn). The discrete optimization problem can

now be written as

JN(α(y)) = inf
α(y)∈S

N

∑
n=1

∣∣ν(yn)Dα(yn)
y Un − f (yn)

∣∣2∆y. (9)

Finally, we formulate the fractional physics-informed neural network (fPINN) for the
inverse problems of the proposed turbulence model; see Figure 1.

The aim of the inverse problem is to estimate the fractional order α(y) given the
mean velocity profile U in the DNS data. We approximate the variable fractional order
α(y) by a multi-layer feedforward neural network αNN(y; θ = {Wj, bj}l

j=1), where θ are a
collection of parameters of the NN. The locations y are the input of the NN, and the output
U is computed by a recursive formula Y j = σ(WjY j−1 + bj) with the initial value Y0 = y.
The weight matrix between the (j− 1)th and jth layers has the dimension Wj ∈ Rnj×nj−1 ,
and the bias vector bj in the jth layer. The column vectors Y j−1 ∈ Rnj−1×1 and Y j ∈ Rnj×1

denote the input and output of the jth layer, respectively. The input vector Y j−1 is first
subject to a linear transformation and then an element-wise nonlinear function σ(·), which
is called the activation function. The NN consists of one input layer (j = 0), l − 1 hidden
layers (j = 1, 2, · · · , l − 1), and one output layer (j = l). The depth of the NN is l, and the
width of the jth layer is nj. To determine the parameters θ, we minimize the following loss
function with respect to θ

L(θ) = 1
Nt

Nt

∑
i=1

(
DαNN(yi ;θ)

y U(yi)− 1
)2

+ (αNN(0; θ)− 1)2, yi ∈ (0, 1]. (10)
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The first term on the right-hand side is the equation residual, and the second term is the
constraint on the fractional order at the wall, i.e., α(0) = 1. We select Nt training points,
{yi}Nt

i=1, to enforce the equation residual on them to be zero. The fractional derivative is
evaluated using the finite difference method (8). We optimize the loss function with respect
to θ, employing a stochastic gradient descent, Adam, written in TensorFlow. Finally, we
estimate the variable fractional order using αNN(y; θ).

Figure 1. Basic structure of fPINN in 1D for the inverse fractional-order problem. The left uninformed
DNN processes data to predict the fractional order, which also has to satisfy the correct physics of
turbulence for the channel fully developed flow, represented by the right informed DNN induced by
the fractional governing equation.

2.2. Two-Sided Turbulent Channel Flow
2.2.1. Fractional Modeling in Divergence Form

We consider the Reynolds averaged momentum equation for incompressible fully
developed channel flow; the governing equation is as follows

∂

∂y
(ν0

∂U
∂y
− u′v′) +

1
ρ

∂P
∂x

= 0, y ∈ (0, 2), (11)

where ρ is the density; and P and U are the mean pressure and velocity, respectively.
The process of Reynolds averaging introduces the unclosed Reynolds stress, τij = −ρu′v′.
The total shear stress on the wall is τw. Integrating the above equation from wall to an
arbitrary position in wall-wise y, we obtain a new formula as follows

ν0
∂U
∂y
− u′v′ = τw/ρ− 1

ρ

∂P
∂x

y. (12)

We assume the dimensionless wall shear τw and pressure gradient ∂P
∂x = C are con-

stants. Additionally, we introduce a symmetric divergence variable fractional model for
approximating the total shear stress,

(DVFM) ν0
∂U
∂y

+ u′v′ = ν(y)Dα(y)
|y| U = 1− y, (13)

with the boundary conditions α(0) = α(2) = 1, where the fractional derivative is defined
as follows

Dα(y)
|y| U =

1
2
(Dα(y)

y U + yDα(y)U), (14)
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and Dα(y)
y and yDα(y)U are left and right Caputo derivatives, respectively. The definitions

are given as follows

Left Caputo derivative: Dα
yU(y) =

1
Γ(1− α)

∫ y

0
(y− τ)−αU′(τ)dτ,

and

Right Caputo derivative: yDαU(y) = − 1
Γ(1− α)

∫ 2

y
(τ − y)−αU′(τ)dτ,

and it is identical to the Riemann–Liouville derivatives because U(0) = 0 and U(2) = 0.
We also propose the eddy viscosity in the fractional momentum equation, and the explicit
formula is as follows

ν(y) = Γ(2− α(y))Re−α(y)
τ , (15)

where Reτ = uτ R/ν0 is the friction Reynolds number, R is the radius of the pipe (or the half
channel width), and uτ is the wall friction velocity, uτ =

√
τw/ρ, where τw = µ∂U/∂y|y=0

is the wall shear stress with µ being the dynamic viscosity.

2.2.2. Numerical Method

We assume that we know the mean velocity U(y) (also U+(y+)) from the DNS data
or experimental results. Since the fractional order α(y) is unknown in Equation (13), we
need to solve a nonlinear problem to obtain α(y). Alternatively, we consider the following
optimization problem: given U and f , find α(y) that satisfies

J(α(y)) = inf
α(y)∈S

‖ν(y)Dα(y)
|y| U − f ‖2, (16)

where f = 1− y and S(Λ) := {0 ≤ a(y) ≤ 1, a(y) ∈ C0(Λ)}. If α∗(y) satisfies Equa-
tion (13), then we obtain J(α∗(y)) ≡ 0.

Next, we present a numerical method for solving the optimization problem (16).
The fractional derivative is discretized with the finite difference (FD) method. Then,
the fractional order α(y) can be solved point-by-point; for each point yn = n∆y, ∆y = 1/N,
n = 1, 2, · · · , N, we calculate the fractional derivatives Dα(yn)

|y| Un with the DNS data using
the finite difference method [21]

Left: Dα(yn)
y Un =

1
Γ(2− α(yn))

n

∑
j=0

bn
j

Un+1−j −Un−j

∆yα(yn)
, (17)

and

Right: yDα(yn)Un = − 1
Γ(2− α(yn))

N−n+1

∑
j=0

cn
j

UN−j −UN−j−1

∆yα(yn)
, (18)

where bn
j := (j + 1)α(yn) − jα(yn), cn

j = bn
j and Un = U(yn).

The discretized optimization problem can be now written as

JN(α(y)) = inf
α(y)∈S

N

∑
n=1

∣∣ν(yn)Dα(yn)
|y| Un − f (yn)

∣∣2∆y. (19)

Here, we use N ≈ Reτ points to solve the above optimization for the channel flow at a
given Reynolds number Reτ .

Alternatively, we propose the fractional fPINN for solving the inverse DVFM with the
loss function

L(θ) =
Nt

∑
n=1

∣∣ν(yn)DαNN(yn ;θ)
|y| Un − f (yn)

∣∣2 + |αNN(0; θ)− 1|2 + |αNN(2; θ)− 1|2. (20)
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2.3. Turbulent Boundary Layer and Couette Flow

For a boundary layer and Couette flow with zero pressure gradient, the mean two-
dimensional continuity and stream-wise momentum reduce to

∂UU
∂x

+
∂VU

∂y
=

∂

∂y
(ν0

∂U
∂y
− u′v′). (21)

If we assume that the convective effects are small near the wall for the boundary layer
problem, then the above equation reduces to

∂

∂y
(ν0

∂U
∂y
− uv) = 0. (22)

Here, U is viewed as a function of y due to ∂U
∂x = 0. Since the two plates are infinitely

long for the Couette flow, the flow properties cannot change with x and all partial deriva-
tives with respect to x vanish. Flow motion only occurs in the x direction, and thus,
V = 0. After simplifying the RANS equations, the turbulent Couette flow is governed by
Equation (22) too.

Further integrating the above equation provides

ν0
∂U
∂y
− u′v′ = C, (23)

where C is a constant and uv = 0 at the wall, while ν ∂U
∂y is simply the wall shear stress

τw/ρ. Then, we have the following equation

(TCM) ν(y)Dα(y)
y U =

τw

ρ
,

with α(0) = 1, 0 < α ≤ 1, Dα
y is the (Caputo) fractional derivative, and ν(y) is the eddy

viscosity defined as
ν(y) = Γ(2− α(y))Re−α(y)

τ .

Numerical Method

We solve the fractional order α(y) for the turbulent boundary layer problem and
Couette flow using fPINN (Figure 1) with the loss function

L(θ) =
Nt

∑
k=0

(ν(yk)DαNN(yk ;θ)
y − τw

ρ
)2 + (αNN(0; θ)− 1)2

=
Nt

∑
k=1

(Re−αNN(yk ;θ)
τ

k

∑
j=0

bk
j

∆yαNN(yk ;θ)
(Uk+1−j −Uk−j)− τw

ρ
)2 + (αNN(0; θ)− 1)2,

where U is the DNS data. It changes with Reθ for the boundary layer problem, so there is
(implicit) x dependence as well.

3. Numerical Results

In this section, we present the results for the turbulent channel, pipe, Couette, and
boundary layer flows.

3.1. Channel Flow
3.1.1. Numerical Results of the One-Sided Models

We first consider turbulent channel flow for which DNS data are available up to
Reτ = 5200 [22]. Here, we use the FD scheme with N ≈ Reτ points to solve the aforemen-
tioned inverse problem for the channel flow at a given Reynolds number Reτ . Solving for
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α(y), which uniquely determines the Reynolds stresses, Figure 2a depicts the profiles of
the fractional order α(y) for different Reτ as a function of the non-dimensional distance
from the wall y ∈ [0, 1]. We see a strong dependence of α(y) on Reτ ; however, if we re-plot
all data in terms of the viscous wall units, i.e., y+ = yuτ/ν0 we see a collapse of all results
into a single universal curve, as shown in Figure 2b. Moreover, we employ the empirical
Spalding formula [23] for U+ = u/uτ in order to extend the results up to high Reτ = 106,
and again we obtain a similar universal scaling with the exception of low Reτ for which the
Spalding formula is known to be somewhat inaccurate. We fit the fractional order using
these numerical results to obtain the fractional order α(y+) in wall units as follows

α∗(y+) =
1− φ(y+)

2
+

φ(y+) + 1
2

a(y+), (24)

where φ(y+) = tanh(ln(y+/9.5)/1.049) and a(y+) = 1/(b + κ| ln(y+)|0.9)with b = 0.855, κ = 0.301
are constants. This is a remarkable result as it goes beyond the logarithmic profile and
seamlessly connects the viscous sublayer with the buffer zone, the logarithmic profile,
and the wake region. Although at first it appears to be a perfect fitting exercise, it has
important consequences due to the nonlocal interpretation of the fractional derivative
involved, i.e., it shows that nonlocality is stronger away from the wall and at high Reynolds
numbers. Using the same data for U(y), we show that the alternative model VFM-II with
1 ≤ α(y) ≤ 2 also leads to the same type of universality (Figure 3). However, unlike the
aforementioned VFM-I, we are unable to obtain an explicit formula for ν(y), relating it to
the Reynolds number as in the first model (i.e., α(y) ∈ (0, 1]); instead, we can compute
it numerically from the DNS data of turbulent channel flow. As shown in Section 3, this
alternative fractional model also exhibits a universal scaling if plotted in terms of wall
units, with the lowest value of α(105+) ≈ 1.3.
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(b)

Figure 2. Channel flow modeled with VFM-I: Learning the fractional variable order α(y) using DNS databases at Reτ =

180 to 5200: (a) profiles of the fractional order α(y); (b) rescaled fractional order α(y+) in viscous units.
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Figure 3. Alternative fractional modeled with VFM-II with 1 ≤ α(y) ≤ 2. The numerical fractional orders are computed
based on DNS data for turbulent channel flow at Reτ = 950, 2000, 4200, 5200: (a) plots of the fractional orders α(y+) in wall
units; (b) corresponding eddy viscosity coefficients.

To evaluate the predictability of the universal scaling, we now solve the forward
Equation (2) to obtain U(y) at Reτ = [4200, 6000, 8600], which are cases not used in the
training of the model for α(y+). The results presented in Figures 4 and 5 are in good
agreement with DNS and experimental data. We also include the turbulent channel flow
results obtained by nested LES [24]. Figures 4 and 5 show that the mean velocity profiles
predicted by VFM-I exhibit the correct behavior throughout the channel for Reynolds
numbers up to Reτ = 8600, including the correct slope in the logarithmic layer, and agree
with DNS and experimental data in the wake region for all Reτ = [4200, 6000, 8600].
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Figure 4. VFM-I: Model predictions for the turbulent channel flow at Reτ = 4200: (a) the solid line (−) represents the
numerical solution of the optimization problem and the triangle symbols (4) represent Equation (24). The blue line
represents the fractional order α(y) and the red line is the eddy viscosity coefficient. This Reynolds number Reτ = 4200 is
not included in the training of the model; (b) mean velocity obtained by VFM-I corresponding to the fractional order α∗(y+)
from the left plot.
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Figure 5. VFM-I: Profiles of the mean velocity for turbulent channel flow at Reτ = 6000, 8600:
the triangle symbol (4) represents experimental data from [25], the circle symbol (◦) represents
experimental data from [26], the solid line (−) represents the VFM-I profile, and the dashed line (−−)
represents the LES results [24].

We used fPINN to investigate the turbulent channel flows. We used different training
points for investigating the convergence using DNS data at Reτ = 2000. Figure 6 shows
the training results with uniform training points in the interval for Nt = 500, 1000, 2000.
Figure 7 shows the training results with log-uniform training points in wall units scaling for
Nt = 10, 20, 40, 80. The corresponding loss histories are listed in Table 1. Figure 7 presents
the comparison profiles between the training sets. We can observe that the results trained
by the log-uniform are smoother than the uniform training points near the wall.

Table 1. VFM-I: The history of the loss function with different training data sets for Reτ = 2000. Log represents the
log-uniform training points set.

Itr Nt = 500 Nt = 1000 Nt = 2000 Log, Nt = 10 Nt = 20 Nt = 40 Nt = 80

0 6.08× 10−1 4.70× 10−1 6.57× 10−1 6.92× 10−1 7.01× 10−1 6.74× 10−1 6.90× 10−1

5000 1.04× 10−4 8.11× 10−5 9.12× 10−5 4.72× 10−1 5.94× 10−5 5.08× 10−5 4.61× 10−5

10,000 1.79× 10−5 1.32× 10−5 1.21× 10−5 8.27× 10−6 8.93× 10−6 1.08× 10−5 9.51× 10−6

20,000 3.34× 10−6 1.75× 10−5 1.40× 10−6 9.26× 10−7 4.68× 10−7 2.84× 10−6 2.77× 10−6

30,000 2.41× 10−6 7.31× 10−7 7.12× 10−7 4.41× 10−7 2.05× 10−7 1.55× 10−6 2.08× 10−6
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Figure 6. VFM-I: The fractional order obtained from fPINN and from the universal formula derived using point-by-point
minimization (“Predict”, Equation (24) ). The training results for the uniform training sets at iteration steps Itr = 10,000,
20,000, 30,000: (a) for Nt = 500; (b) for Nt = 1000; (c) for Nt = 2000.
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Figure 7. VFM-I: Fractional order for uniform training sets at iteration steps Itr = 10,000, 20,000, 30,000 for different
Nt = 10, 20, 30, 40. “Predict” presents the profiles from Equation (1). The friction Reynolds number Reτ = 2000. TP, the
distribution of the log-uniform training points.

Next, we test the accuracy of the forward problem and the loss function error with the
training fractional order predicted by log-uniform training points Nt = 20. We solve the
fractional equation as follows:

ν(y)Dα(y)
y U = f , ∀y ∈ (0, 1], (25)

with U(0) = 0, and the fractional order is obtained by training fPINN with Nt = 20 and
Equation (24). The corresponding loss functional error is defined as follows

L(θ) =
Nt

∑
k=1

(
Re−α(yk)

τ

k

∑
j=0

bk
j

∆yα(yk)

(
Uk+1−j(θ)−Uk−j(θ)

)
− fk

)2
+ (U(0; θ))2.

Figure 8 plots the pointwise error of the mean velocity and the loss function for
Reτ = 4000 and 5000.

Finally, we use the simplified one-dimensional equation

∂

∂y
(
τuv − Ruv

)
= ν(y)Dα(y)

y U =
∂P
∂x

, y ∈ (0, 1), (26)
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where the Ruv denotes the Reynolds stress Ruv = u′v′, τuv denotes the viscous shear stress
τuv = ν0∂U/∂y, and U is the mean velocity, which is the solution to the above fractional
Equation (26). Then, we obtain the Reynolds stresses by integration,

−Ruv =
∫ 1

y
ν(s)Dα(s)

s Uds− τuv. (27)

We can compare the predicted Reynolds stresses to their counterparts, RD from DNS
data for turbulent channel flow, and using the corresponding viscous shear stress de-
noted by τD = µ∂UD/∂y, where UD denotes the mean velocity from the DNS database.
In Figure 9, we plot the predicted and DNS profiles for Reynolds numbers Reτ = 4000, 5200
and the corresponding pointwise error. We can observe that they are all in very good agree-
ment. The numerical results of the mean velocities and shear stresses for all Reynolds
number Reτ match very well with the DNS data; here, we only show the high Reynolds
number cases due to space limitations.
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Figure 8. VFM-I: The mean velocity (left) for different Reynolds numbers, the pointwise errors of the mean velocity between
predictor and DNS data (middle), and the loss function (right). FD, the fractional order solved by the finite difference
method; NN, the results from the neural network.
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Figure 9. VFM-I: Accurate prediction of the shear stress at (a,b) Reτ = 4000, 5200 in outer units and wall units: (left) outer
scaling; (middle) wall units scaling; (right) pointwise error of the wall shear stress. Here, τuv denotes the wall shear stress
for the fractional order predicted by the finite difference (FD) method, τNN

uv denotes the wall shear stress predicted by the
NN, and τD is the corresponding profile from DNS data. −Ruv denotes the Reynolds shear stress predicted by Equation (24),
−Ruv denotes the wall shear stress predicted by the NN, and −RD is the corresponding profile from DNS data.

3.1.2. Numerical Results of the Two-Sided Models

In this subsection, we focus on the two-sided models. Solving for α(y), which uniquely
determines the total shear stresses, Figure 10 plots the profiles of the fractional order α(y)
for different Reτ as a function of the non-dimensional distance between the two walls
y ∈ [0, 2]. We see a strong dependence of α(y) of Reτ , which is the same conclusion as for
the previous variable fractional model. Furthermore, we re-plot all data in terms of the
viscous wall units, i.e., y+ = yReτ , and we see an approximate collapse of all results into a
single universal curve in the half-plane excluding the wake region (i.e., near the centerline),
as shown in Figure 10.
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Figure 10. Learning the fractional variable-order α(y) using DNS data bases at Reτ = 180 to 5200:
(a) profiles of the fractional order α(y); (b) rescaled fractional order α(y+) in viscous wall units.
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Next, we test the accuracy of the forward problem with the fractional order provided
by the inverse optimization problem (19). We solve the divergence variable fractional
equation as follows

− D
(
ν(y)Dα(y)

|y| U
)
= 1, ∀y ∈ (0, 2), (28)

with U(0) = U(2) = 0. Figure 11 plots the solutions (left) of the above equation and the
pointwise error (right) of the mean velocity in each subfigure for several Reτ . We can
observe that this model predicts the mean velocity well. Moreover, it can obtain a smooth
mean velocity profile in the whole domain along the wall-wise direction.

We also use fPINN (20) to solve the inverse problem to obtain the variable order α(y).
The two results from the two different methods (i.e., FD and fPINN) agree well for all
Reynolds numbers.
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Figure 11. The mean velocity (left) and the pointwise difference between the numerical solution and the DNS data (right)
in each sub-figure.

3.2. Turbulent Pipe Flow

In this subsection, we consider turbulent pipe flow and again test the universal
variable fraction order α(y+) against DNS and experimental data. First, we examine the
highest Reynolds number available from the superpipe experiment [27,28] at Reτ = 5× 105,
estimated at ReR ≈ 3.525× 107 based on the pipe radius R. As the experimental data
were only available for y+ > 10,000, we synthesized an entire profile from the pipe wall
to centerline using multifidelity Gaussian process regression (M-GPR) [29] as follows: we
considered as high fidelity data the superpipe data in the outer region together with the
highest DNS data for channel flow at Reτ = 5200. We then employed the Spalding curve to
provide the low-fidelity data and, using M-GPR, we constructed the final profile as shown
in Figure 12a. Having this profile and the VFM-I model transformed in polar coordinates,
we can then solve the inverse problem and obtain a new variable fractional order α(y+).
Figure 13a shows that the variable fractional order we obtain for this problem is identical
to the function defined by Equation (24). This finding further confirms the universality
of the variable fractional order even at very high Reynolds numbers. Having validated
the accuracy of the variable fractional order, we can now solve the forward fractional
differential problem to obtain predictions of the entire velocity profiles from Reτ = 105

to Reτ = 5× 105. Figure 12b plots the results, showing that there is excellent agreement
with all available data from the superpipe experiment. Figure 13b plots the mean velocity
profiles from the DNS data base [30] at low Reynolds numbers, the corresponding VFM
predictions, and the Spalding profile. The universal defect law for pipe flows is not valid
for the low Reynolds number range, and this is also in agreement with [27], who argued
that the lowest Reτ for universality is approximately 5000.
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Figure 12. Predictions of the mean velocity profile for the superpipe flow from Reτ = 1× 105 to 5× 105: (a) velocity
profile reconstructed from the experimental data (4, [28]), DNS data at Reτ = 5200 (�, [22]), and the Spalding profile (blue
line [23]) using multifidelity Gaussian process regression (M-GPR); (b) “- -”, fractional order with the M-GPR profile at
Reτ = 5× 105; “-”, the profile of Equation (24); and ‘-·’, the corresponding Spalding profile; (c) velocity profiles solving the
forward fractional model and the Spalding curve against the experimental data.
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Figure 13. VFM-I for turbulent pipe flow: (a) “··”, VFM-I model with the channel flow DNS data at
Reτ = 5200; “- -”, VFM-I model with the M-GPR profile at Reτ = 5× 105; “-”, the profile of Equa-
tion (24); and ‘-·’, the corresponding Spalding profile; (b) ‘-·’ and ‘··’ plot the DNS data at Reτ = 180
and Reτ = 1140; ‘-’ the VFM-I model at Reτ = 2000 and the corresponding Spalding profile.

3.3. Turbulent Couette Flow

In reference [12], the authors proposed the double-log profile to predict the mean
velocity for the Couette flow as follows

U(y) =
1
2
− 1

2
ln
(
(d + y)/(d + 1− y)

)
ln
(
d/(d + 1)

) , (29)

where d is a small number (d� 1) that represents a viscous sublayer or roughness height.
The non-dimensional boundary conditions are U(0) = 0 and U(1) = 1.

Here, we consider the predictions from the universal scaling fractional order α∗(y+),
and we also compare it against the double-log profile. The variable fractional order α∗(y+)
is between zero and one in our turbulence model. So, we work in the half-plane y ∈ [0, 0.5]
(see the dashed square in Figure 14a). We then obtain the results in the other half of the
domain with U(y) = 1−U(1− y), y ∈ (0.5, 1]. Figure 14 shows the mean velocity profiles
predicted using (29) and the mean velocity, which is predicted by the variable fractional
order α∗(y+). We can observe that the variable fractional model is in agreement with
the experiment data as well as the double-log profile. However, the double-log profile is
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unable to capture the correct mean velocity near the wall. We also tested the profiles for low
Reynolds number Reτ = 52, where the numerical data were obtained from reference [31].
For the double-log profile, we could not find a suitable parameter d to obtain a good fit for
the low Reτ = 52. Finally, we show the comparisons between the TCM predicted mean
velocities and DNS data at Reτ = 250 obtained from reference [32]. Figure 15 shows that
the fractional predictions are correct almost everywhere, especially near the wall regions
for high Reynolds numbers.
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Figure 14. Turbulent Couette flow—numerical results for Re = 16,500: “-”, TCM predictions at
Reτ = 1650; “- -”, best fit of the double-log profile in Equation (29) with d = 1.06× 10−5; “�”,
experimental data from [33].
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Figure 15. Turbulent Couette flow at Reτ = 250: (a) “-”, TCM predictions; “- -”, best fit of the
double-log profile in Equation (29) with d = 1.06× 10−5; “�”, DNS data from [32]; (b) wall units
scaling for the mean velocity profiles.

3.4. Turbulent Boundary Layer Flow

In this subsection. we focus on the boundary layer problem. We use data available
from the KTH turbulence group from the turbulent boundary layer DNS [34,35]. We first
investigate the correlations between Reθ (x-variable) and Reτ (y-variable); Figure 16 shows
the downstream variations in the friction Reynolds number Reτ , and unlike the channel
flow, here, Reτ is a function of the streamwise distance x.

Then, we test if the mean velocity of the boundary layer problem exhibits any uni-
versality as the channel and pipe flow. We solve the forward boundary layer problem
with the fractional order predicted by Equation (24) (i.e., the formula is the same as the
channel flow case) including the wake region. Figure 17 presents the mean velocity profiles
from the DNS [34] and fractional modeling near the wall for several Reθ from 670 to 4060,
with the corresponding Reτ varying from 252 to 1200. We observe that the mean velocities
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are different in the wake region for different Reτ . Figure 18 plots the wake region, which
is between δ+99 and the error E = 1%. We define this error as the difference in the mean
velocity between the DNS data and the fractional model as follows:

E =
U −U f

U∞
, (30)

where U is the DNS data and U f presents the numerical results from the fractional model.
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Figure 16. The relation between the friction Reynolds number Reτ and Reθ .
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Figure 17. TCM: Boundary layer mean velocity profiles from the DNS and fractional modeling near
the wall and in the wake region for several Reθ from 670 to 4060.

Since the mean velocity does not exhibit universality in the wake region, we solve the
fPINNs to investigate the variations in the fractional order in the wake region. In Figure 19,
we plot the fractional order inferred by fPINN based on the DNS data for Reθ = 670 to
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4060. We can observe that the fractional order varies for different Reθ in the wake region.
Then, we train the fractional order in the wake region selecting the data set Reθ = 670 to
4060 but excluding Reθ = 2000. In Figure 20, we present the factional order in the 2D plane
for the x-axis and y+-axis. Finally, we solve the fractional turbulent boundary layer model
with the fractional orders presented in Figure 20. The comparison between the numerical
results and the DNS data set is presented in Figure 21.
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Figure 18. Downstream variations in δ+99, and the error E = 2% and E = 1%. The lower bounds of
the wake region are denoted by the blue curve with E = 1% and the red curve with E = 2% (see
Equation (30)).
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Figure 19. TCM: The fractional order α(y) learning from a neural network (NN) near the wall and in
the wake region for several Reθ from 670 to 4060, and the corresponding Reτ from 252 to 1200. We
can observe that the fractional order is different for different Reθ in the wake region. The black line
represents the reference fractional order predicted by channel flows; the red curve represents the NN
results for different Reθ .



Entropy 2021, 23, 782 19 of 21

(a) Spline interpolation. (b) Neural network (NN).
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Figure 20. We train the fractional order in the wake region and near the wall selecting the data set
Reθ = 670 to 4060, excluding Reθ = 2000; the training region is (Reθ , y+)∈ [670, 4060]× [0, 1200].
The training data set is represented as black dots: (a) we use spline interpolation (IP) in 2D; (b) the
fractional order is trained by a neural network with 2 hidden layers and 20 neurons in each hidden
layer. (c) The black line represents the reference fractional order predicted by channel flows; the red
curve represents the fPINN results at Reθ = 2000; the green line plots the interpolation results IP2D
along the green line in (a); the blue curve presents the NN along the blue line in (b).
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Figure 21. We solve the fractional turbulent boundary layer model with the fractional orders rep-
resented in Figure 20c at Reθ = 2000. (a) The mean velocity; (b) the viscous shear stress. The black
line represents the reference fractional order predicted by channel flows; the red curve represents
the NN1D results at Reθ = 2000; the green line plots the interpolation results IP2D for Reθ ; the blue
curve represents the NN for Reθ = 2000.
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4. Summary

We proposed multiple fractional models for wall-bounded turbulent flows in bench-
mark cases where the mean flow is either one-dimensional (channel, pipe, and Couette
flows) or two-dimensional (boundary layer). The main idea is to employ a variable-order
fractional gradient that depends on the distance from the wall, starting with an integer or-
der at the wall. The computational problem we addressed is the discovery of the fractional
variable-order profile given DNS or experimental data for the mean velocity profile. To this
end, we formulated an inverse problem for the fractional order as a function of the distance
from the wall, and we solved it using a finite difference method point-by-point and through
a new fractional physics-informed neural network (fPINN) that encodes the physics of
turbulence expressed via the fractional derivative of variable order. The fractional order is
a function of the distance from the wall, a unique capability enabled by fractional calculus.
We discovered that this fractional order function is universal for all Reynolds numbers and
for different geometries.

The main contributions of this work are: (1) new fractional turbulent models with
variable order are presented to model the total shear stress of RANS; (2) two solution
methods for the non-trivial inverse problem, a FD method, and a fPINN for obtaining the
fractional order function; (3) a universal fractional order profile was discovered for the
channel and pipe flows that allowed us to accurately predict the fractional order for the
boundary layer flows.
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