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Abstract: Accurate estimation of channel log-likelihood ratio (LLR) is crucial to the decoding of
modern channel codes like turbo, low-density parity-check (LDPC), and polar codes. Under an
additive white Gaussian noise (AWGN) channel, the calculation of LLR is relatively straightforward
since the closed-form expression for the channel likelihood function can be perfectly known to the
receiver. However, it would be much more complicated for heterogeneous networks where the global
noise (i.e., noise plus interference) may be dominated by non-Gaussian interference with an unknown
distribution. Although the LLR can still be calculated by approximating the distribution of global
noise as Gaussian, it will cause performance loss due to the non-Gaussian nature of global noise. To
address this problem, we propose to use bi-Gaussian (BG) distribution to approximate the unknown
distribution of global noise, for which the two parameters of BG distribution can easily be estimated
from the second and fourth moments of the overall received signals without any knowledge of
interfering channel state information (CSI) or signaling format information. Simulation results
indicate that the proposed BG approximation can effectively improve the word error rate (WER)
performance. The gain of BG approximation over Gaussian approximation depends heavily on the
interference structure. For the scenario of a single BSPK interferer with a 5 dB interference-to-noise
ratio (INR), we observed a gain of about 0.6 dB. The improved LLR estimation can also accelerate the
convergence of iterative decoding, thus involving a lower overall decoding complexity. In general,
the overall decoding complexity can be reduced by 25 to 50%.

Keywords: bi-Gaussian approximation; log-likelihood ratio; multiuser interference; LDPC codes;
word error rate; decoding complexity

1. Introduction

The discovery of turbo codes [1,2], low-density parity-check (LDPC) codes [3,4], and
polar codes [5] represent major milestones in channel coding. These codes are said to
be “near capacity achieving” codes due to their excellent performance; they can nearly
reach the Shannon limit [6] and have been incorporated into various communication
standards [7–11]. The decoding of these codes generally adopts the so called “soft-input
decoding” where the input of the decoder is the bit-level log-likelihood ratio (LLR), which
is a probabilistic metric indicating how likely it is that the underlying code bit is “1” or
“0”. LLR can be calculated with the channel likelihood function, p(y|x), i.e., the transfer
probability density function (PDF) between the channel input x and the output y.

There have been extensive studies devoted to LLR evaluation. For the additive white
Gaussian noise (AWGN) channel, the channel likelihood function is Gaussian and the
studies mainly focus on the low-complexity calculation of LLR. For example, ref. [12]
described a simplified LLR approximation for high-order modulations and [13] proposed
a low-complexity LLR computation for nonuniform PAM constellations. To reduce the
LLR calculation complexity of 64APK, ref. [14] proposed an algorithm by taking full
advantage of the symmetric characteristics of symbol mapping. For massive-order non-
uniform constellations, low-complexity demapping algorithms were proposed in [15,16]
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for one- and two-dimension constellations, respectively, and [17] proposed a universal
low-complexity demapper for non-uniform constellations. For index modulation, a low-
complexity LLR calculation algorithm was proposed in [18].

In addition, many communication channels have exhibited non-Gaussian channel
likelihood functions, due to the non-Gaussian additive or multiplicative noise. For example,
in power line communication (PLC), the impulsive noise can be characterized by the
Bernoulli–Gaussian model [19,20] or the Middleton Class-A model [21,22]. Research
in [23,24] proposed some algorithms for adaptive demodulation in impulse noise channels.
The proposed methods compute appropriate LLRs based on four previously established
parameter estimation techniques of symmetric α-stable noise and the classification or
parameter estimation of Middleton’s Class A noise. The non-Gaussian model has also
appeared in multiuser/multi-antenna communication systems where the interference is
generally non-Gaussian [25,26].

The exact evaluation of LLR requires knowledge about the underlying channel model
or noise model [27]. On a fading channel with no channel state information (CSI) at the
receiver, true log-likelihood ratios are complicated functions of the channel output. To
address this problem, ref. [28] proposed a linear LLR approximation whose performance
is extremely close to that of the true LLR calculation on an uncorrelated Rayleigh fading
channel. Ref. [29] presented a greedy algorithm for data detection in uplink grant-free
non-orthogonal multiple access (NOMA), which requires no knowledge of noise variance
by computing the LLR approximately in its operation. For the non-Gaussian noise, the
assumption of perfect knowledge of noise statistics at the receiver end might be impractical
and hence the estimation of noise parameters is necessary. For the Middleton Class-A
impulsive noise in PLC, a deep learning approach is proposed in [30] to estimate the distri-
bution parameters. Alternatively, deep-learning-based decoding can be used for channels
with non-Gaussian noise. Ref. [31] proposed a neural architecture for turbo decoding,
which replaces the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm with a bidirectional gated
recurrent unit (Bi-GRU). Ref. [32] improved the neural BCJR and showed an end-to-end
trained decoder named DEEP TURBO. Both [31,32] have shown good adaptability under
some non-Gaussian settings, and the LLR calculation is implicitly implemented inside
the neural network. Several attempts have also been made to solve the unknown mul-
tiuser interference. Ref. [26] proposed improving the turbo-decoding scheme with an
iterative PDF estimator. A kernel-based method is used to estimate the PDF of global
noise from the received signals. There are two iterative processes in this scheme. One is
the iterative process within the turbo decoder, and the other is the iterative feedback to
refine the global noise samples for the PDF estimator. Similarly, ref. [33] proposed one-bit
successive-cancellation soft-output (OSS) detectors for an uplink multiuser system, which
can exploit the a priori information conveyed by channel decoders to improve the LLRs.
It also adopts the iterative feedback of the previously decoded messages. Refs. [25,34]
coupled a multiuser detector and single-user turbo decoders. After each turbo decoding
iteration, the extrinsic information of interfering users is passed to the multiuser detector,
and each multiuser iteration passes the updated a posteriori probabilities to single-user
turbo decoders. A joint iterative channel estimation and multiuser detection technique
is proposed in [35] for overloaded multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM) systems. The channel estimator, the detector, and
the decoder work like an iterative cycle, through which more reliable LLRs are updated.

In this paper, we focus on the scenario where a point-to-point communication is pol-
luted by both the Gaussian noise and the non-Gaussian interference from nearby stations.
This scenario may be typical for today’s heterogeneous networks consisting of an overlay
of several dense, irregularly, and often completely randomly deployed networks with a
limited coverage area [36]. For such complicated networks, the overhead of acquiring
the CSI of the interfering channel and the modulation and coding scheme (MCS) of inter-
fering signals may be impractically high, implying that the joint detection or successive
interference cancellation may not be possible at least for some situations, especially when
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the interfering station belongs to a different system or operator. In these cases, the global
noise is typically treated as Gaussian noise [37–40]. However, since interfering signals are
drawn from a finite constellation as the desired signal, the real distribution is definitely
non-Gaussian. This implies that the existing method (i.e., approximating the global noise
as Gaussian for LLR estimation) may incur some performance loss.

To address this problem, we propose to use bi-Gaussian (BG) approximation instead
of Gaussian approximation for the LLR estimation. Specifically, the contributions of this
paper include the following:

1. For the scenario where the global noise consists of Gaussian noise and multiuser
interference and the CSI and MSC information of interfering signals are unknown, a
bi-Gaussian distribution is proposed to approximate the global noise;

2. A simple algorithm is proposed to estimate the two parameters of the BG distribution;
3. The BG distribution together with the estimated parameters are then used to calculate

the LLR;
4. We have conducted simulations to verify the advantages of the proposed BG approxi-

mation (BGA) over the existing Gaussian approximation (GA) and the results show
that BGA outperforms GA in both WER performance and decoding complexity.

The rest of this paper is organized as follows. Section 2 introduces the system model
and the LLR computation. Section 3 proposes the bi-Gaussian approximation and the
parameter estimation, together with the LLR estimation. Section 4 presents the simulation
results and comparisons of WER and complexity. Section 5 concludes the paper.

2. System Model

Consider an example communication scenario shown in Figure 1. User U0 is transmit-
ting a signal to its base station B0. At the same time, user U1 and user U2 are transmitting
their signals to their respective base stations B1, B2. In addition, an access point B3 is
transmitting a signal to terminal U3 (i.e., U0, U1, U2 are hidden nodes to B3 and U3). It is
possible that all radio links shown in Figure 1 may share the same frequency spectrum.
This implies that the signal transmitted by U0 will receive interference by way of signals
from U1, U2 and B3. At base station B0, the way of treating interference will directly affect
the receiving performance.

base 
station

WiFi

positive 
user

interfering 
user 

interfering 
user0g

3g
2g

1g
0B

0U
1U

2U
3U

1B

2B

3B

Figure 1. Multiuser interfering model.

It is obvious that the optimal processing at B0 is to jointly detect all signals from
U0, U1, U2, and B3 [41,42]. To this end, the signals arriving at B0 must be synchronized in
time and the CSI of the channels from U0, U1, U2, B3 to B0 must be known to B0. Moreover,
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B0 must be informed of the signaling format including MCS. On the contrary, one can
approximate all the interference as Gaussian noise. Such Gaussian approximation can
greatly reduce the complexity of detection but it will degrade the detection performance
as well.

2.1. Global Noise

With K interferers, the signal observed at target base station B0 can be written as

y =
√

g0x0 +
K

∑
k=1

√
gkxk + w, (1)

where x0 is the desired signal of U0, g0 is the channel gain from target user U0 to B0,
x1, · · · , xK are the interfering signals, and g1, g2, · · · , gK are the channel gains from k-th
interferer to B0 ( For the reason of convenience, we have assumed the block fading channel
where g1, · · · , gK does not change within the duration of one codeword. The point of this
paper is that the global noise ∑K

k=1
√

gkxk + w can be better approximated by bi-Gaussian
than by Gaussian. This idea is obviously applicable to the situation where g1, · · · , gK
may change within codeword duration (e.g., the subcarriers of the OFDM system may
undergo frequency selective fading)), and w ∼ N (0, σ2) is the additive white Gaussian
noise. N (µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2.

We assume that g0 is perfectly known to B0. Under this assumption, the coefficient g0
can be scaled off with an ideal automatic gain control (AGC), and hence we assume g0 = 1
hereafter.

From the perspective of B0, only g0 = 1 on the right-hand-side (RHS) of (1) is
known and all remaining variables are random. We assume that random variables
x0, x1, · · · , xK, g1, · · · , gK and w are mutually independent.

For simplicity, we assume that x0 is binary phase shift keying (BPSK) modulated and
x0 ∈ {±1} with equal probability. We also assume that E[x2

k ] = 1 for k = 1, 2, · · · , K. Note
that although different interferers may have different signal powers, this factor can be
included in the channel gains {gk}.

Based on (1), the signal-to-interference-plus-noise ratio (SINR) and interference-to-
noise ratio (INR) [43,44] can be calculated as

SINR =
1

∑K
k=1 gk + σ2

, (2)

and

INR =
∑K

k=1 gk

σ2 , (3)

respectively.
In this paper, we refer to the aggregate of interference plus noise as global noise, which

is

z =
K

∑
k=1

√
gkxk + w. (4)

The distribution of global noise z depends on the distribution of x1, · · · , xK, g1, · · · , gK
and w. In general, it would be difficult to find a closed-form expression for the PDF of z, or
the PDF is intractably complicated. For example, even if g1, · · · , gK are known to B0, and if
x1, · · · , xK are all BPSK symbols, then the PDF is the mixed Gaussian distribution given by

pz(z) =
1

2K
√

2πσ2 ∑
x1,x2,··· ,xK∈{±1}K

e−

(
z−

K
∑

k=1

√gk xk

)2

2σ2 , (5)
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where {±1}K refers to the Cartesian power of set {−1,+1}. In practice, this distribution
(5) is generally considered too complex for the LLR calculation since the number of terms
in the summation increases exponentially with the number of interferers. What is worse
is that, when g1, g2, · · · , gK are random variables, the PDF of global noise z may have no
closed-form expression even with very simple fading models for {gk}.

2.2. Soft Demapping

We assume that the signal of U0 is encoded by a binary channel code like turbo, LDPC,
polar, or convolutional code. To attain maximum coding gain, the received signal y is
first converted to a soft metric λ, and then fed to the soft-input decoder, as illustrated in
Figure 2.

encoder
BPSK 

modulation
soft 

demapping
decoderchannel

information 
bits 0x y 

interference 
and noise

Figure 2. Soft demapping: the input of the decoder is bit-level LLR.

The soft metric λ is conventionally referred to as LLR, which is actually defined as the
logarithm of the a posteriori probability ratio:

λ = ln
Pr{x0 = +1|y}
Pr{x0 = −1|y} = ln

pz(y− 1)
pz(y + 1)

. (6)

In case the global noise is Gaussian, i.e., z ∼ N (0, σ2
G), the soft-demapping reduces to

a scaling operation:

λG = ln
pG(y− 1)
pG(y + 1)

=
2y

σG
2 , (7)

where pG(z) denotes the PDF of N (0, σG
2).

The global noise defined in (4) is generally non-Gaussian. If g1, · · · , gK are known to
B0 and x1, · · · , xK are all BPSK symbols, the non-Gaussian PDF is given by (5). Substituting
(5) into the RHS of (6), the soft metric is calculated as

λ = ln

∑
x1,x2,··· ,xK∈{±1}K

e−

(
y−1−

K
∑

k=1

√gk xk

)2

2σ2

∑
x1,x2,··· ,xK∈{±1}K

e−

(
y+1−

K
∑

k=1

√gk xk

)2

2σ2

. (8)

It is obvious that the computational complexity of (8) is much higher than (7), and yet
the computational complexity of (8) has not taken into account the complexity spent on the
channel estimation of g1, g2, · · · , gK. Moreover, in some scenarios, some of the interferers
may belong to different operators, and some of the interferers may belong to an unknown
system with different air–interface protocols. In such cases, it would be very hard for
B0 to accurately estimate all g1, g2, · · · , gK, and even the number of interferers K may be
unknown to B0.

In view of these problems, we propose to approximate the PDF of global noise as a
bi-Gaussian distribution, which will be elaborated in the next section.
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3. LLR Estimation with Bi-Gaussian Approximation
3.1. Bi-Gaussian Distribution

In this paper, we use the term bi-Gaussian distribution [45,46] to refer to the symmetrical
mixed-Gaussian distribution for which the PDF is given by

pBG(z) =
1

2
√

2πσ2
e−

(z−µ)2

2σ2 +
1

2
√

2πσ2
e−

(z+µ)2

2σ2

=
1√

2πσ2
e−

z2+µ2

2σ2 cosh
(µz

σ2

)
.

(9)

It can be noted that (9) is a special case of (5) with K = 1,
√

g1 = µ. In other words, the
bi-Gaussian distribution is the distribution of the global noise with single BPSK interference.

The bi-Gaussian distribution is used in [45] where a shifted bi-Gaussian mixture model
is introduced to match the image intensity histogram. In addition, in [46], the bi-Gaussian
function is proposed to replace the low-level Gaussian kernel in derivative filters for image
segmentation and enhancement. Bi-Gaussian distribution also appears in [47], where
an analytical expression is developed for the differential entropy of this distribution. In
this paper, we will use (9) to approximate the distribution of global noise with multiuser
interferences.

Due to the symmetry of a bi-Gaussian PDF, all the odd moments are zero. The second
moment (variance) and fourth moment are listed as follows

µBG
2 = µ2 + σ2,

µBG
4 = µ4 + 3σ4 + 6µ2σ2.

(10)

3.2. Bi-Gaussian Approximation

Since the exact distribution of global noise z is either too complicated for LLR calcu-
lation if g1, g2, · · · , gK are known, or is intractable if g1, g2, · · · , gK are unknown, we have
to resort to the approximate distribution to perform the calculation in (6). The popular
Gaussian approximation regards the global noise as the Gaussian noise with distribution
N (0, σ2

z ), where σ2
z = E[z2]. E[·] denotes the expectation operation. Gaussian approxima-

tion has the advantage of computational simplicity, but the cost is performance degradation.
This is because Gaussian noise has the worst differential entropy for a given noise power.
In cases where the global noise consists of Gaussian noise and multiple BPSK interference,
the entropy power of global noise can be much less than the real power σ2

z [48].
By considering the trade-off between complexity and performance, we use a bi-

Gaussian distribution to approximate the distribution of global noise. The approximation
is based on the equivalence in terms of variance and kurtosis, i.e.,

σ2
z = µBG

2 ,

κz =
µBG

4

(µBG
2 )2

,
(11)

where κz = E[z4]/σ4
z .

Equation (11) implies that, with bi-Gaussian approximation, the receiver is not re-
quired to estimate the CSI of each individual interferer. The overall noise power and noise
kurtosis are sufficient to solve the parameters of bi-Gaussian distribution. The solution is
given by

µ = σz
4

√
3− κz

2
,

σ2 = σ2
z − σ2

z

√
3− κz

2
.

(12)
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The power σ2
z and the kurtosis κz of global noise z can be estimated from the second

and fourth moments of y. Since y = x0 + z, the moments E[z2] and E[z4] can be expressed
by E[y2] and E[y4] as

E[z2] = E[y2]− 1,

E[z4] = E[y4]− 6E[y2] + 5.
(13)

Further, the second and fourth moments of y can be estimated through sample averag-
ing of the received signal vector. Let N be the length of a codeword, and
y = (y1, y2, · · · , yN) be the received signals corresponding to one codeword, then the
second and fourth moments of y can be estimated by

E[y2] ≈ 1
N

N

∑
i=1

yi
2,

E[y4] ≈ 1
N

N

∑
i=1

yi
4.

(14)

Finally, the parameters µ, σ2 of bi-Gaussian approximation can be obtained directly
from the received signals before detection. The specific steps are as follows. (1) E[y2]
and E[y4] are estimated from the received signals through (14). (2) E[z2] and E[z4] can
be calculated using (13). Then σ2

z and κz are obtained. (3) Parameters µ, σ2 are finally
estimated using (12).

The normalized mean square error (NMSE) of estimated parameters µ, σ2 is given in
Figure 3 for K = 1 and INR = 5 dB. We can see that the estimation method proposed above
is satisfactory. A longer codeword (or estimation with several successive codewords) will
have better estimation.

103 104 105

 N 

-40

-35

-30

-25

-20

-15

-10

N
M

SE
 [

dB
]

SINR=-2.4dB error-

SINR=-2.4dB error- 2

SINR=-1.6dB error-

SINR=-1.6dB error- 2

Figure 3. NMSE of parameter estimation. K = 1, INR = 5 dB.

Figure 4 depicts an example for the PDF of the real distribution pz(z), the Gaussian
approximation pG(z), and the bi-Gaussian approximation pBG(z) under conditions K = 5,
g1 = 0.549, g2 = 0.124, g3 = 0.057, g4 = 0.015, and g5 = 0.007. The Gaussian approxima-
tion has the same noise power as the real global noise and the bi-Gaussian approximation
has the same noise power and kurtosis as the real global noise. We can see that bi-Gaussian
approximation looks more similar to the true distribution than the Gaussian approximation,
especially when the INR is large.
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Figure 4. PDF of actual distribution pz(z), Gaussian approximation pG(z), and bi-Gaussian ap-
proximation pBG(z) under conditions K = 5, g1 = 0.549, g2 = 0.124, g3 = 0.057, g4 = 0.015, and
g5 = 0.007.

Apparently, considering more terms in the mixed Gaussian distribution (5) can better
approximate the true PDF of global noise. For example, with four terms, the four-Gaussian
(FG) distribution is given by

pFG(z) =
1

4
√

2πσ2

{
e−

(z−µ1)
2

2σ2 + e−
(z−µ2)

2

2σ2 + e−
(z+µ1)

2

2σ2 + e−
(z+µ2)

2

2σ2

}
. (15)

which has 3 parameters µ1, µ2, σ2. We will show later that the gain from including more
terms is quite limited, while the cost can be much larger—as the number of terms in the
mixed Gaussian distribution increases, the number of parameters to be estimated also
increases and so is the calculation complexity of LLR.

In Figure 5, we show the Kullback–Leibler (KL) divergence of Gaussian approxima-
tion, bi-Gaussian approximation, and four-Gaussian approximation with respect to the true
distribution pz(z). KL divergence, also known as relative entropy [49], is an asymmetric
measure of the difference between two probability distributions. The KL divergence of two
distributions p, q is defined as

D(p||q) ,
∫

p(x) log
p(x)
q(x)

dx. (16)

The results were obtained through Monte Carlo simulation under condition K = 5
and randomly generated g1, g2, · · · , gK. In the simulation, the locations of interferers are
uniformly drawn within an area surrounding the receiver B0. The interfering path gain
gk, k = 1, 2, · · · , K is determined by gk = βhkd−α

k , where α = 4 is the path loss exponent, dk
is the distance from k-th interferer to the receiver B0, hk represents the small-scale fading,
and β is a normalizing coefficient for the sake of satisfying (3) for any given INR.
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Figure 5. KL divergence between actual distribution pz(z) and Gaussian approximation pG(z),
bi-Gaussian approximation pBG(z), and four-Gaussian approximation pFG(z).

The simulated KL divergence is shown in Figure 5 with randomly generated {dk} and
with/without Rayleigh fading. Specifically, hk ∼ exp(1) is an exponentially distributed
variable satisfying E[hk] = 1 in Figure 5a, while hk = 1 in Figure 5b. It can be seen that,
with or without Rayleigh fading, both bi-Gaussian and four-Gaussian approximation are
much better than Gaussian approximation when the interference is the dominant part of
the global noise (i.e., large INR). Although four-Gaussian is better than bi-Gaussian, the
difference between BG and FG is much smaller than that between Gaussian distribution
and true PDF. These results suggest that bi-Gaussian approximation might be sufficient.

3.3. LLR Calculation

Based on bi-Gaussian approximation, the LLR of each code bit can be calculated with
following steps:

(1) For each codeword x1, x2, · · · , xN , estimate the second and fourth moments of y
through sample averaging of the received signal y1, y2, · · · , yN , and solve the parame-
ters µ and σ2 of bi-Gaussian approximation through (12)(13).

(2) With estimated parameters µ, σ2, calculate the LLR of the i-th code bit by substituting
(9) into (6), namely

λi = ln
pBG(yi − 1)
pBG(yi + 1)

=
2(yi − µ)

σ2 + ln
1 + exp( 2µ(1−yi)

σ2 )

1 + exp(−2µ(1+yi)
σ2 )

.
(17)

Note that, if necessary, (17) can be further simplified using the methods in [50,51].

4. Simulation Results

In this section, we use simulation to verify the proposed BGA and compare its perfor-
mance with the conventional GA.

In the simulation, we used the rate 1/3 5G LDPC code defined in [9]. The frame
length of information bits was set to L = 1056, and the code length was N = 3168 bits. The
codeword was transmitted with BPSK modulation. At the receiver, the decoder adopts
the sum-product algorithm. The iterating process stops once the codeword is correctly
decoded (identified by passing the parity check) and the maximum iteration number is 30.
The simulation results were compared with the popular existing method (i.e., the Gaussian
approximation, noting that the receiver has no information about the interfering channel
or signal format) and also with the imaginary genie-aided receiver that knows the true
distribution of the global noise. In the simulation, the path gain {gk} has taken into account
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both path loss and Rayleigh fading as in Figure 5. For both BGA and GA, the distribution
parameters were estimated on a per codeword basis. For BGA, the parameters µ, σ2 were
estimated through (12)–(14). For GA, the equivalent noise power σ2

z was estimated by
σ2

z = E[y2]− 1.

4.1. WER Performance

Figure 6 compares the WER performance in the case that the interferers are BPSK
modulated. The abscissa SINR and INR in Figure 6 are defined in (2) and (3), respectively.
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Figure 6. WER performance comparison using LLR calculated with BGA, GA, and exact LLR
calculation under BPSK interferers,

Figure 6a shows the WER versus SINR for INR = 4.5 dB, with a single BPSK interferer in
the system, i.e., K = 1. In this situation, the bi-Gaussian distribution is the true distribution
of global noise, and the performance loss of BGA with respect to true PDF is due to
parameter estimation errors as shown in Figure 3. We can observe that, for a given SINR,
the WER performance of GA is almost independent of INR, while the WER with BGA drops
rapidly as INR increases. When IND=5 dB, BGA has about a 0.6 dB gain over GA. This is
because, with large INR, GA will seriously deviate from the true distribution, leading to a
poorly evaluated LLR that means it cannot fully exploit the non-Gaussian features. When
INR = 5 dB, the loss of GA is 0.8 dB from the WER of the true PDF and the proposed BGA
reduces the loss to about only 0.3 dB.

Figure 6b shows the WER versus SINR for INR = 4,8 dB, with two BPSK interferers
(K = 2). When INR = 8 dB, BGA has a gain of about 0.5 dB over GA, reducing the loss
from 0.7 dB to less than 0.2 dB. Compared with the single interference scenario, the gain is
reduced because in this situation the bi-Gaussian distribution is only an approximation of
the global noise. While BGA still outperforms GA, and is close to the performance when
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the exact distribution is known at the receiver. The SINR gain also increases obviously
when INR is large.

Figure 6c shows the WER performance with multiple BPSK interferers in the system
and with fixed INR = 8 dB. Simulation shows that as K is increasing, BGA still has certain
advantages. When K = 8, BGA converges to about 0.1∼0.2 dB gain. This proves that BGA
is still applicable when the components of interference are complex. In addition, the higher
the proportion of the main interference, the greater the improvement of BGA, since it is
easier for BGA to detect the greatest interference in the system.

Figure 7 compares the WER performance of BGA, GA, and the true PDF in the case
that the interferers are 4ASK modulated.
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Figure 7. WER performance comparison using LLR calculated with BGA, GA, and exact LLR
calculation under 4ASK interferers.

Figure 7a presents the WER performance with two 4ASK interferers. BGA shows
0.1∼0.3 dB gain under several given INRs, and with INR increasing, the gain still has a
positive growth trend. The loss of BGA is only 0.02∼0.08 dB from the WER of the true PDF.
Compared with the case of BPSK interferers, the gain decreases because, for high-order
modulations, bi-Gaussian distribution is also a rough approximation of the global noise,
but BGA still outperforms GA since it takes into account the high-power components in the
global noise, while just the estimated µ2/σ2 will be smaller than the actual INR. Therefore,
BGA also suits high-order modulations, and the gain is more obvious in high-INR scenarios.

Figure 7b presents the WER performance with multiple 4ASK interferers in the system
and with fixed INR = 8 dB, representing the complex scenario of multiple interferers with
high-order modulations. In this case, the gain is about 0.1 dB, which means that BGA
has only a little improvement in WER performance. Although the gain of BGA on WER
performance reduces under complex interference, the advantage still exists and is highly
obvious in decoding complexity as shown in the next section.

4.2. Complexity Analysis

The improved LLR can accelerate the convergence of iterative decoding and hence
reduce the overall decoding complexity. Figure 8 compares the average iteration number
versus SINR under different global noise models (BGA, GA, true PDF), different INRs, and
different numbers of interferers. We can see that the proposed BGA can significantly reduce
the complexity, and the number of iterations can be reduced by 25∼50% for the SINR range
of interest. Note that with the proposed BGA, calculating LLR through (17) will introduce
some extra complexity and this part is not included in Figure 8. The calculation involved
in (17) per code bit is roughly similar to the updating of a check node of degree 3. For the
LDPC code used in this paper, the aggregate weight of the parity matrix is 4.65 per code
bit. Hence the extra complexity introduced by (17) is negligible to the overall decoding
complexity.
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Figure 8. Decoding complexity comparison using LLR calculated with BGA, GA, and exact LLR
calculation under BPSK interferers.

5. Conclusions

This paper focuses on LLR calculation under non-Gaussian global noise with an un-
known distribution. This situation is common in multi-user interfering scenarios. Since the
true distribution of global noise is unknown, most of existing systems treat the interference
plus noise as Gaussian. GA has the advantage of very low complexity, but the approxima-
tion may be inaccurate and hence lead to performance loss. In this paper, we proposed an
improved LLR estimation using bi-Gaussian distribution to approximate the global noise.
The parameters of the BGA can easily be estimated from the second and fourth moments
of the received signals, without the knowledge of CSI and MCS information of interfering
signals. Compared with conventional GA, BGA is closer to the real global noise, especially
when INR is large. With the LLR estimated with BGA, the decoder can improve the WER
performance and accelerate the convergence of iterative decoding.

Author Contributions: Y.F. and H.Y. designed the experiments and wrote the paper; Y.F. carried out
the calculations and simulations; H.Y. made the revisions for the paper. All authors have read and
approved the final manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was supported by BUPT Excellent Ph.D. Students Foundation (Grant
No. CX2021104).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo codes. In Pro-

ceedings of the ICC’93—IEEE International Conference on Communications, Geneva, Switzerland, 23–26 May 1993; Volume 2,
pp. 1064–1070.

2. Berrou, C.; Glavieux, A. Near optimum error correcting coding and decoding: Turbo-codes. IEEE Trans. Commun. 1996, 44,
1261–1271. [CrossRef]

3. Gallager, R.G. Low-Density Parity-Check Codes; MIT Press: Cambridge, MA, USA, 1963.
4. MacKay, D.J.C.; Neal, R.M. Near Shannon limit performance of low density parity check codes. Electron. Lett. 1997, 33, 457–458.

[CrossRef]
5. Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless

Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]
6. Gracie, K.; Hamon, M. Turbo and Turbo-Like Codes: Principles and Applications in Telecommunications. Proc. IEEE 2007, 95,

1228–1254. [CrossRef]

http://dx.doi.org/10.1109/26.539767
http://dx.doi.org/10.1049/el:19970362
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/JPROC.2007.895197


Entropy 2021, 23, 784 13 of 14

7. Zeng, X.; Hong, Z. Design and implementation of a turbo decoder for 3G W-CDMA systems. IEEE Trans. Consum. Electron. 2002,
48, 284–291. [CrossRef]

8. 3GPP Technical Specification 36.212. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial
Radio Access (E-UTRA); Multiplexing and Channel Coding (Release 9). 2010. Available online: https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426 (accessed on 24 March 2021).

9. 3GPP Technical Specification 38.212, V15.2.0. 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network; NR; Multiplexing and Channel Coding (Release 15). 2018. Available online: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3216 (accessed on 24 March 2021).

10. ETSI EN 301 790 V1.3.1. Digital Video Broadcasting (DVB): Interaction Channel for Satellite Distribution Systems. European
Standard (Telecommunications Series). 2003. Available online: https://www.etsi.org/deliver/etsi_en/301700_301799/301790/0
1.03.01_60/en_301790v010301p.pdf (accessed on 24 March 2021).

11. DVB Document A38-2, Digital Video Broadcasting (DVB): Second Generation Framing Structure, Channel Coding and Modulation
Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications, Part ii: S2-Extensions
(DVB-S2X)-(Optional). 2014. Available online: https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60
/en_30230701v010401p.pdf (accessed on 24 March 2021).

12. Olivatto, V.B.; Lopes, R.R.; de Lima, E.R. Simplified Method for Log-Likelihood Ratio Approximation in High-Order Modulations
Based on the Voronoi Decomposition. IEEE Trans. Broadcast. 2017, 63, 583–589. [CrossRef]

13. Sandell, M.; Tosato, F.; Ismail, A. Low Complexity Max-log LLR Computation for Nonuniform PAM Constellations. IEEE
Commun. Lett. 2016, 20, 838–841. [CrossRef]

14. Bao, J.; Xu, D.; Zhang, X.; Luo, H. Low complexity demapping algorithms for 64APSK signals. ETRI J. 2019, 41, 308–315.
[CrossRef]

15. Barrueco, J.; Montalban, J.; Angueira, P.; Nour, C.A.; Douillard, C. Low-Complexity Lattice Reduction Demapper for Massive
Order One-Dimensional Non-Uniform Constellations. In Proceedings of the IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting, Valencia, Spain, 6–8 June 2018.

16. Hong, H.; Xu, Y.; Wu, Y.; He, D.; Gao, N.; Zhang, W. Backward Compatible Low-Complexity Demapping Algorithms for
Two-Dimensional Non-Uniform Constellations in ATSC 3.0. IEEE Trans. Broadcast. 2020, 67, 46–55. [CrossRef]

17. Wang, H.; Li, M.; Wang, C. A Universal Low-Complexity Demapping Algorithm for Non-Uniform Constellations. Appl. Sci. 2020,
10, 8572. [CrossRef]

18. Hu, Z.; Chen, F.; Wen, M.; Ji, F.; Yu, H. Low-complexity LLR calculation for OFDM with index modulation. IEEE Wirel. Commun.
Lett. 2018, 7, 618–621. [CrossRef]

19. Ghosh, M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Trans. Commun. 1996, 44,
145–147. [CrossRef]

20. Ndo, G.; Siohan, P.; Hamon, M.; Horard, J. Optimization of Turbo Decoding Performance in the Presence of Impulsive Noise
Using Soft Limitation at the Receiver Side. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications
Conference, New Orleans, LO, USA, 30 November–4 December 2008; pp. 1–5.

21. Middleton, D. Canonical and quasi-canonical probability models of class A interference. IEEE Trans. Electromagn. Compat. 1983,
EMC-25, 76–106. [CrossRef]

22. Umehara, D.; Yamaguchi, H.; Morihiro, Y. Turbo decoding in impulsive noise environment. In Proceedings of the IEEE Global
Telecommunications Conference, Dallas, TX, USA, 29 November–3 December 2004; Volume 1, pp. 194–198.

23. Hagglund, K.; Axell, E. Adaptive Demodulation in Symmetric Alpha-Stable Impulse Noise Channels. In Proceedings of the 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5.

24. Hagglund, K.; Axell, E. Adaptive Demodulation in Class a Impulse Noise Channels. In Proceedings of the 2019 IEEE Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

25. Zhang, Y.; Blum, R.S. Iterative multiuser detection for turbo-coded synchronous CDMA in Gaussian and non-Gaussian impulsive
noise. IEEE Trans. Commun. 2001, 49, 397–400. [CrossRef]

26. Li, Y.; Li, K.H. Iterative PDF estimation and turbo-decoding scheme for DS-CDMA systems with non-Gaussian global noise. In
Proceedings of the GLOBECOM’01, IEEE Global Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, USA,
25–29 November 2001; Volume 6, pp. 3262–3266.

27. Ayyar, A.; Lentmaier, M.; Giridhar, K.; Fettweis, G. Robust initial LLRs for iterative decoders in presence of non-Gaussian noise.
In Proceedings of the 2009 IEEE International Symposium on Information Theory, Seoul, Korea, 28 June–3 July 2009; pp. 904–908.

28. Yazdani, R.; Ardakani, M. Linear LLR approximation for iterative decoding on wireless channels. IEEE Trans. Commun. 2009, 57,
3278–3287. [CrossRef]

29. Yu, N.Y. Multiuser Activity and Data Detection via Sparsity-Blind Greedy Recovery for Uplink Grant-Free NOMA. IEEE Commun.
Lett. 2019, 23, 2082–2085. [CrossRef]

30. Selim, B.; Alam, M.S.; Kaddoum, G.; AlKhodary, M.T.; Agba, B.L. A deep learning approach for the estimation of Middleton
class-A Impulsive noise parameters. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin,
Ireland, 7–11 June 2020; pp. 1–6.

http://dx.doi.org/10.1109/TCE.2002.1010133
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3216
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3216
https://www.etsi.org/deliver/etsi_en/301700_301799/301790/01.03.01_60/en_301790v010301p.pdf
https://www.etsi.org/deliver/etsi_en/301700_301799/301790/01.03.01_60/en_301790v010301p.pdf
https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01.04.01_60/en_30230701v010401p.pdf
http://dx.doi.org/10.1109/TBC.2017.2704424
http://dx.doi.org/10.1109/LCOMM.2016.2535116
http://dx.doi.org/10.4218/etrij.2017-0266
http://dx.doi.org/10.1109/TBC.2020.2985008
http://dx.doi.org/10.3390/app10238572
http://dx.doi.org/10.1109/LWC.2018.2802949
http://dx.doi.org/10.1109/26.486604
http://dx.doi.org/10.1109/TEMC.1983.304151
http://dx.doi.org/10.1109/26.911444
http://dx.doi.org/10.1109/TCOMM.2009.11.080038
http://dx.doi.org/10.1109/LCOMM.2019.2937117


Entropy 2021, 23, 784 14 of 14

31. Kim, H.; Jiang, Y.; Rana, R.; Kannan, S.; Viswanath, P. Communication Algorithms via Deep Learning. In Proceedings of the Sixth
International Conference on Learning Representations (ICLR), Vancouver Convention Center, Vancouver, BC, Canada, 30 April–3
May 2018.

32. Jiang, Y.; Kannan, S.; Kim, H.; Oh, S.; Asnani, H.; Viswanath, P. DEEPTURBO: Deep Turbo Decoder. In Proceedings of the 2019
IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5
July 2019; pp. 1–5.

33. Cho, Y.; Hong, S. One-Bit Successive-Cancellation Soft-Output (OSS) Detector for Uplink MU-MIMO Systems with One-Bit ADCs.
IEEE Access 2019, 7, 27172–27182. [CrossRef]

34. Damnjanovic, A.D.; Vojcic, B.R. Iterative multiuser detection/decoding for turbo coded CDMA systems. IEEE Commun. Lett.
2001, 5, 104–106. [CrossRef]

35. Chen, M.; Burr, A.G. Joint iterative channel estimation and multiuser detection for overloaded MIMO OFDM systems. In
Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17
October 2016; pp. 1668–1672.

36. Madhusudhanan, P.; Restrepo, J.G.; Liu, Y.; Brown, T.X. Heterogeneous cellular network performance analysis under open and
closed access. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 563–568.

37. Uchoa, A.G.D.; Healy, C.T.; Lamare, R.C. Iterative Detection and Decoding Algorithms for MIMO Systems in Block-Fading
Channels Using LDPC Codes. IEEE Trans. Veh. Technol. 2016, 65, 2735–2741. [CrossRef]

38. Dai, J.; Niu, K.; Lin, J. Iterative Gaussian-Approximated Message Passing Receiver for MIMO-SCMA System. IEEE J. Sel. Top.
Signal Process. 2019, 13, 753–765. [CrossRef]

39. Ghaffari, A.; Léonardon, M.; Cassagne, A.; Leroux, C.; Savaria, Y. Toward High-Performance Implementation of 5G SCMA
Algorithms. IEEE Access 2019, 7, 10402–10414. [CrossRef]

40. Jeon, C.; Hwang, I.; Lee, J.W. MSSTC-Based MIMO-ARQ System With Two Transmit Antennas. IEEE Trans. Veh. Technol. 2017, 66,
2128–2143. [CrossRef]

41. Verdu, S. Multiuser Detection; Cambridge University Press: Cambridge, UK, 1998.
42. Rabiei, A.M.; Beaulieu, N.C. An analytical expression for the BER of an individually optimal single cochannel interferer BPSK

receiver. IEEE Trans. Commun. 2007, 55, 60–63. [CrossRef]
43. Chatzinotas, S.; Ottersten, B. Clustered Multicell Joint Decoding under Cochannel Interference. In Proceedings of the 2011 IEEE

International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5.
44. Sibbett, T.; Moradi, H.; Farhang-Boroujeny, B. Normalized Matched Filter for Blind Interference Suppression. In Proceedings of

the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018;
pp. 1–6.

45. Wang, X.; Cheng, E.; Burnett, I.S. Improved cell segmentation with adaptive bi-Gaussian mixture models for image contrast
enhancement pre-processing. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, NSW, Australia, 13–15
December 2017; pp. 87–90.

46. Xiao, C.; Staring, M.; Wang, Y.; Shamonin, D.P.; Stoel, B.C. Multiscale Bi-Gaussian Filter for Adjacent Curvilinear Structures
Detection With Application to Vasculature Images. IEEE Trans. Image Process. 2013, 22, 174–188. [CrossRef] [PubMed]

47. Michalowicz, J.V.; Nichols, J.M.; Bucholtz, F. Calculation of differential entropy for a mixed Gaussian distribution. Entropy 2008,
10, 200–206. [CrossRef]

48. Yang, P.; Wu, Y.; Jin, L.; Yang, H. Sum Capacity for Single-Cell Multi-User Systems with M-Ary Inputs. Entropy 2017, 19, 497.
[CrossRef]

49. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
50. Papaharalabos, S.; Mathiopoulos, P.T.; Masera, G.; Martina, M. On optimal and near-optimal turbo decoding using generalized

max operator. IEEE Commun. Lett. 2009, 13, 522–524. [CrossRef]
51. Wang, H.; Yang, H.; Yang, D. Improved Log-MAP decoding algorithm for turbo-like codes. IEEE Commun. Lett. 2006, 10, 186–188.

[CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2901942
http://dx.doi.org/10.1109/4234.913154
http://dx.doi.org/10.1109/TVT.2015.2432099
http://dx.doi.org/10.1109/JSTSP.2019.2898323
http://dx.doi.org/10.1109/ACCESS.2019.2891597
http://dx.doi.org/10.1109/TVT.2016.2571740
http://dx.doi.org/10.1109/TCOMM.2006.885072
http://dx.doi.org/10.1109/TIP.2012.2216277
http://www.ncbi.nlm.nih.gov/pubmed/22955905
http://dx.doi.org/10.3390/entropy-e10030200
http://dx.doi.org/10.3390/e19090497
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1109/LCOMM.2006.1603379

	Introduction
	System Model
	Global Noise
	Soft Demapping

	LLR Estimation with Bi-Gaussian Approximation
	Bi-Gaussian Distribution
	Bi-Gaussian Approximation
	LLR Calculation

	Simulation Results
	WER Performance
	Complexity Analysis

	Conclusions
	References

