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Abstract: This paper proposes an improved stereo matching algorithm for vehicle speed measure-
ment system based on spatial and temporal image fusion (STIF). Firstly, the matching point pairs in
the license plate area with obviously abnormal distance to the camera are roughly removed according
to the characteristic of license plate specification. Secondly, more mismatching point pairs are finely
removed according to local neighborhood consistency constraint (LNCC). Thirdly, the optimum
speed measurement point pairs are selected for successive stereo frame pairs by STIF of binocular
stereo video, so that the 3D points corresponding to the matching point pairs for speed measurement
in the successive stereo frame pairs are in the same position on the real vehicle, which can signifi-
cantly improve the vehicle speed measurement accuracy. LNCC and STIF can be used not only for
license plate, but also for vehicle logo, light, mirror etc. Experimental results demonstrate that the
vehicle speed measurement system with the proposed LNCC+STIF stereo matching algorithm can
significantly outperform the state-of-the-art system in accuracy.

Keywords: image fusion; stereo matching; LNCC; STIF; vehicle speed measurement

1. Introduction

Intelligent traffic surveillance is an important part of the intelligent transportation sys-
tem. Intelligent traffic surveillance has provided vehicle speed measurement, traffic viola-
tion management, autonomous driving assistance, vehicle counting and classification [1–4].
Vehicle speed measurement plays an important role in intelligent traffic surveillance. Ve-
hicle speed measurement methods can be divided into two groups: traditional speed
measurement methods and video-based speed measurement methods [5,6]. Traditional
speed measurement methods include induction loop speed measurement [7], ultrasonic
sensor speed measurement [8], infrared sensor speed measurement [9], radar speed mea-
surement [10]. For the induction loop method, the average speed is obtained by calculating
the time interval the vehicle passes the two sensors with a fixed distance. The sensors need
to be embedded beneath the road surface, and the installation and maintenance are compli-
cated. For the other three methods, i.e., ultrasonic sensor, infrared sensor and radar, the
speed are all calculated based on certain characteristics of the transmitted and received sig-
nals. However, these devices are easy to be detected due to the transmitted signals, which
is undesirable for secret measurement. Video-based speed measurement has gained more
and more attention because of its low cost, easy concealment and convenient combination
of vehicle speed and vehicle information [11–15]. According to the video acquisition way,
video-based methods can be further divided into two main categories: two-dimensional
(2D) video-based method and three-dimensional (3D) video-based method.
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The methods in [11,12] belong to 2D video-based speed measurement method. A
vehicle speed measurement method based on pinhole imaging projection model combining
frame difference with edge detection is proposed in [11]. The method in [12] is an improved
version of the method in [11], which uses the shape-from-template technology to make
the projection model more accurate and further improve the speed measurement accuracy.
Nevertheless, the methods in [11,12] both utilize the principle of pinhole imaging, which
is only suitable for speed measurement scenarios with vehicle traveling in a straight line.
Moreover, the vehicle displacement calculated according to the plane projection relation is
not accurate enough.

The methods in [13–15] belong to 3D video-based speed measurement method. A
vehicle speed measurement method based on traditional object detection with image
processing is proposed in [13], in which the vehicle target is detected by background
subtraction. Speeded-up robust features (SURF) matching is performed on the vehicle
target detected in the left and right view images, and the vehicle speed is estimated
with the depth map. A vehicle plate speed measurement method based on WaldBoost
classifier object detection is proposed in [14]. The vehicle plate is detected according to
the local binary pattern (LBP) feature, stereo matching and 3D ranging are performed,
hence the vehicle speed is calculated. A vehicle speed measurement method based on
modern Convolutional Neural Network (CNN) object detection is proposed in [15]. An
improved single shot multibox detector (SSD) network is used to detect the license plate,
stereo matching and 3D ranging are performed, and the vehicle speed is calculated. This
system cannot only secretly measure the speed of multiple vehicles traveling in multiple
directions on multiple lanes, but also measure the speed of a vehicle in a curved or straight
motion. Moreover, it can combine the vehicle speed measurement result with the vehicle
characteristic. However, in the existing 3D video-based speed measurement methods, the
optimization is mainly carried out on the object detection algorithm of the system, and
the optimization is rarely carried out on the matching algorithm. The speed measurement
accuracy of the system can be further improved.

The vehicle speed measurement method proposed in [15] is composed of three parts:
vehicle characteristic detection, stereo matching and speed measurement. In the stereo
matching process, a homography matrix is firstly used to remove the mismatching point
pairs from the matching point pair set obtained by SURF. Then, a circular area is selected,
respectively, as the constraint in the left-view and right-view images, with the center of
the license plate as the center and the height of the license plate as the diameter. Only the
matching point pairs that exist in both the left-view and the right-view circular areas are
retained, and other matching point pairs are removed, by which the size of the matching
point pair set is further reduced and the measurement efficiency is improved. Finally, the
matching point pair closest to the license plate center is selected from the retained matching
point pair set to represent the current vehicle position. In the process of calculating the
homography matrix, four matching point pairs are randomly selected to perform the
calculation. However, since the matching point pair set contains both correct matching and
wrong mismatching point pairs, the error of the matrix would be very large if mismatching
point pair exists in the four randomly selected matching point pairs, which will reduce
the accuracy of speed measurement. Moreover, in the process of selecting the matching
point pair closest to the center of the license plate as the measurement point, the matching
point pairs selected in the consecutive frames may not correspond to the same position
on the license plate, which will also reduce the accuracy of speed measurement due to the
position difference of the measurement point.

In this paper, an improved stereo matching algorithm for the binocular stereovision-
based vehicle speed measurement system in [15] is proposed. Firstly, the characteristic
of license plate specification is transformed into a relationship between the pixel ratio of
the license plate area in the image and the distance of the license plate to the camera. The
matching point pairs with obviously abnormal distance to the camera are roughly removed
from the matching point pair set obtained by SURF algorithm in the license plate area
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according to this relationship. Then, the mismatching point pairs are finely removed from
the matching point pair set according to the LNCC, so as to further reduce the size of the
matching point pair set. Finally, the best speed measurement point pair is selected by
STIF of binocular stereo video. The matching point set obtained by SURF matching and
LNCC mismatching removal on two consecutive left-view frames is taken as the temporal
consistency constraint (TCC), so that the speed measurement point pairs in the consecutive
frames correspond to the same position on the license plate. The two matching point sets,
respectively, obtained by SURF matching and LNCC mismatching removal on the two
consecutive stereo frame pairs are taken as the spatial consistency constraint (SCC), from
which the two consecutive speed measurement point pairs are chosen. If the two points of
a TCC matching point pair are, respectively, in the two consecutive SCC matching point
sets, the corresponding SCC matching point pair is retained in a STIF matching point set.
The STIF matching point pair closest to the center of the license plate is selected as the
best speed measurement point. The proposed algorithm can significantly improve the
accuracy of the license plate-based vehicle speed measurement system in [15]. In addition,
the proposed stereo matching algorithm can be extended to other characteristics of the
vehicle, such as logo, light and mirror, thus can also improve the accuracy of the optimized
multi-characteristic-based vehicle speed measurement system.

The rest of the paper is organized as follows. In Section 2, we review some related
works on matching. In Section 3, we propose an LNCC+STIF stereo matching optimization
algorithm. In Section 4, we report the experimental setup and results. In Section 5, we
make a conclusion.

2. Related Works

Image matching aims to identify the same or similar structure from two or more
images. Image matching is widely used in computer vision [16], pattern recognition [17],
medical image analysis [18], etc. It is the basis of image fusion [19,20]. Image matching
methods can be divided into two categories: region-based methods and feature-based
methods [21,22]. For the region-based methods, such as correlation-like method [23],
Fourier method [24], and mutual information method [25], the image saliency information
is provided by pixel intensity [26], which is neither suitable for image with few salient
details, nor insusceptible to image distortion and illumination change. For the feature-
based methods, salient features, such as points, lines and surfaces, are firstly extracted from
the images, which are then used to achieve image matching. The extracted features cannot
only represent the image structure better, but also reduce the impact of image quality
reduction [27].

In the feature-based matching method, image matching can be classified into direct
matching and indirect matching [28]. For direct matching, the correspondence between two
given feature sets is established by direct utilization of spatial geometric relationship [29,30].
For indirect matching, the matching task is decomposed into two stages: (1) A matching
point set is constructed by calculating the similarity between descriptors. Lowe [31]
proposes a scale-invariant feature transform (SIFT) descriptor based on distance ratio, but
with slow speed and heavy calculation burden. SURF [32] is an accelerated version of SIFT.
However, mismatching will inevitably occur when constructing the matching point set by
local features [33,34]. (2). Mismatching points are removed from the matching point set by
additional constraints. Mismatching removal methods can be divided into three categories:
resampling-based, non-parametric model-based and learning-based.

Resampling-based methods are widely used for automatic matching of remote sensing
images [35]. Random sample consensus (RANSAC) is a classic resampling-based method,
with several variants such as maximum likelihood estimation sample consensus [36] and
progressive sample consensus [37]. These methods use a hypothesis-verification strategy. A
hypothesis subset is selected to estimate the parametric model and the smallest non-outlier
subset is obtained by repeated resampling. The resampling-based method relies on the
preselected parametric model. The efficiency of the model is reduced when the image
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transformation is non-rigid. When the proportion of outliers in the matching set becomes
large, the performance of these methods will degrade seriously [38].

Non-parametric model-based methods introduce more prior knowledge, such as
motion consistency, and can handle degraded scenes. Different deformation function can
be used to establish different models for different transformation. In [39,40], an estimator is
used to model the deformation function. In [41,42], a guided locality preservation matching
method is proposed to process the matching set with a large proportion of outliers, which
only preserves the neighborhood structure of the potential correct matching between two
images. Ma et al. converted the mismatching removal problem into a spatial clustering
problem with outliers [43]. The initial matching set is divided into several clusters with
motion consistency and one cluster with outliers. The matching performance in the case of
serious data degradation is improved by iterative clustering strategy.

Learning-based methods are often used to extract and represent features. Learning-
based matching can be divided into image-based learning and point-based learning. Image-
based learning can be directly applied without detecting any salient image structures
in advance [44]. Point-based learning is inclined to perform matching on the extracted
point set [45]. Ma et al. converted the mismatching removal problem into a two-class
classification problem. The classifier is trained based on a general match representation as-
sociated with each putative match through exploiting the consensus of local neighborhood
structures based on a multiple K-nearest neighbors strategy [46].

3. Proposed Method

An improved stereo matching algorithm for the binocular stereovision-based vehicle
speed measurement system in [15] is proposed in this paper. The proposed algorithm
consists of two stages: mismatching removal optimization for vehicle characteristics, and
best vehicle speed measurement point selection optimization.

The process of stereo matching in [15] can be divided into three steps: SURF matching
in the detected local characteristic regions, mismatching removal, and speed measurement
point selection. The flowchart is shown in Figure 1.

SURF matching 

in the  local 

characteristic 

regions

Mismatching 

removal

Optimum speed 

measurement point pair
Left-view and 

right-view images

Speed 

measurement 

point selection

Figure 1. Matching algorithm flowchart.

In the SURF matching process, only feature points in the license plate regions of the
left-view and right-view images are matched in [15]. Not only the number of matching
calculations is reduced, but also the interference from the feature points outside the license
plate regions is avoided. Thus, the SURF matching in the local characteristic regions in [15]
is reused in this paper.

In the mismatching removal process, the speed measurement system in [15] uses a
homography matrix to eliminate mismatching point pairs from the matching point pair
set obtained by the SURF matching. The homography matrix is calculated by randomly
selecting four matching point pairs. However, the matching point pair set contains both
correct matching and wrong mismatching point pairs. If mismatching point pair exists in
the four selected matching point pairs, the error of the calculated matrix will be large, which
will affect the accuracy of speed measurement. In this paper, the relationship between
the pixel ratio of the license plate region in the image and the distance of the license plate
to camera is fitted according to the characteristic of license plate specification. With this
relationship, the matching point pairs with obviously abnormal distance to the camera
are roughly removed from the matching point pair set obtained by SURF matching in the
license plate regions. LNCC aims to preserve the potential local neighborhood structure of
the correct matching. Therefore, more mismatching point pairs are finely removed from
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the matching point pair set in the license plate regions by LNCC. LNCC can also be used
to remove mismatching point pairs from the matching point pair sets in the logo, light, and
mirror regions, respectively.

In the speed measurement point selection process, the matching point pair closest
to the center of the license plate is selected to represent the current vehicle position [15].
Nevertheless, there is no guarantee that the matching point pairs selected in the consecutive
frames are at the same spatial location on the license plate. The spatial location difference
between the speed measurement points will also reduce the speed measurement accuracy.
In this paper, the best speed measurement points in the stereo video are selected by
STIF. SURF matching is performed on two consecutive left-view frames and LNCC is
used to remove the mismatching point pairs. The matching point pair set obtained on
two consecutive left-view frames is taken as TCC, so that the speed measurement points
selected from the consecutive frames are at the same spatial location on the license plate.
SURF matching is performed on the left-view and right-view stereo images and LNCC
is used to remove the mismatching point pairs. The matching point pair set obtained
on the stereo images is taken as SCC. If the two points of a TCC matching point pair
are, respectively, in the two consecutive SCC matching point sets, the corresponding SCC
matching point pair is retained in a STIF matching point set. The STIF matching point pair
closest to the center of the license plate is selected as the optimum speed measurement
point.

3.1. Mismatching Removal Based on License Plate Specification Constraint (LPSC)

The license plate specification is settled by the vehicle management department,
including the strict regulations on the size, color and content of license plates [47]. For
the car used in the experiments of this paper, the size of the license plate is fixed, i.e.,
440 mm × 140 mm. The closer the vehicle is to the camera, the larger the pixel ratio of the
license plate region in the image.

A matching point pair set S = {(pli, pri)}N
i=1 is obtained by SURF matching on stereo

image pair, wherein, pli represents the left-view matching point and pri represents the
right-view matching point. Mismatching point pairs exist in the set S and need to be
removed. Since the license plate size is fixed, the relationship between the pixel ratio of the
license plate region in the image and the distance of the license plate to camera is fitted.
The matching point pairs with obviously abnormal distance to the camera are roughly
removed from the set S according to this relationship.

The speed measurement range, that is, the distance between the vehicle and the
camera is set to 1–15 m. The pixel ratio of the license plate in the image is calculated every
0.5 m, as shown in Table 1. When the distance is 15 m, the smallest ratio is 0.0416%. When
the distance is 1m, the largest ratio is 8.1130%.

Table 1. The pixel ratio of the license plate in the image captured at different distance.

No. Distance (m) Pixel Ratio (%) No. Distance (m) Pixel Ratio (%) No. Distance (m) Pixel Ratio (%)

1 15.0 0.0416 11 10.0 0.0913 21 5.0 0.3372
2 14.5 0.0470 12 9.5 0.1000 22 4.5 0.4095
3 14.0 0.0482 13 9.0 0.1134 23 4.0 0.5180
4 13.5 0.0523 14 8.5 0.1206 24 3.5 0.6807
5 13.0 0.0553 15 8.0 0.1390 25 3.0 0.9524
6 12.5 0.0614 16 7.5 0.1580 26 2.5 1.3669
7 12.0 0.0646 17 7.0 0.1728 27 2.0 2.1482
8 11.5 0.0694 18 6.5 0.2008 28 1.5 3.9328
9 11.0 0.0750 19 6.0 0.2343 29 1.0 8.1130
10 10.5 0.0830 20 5.5 0.2747
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To find the relationship between the pixel ratio of the license plate region in the image
and the distance of the license plate to camera, two types of fitting function can be used:
polynomial and power. The fitting effect can be evaluated with four parameters: RMSE,
SSE, R-square, and Adj R-sq. RMSE represents the difference between the predicted value
and the true value. The smaller the RMSE, the better the fitting effect [48]. The performance
comparison of four fitting functions is shown in Table 2: Polynomial-7, Polynomial-8,
Power-1, and Power-2. The fitting curves of the four fitting functions are shown in Figure 2.

Table 2. Performance comparison of different fitting functions.

Fitting Function RMSE SSE R-Square Adj R-sq

Polynomial-7 0.092 0.152 0.999 0.999
Polynomial-8 0.067 0.076 0.999 0.999

Power-1 0.117 0.326 0.999 0.999
Power-2 0.100 0.230 0.999 0.999

0 1 2 3 4 5 6 7 8

Pixel Ratio(%)

0

5

10

15

D
is

ta
n

ce
(m

)

Original Data

Polynomial-7

Polynomial-8

Power-1

Power-2

Figure 2. Fitting curves of four fitting functions.

In Figure 2, the hollow circle represents the actual measured data. The blue dotted line
represents the fitting curve by Polynomial-7. The black dotted line represents the fitting
curve by Polynomial-8. The red solid line represents the fitting curve by Power-1. The green
dot-dash line represents the fitting curve by Power-2. The fitting curves by Polynomial-7
and Polynomial-8 is over-fitting, and thus are discarded. The fitting curves by Power-1 and
Power-2 are similar, of good fitting effect. The R-square and Adj R-sq parameters of Power-
1 and Power-2 are the same, while the SSE and RMSE parameters of Power-2 are smaller
than that of Power-1. Therefore, the Power-2 function with better fitting performance is
chosen to fit the relationship between the pixel ratio of the license plate region in the image
and the distance of the license plate to camera, as shown in Equation (1):

d = 2.505 ∗ r−0.5651 + 0.3637 (1)

wherein, r represents the pixel ratio of the license plate region in the image, and d represents
the distance between the license plate and the camera.

When the measurement range is no more than 15 m, the ranging error is no more than
3% [49], which can be used as a mismatching removal condition. If Equation (2) is not met,
the matching point pair is removed:∣∣∣∣dmatch − d

d

∣∣∣∣ ≤ 3% (2)
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wherein, dmatch represents the distance from the matching point to the camera calculated
by Zhengyou Zhang’s camera calibration method [50], and d represents the distance from
the license plate to the camera calculated by the fitting function in Equation (1).

Table 3 shows the comparison of matching point pair number with and without
LPSC-based mismatching removal. With LPSC, the number of matching point pairs is
significantly reduced. However, mismatching point pairs still exist in the reserved matching
point pair set with LPSC, as shown in Figure 3. The green solid line represents the correct
matching point pair. The red dashed line represents the wrong mismatching point pair.
Several mismatching point pairs still exist and need to be further removed.

Table 3. Comparison of matching point pair number with and without LPSC.

No. 1 2 3 4 5 6 7 8 9 10

SURF 84 123 149 160 184 238 264 288 324 665
SURF with LPSC 35 26 35 54 60 69 106 105 106 249

Figure 3. An exemplary matching result with LPSC-based mismatching removal.

3.2. Mismatching Removal Based on LNCC

For license plate, mismatching point pairs still exist after SURF with LPSC. For logo,
light and mirror, mismatching point pairs also exist after SURF. LNCC is used to fur-
ther remove more mismatching point pairs, which aims to preserve the potential local
neighborhood structure of the correct matching point pairs.

For the matching point pair (pli, pri), other n pairs of matching point (n = 3) lo-
cated in both the neighborhood Npli of pli and the neighborhood Npri of pri are selected.
Neighborhood Npli and Npri are, respectively, composed of 5 neighbors with the nearest
Euclidean distance in the corresponding point sets of pli and pri. As shown in Figure 4, the
matching point pair (pli, pri) is converted into a displacement vector mi, with the starting
point and ending point of mi corresponding to the right-view and left-view matching point
pli and pri, i.e., mi = pri − pli. The difference between mi and other mj in its neighborhood
is calculated to judge the neighborhood consistency, i 6= j. Figure 4a shows an exemplary
neighborhood consistency diagram of a correct matching point pair (pli, pri), wherein mi
and mj are in the same direction and of the same length. Figure 4b shows an exemplary
neighborhood inconsistency diagram of a wrong matching point pair (pli, pri), wherein mi
and mj are in different directions and of different lengths.

The neighborhood consistency index between mi and mj is defined by Equation (3):

C
(
mi, mj

)
=

min
{
|mi|,

∣∣mj
∣∣}

max
{
|mi|,

∣∣mj
∣∣} ·

(
mi, mj

)
|mi| ·

∣∣mj
∣∣ (3)

wherein (·, ·) represents the inner product operation of two vectors, | · | represents the
modulus operation of a vector, max{·, ·} represents the maximization operation, and
min{·, ·} represents the minimization operation. C

(
mi, mj

)
∈ [−1, 1], and C

(
mi, mj

)
= 1

correspond to the highest the neighborhood consistency.
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ri
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Figure 4. Exemplary neighborhood consistency diagrams. (a) An exemplary neighborhood con-
sistency diagram of a correct matching point pair. (b) An exemplary neighborhood inconsistency
diagram of a wrong mismatching point pair.

The number of matching point pairs whose C
(
mi, mj

)
is close to 1 is defined as nC,

nC ≤ n. If nC = 3, mi is consistent with three mj in its neighborhood, then mi is judged
to be a correct matching point and retained. If nC = 2, mi is consistent with two mj in its
neighborhood and inconsistent with the other one mj in its neighborhood, then mi is also
judged to be a correct matching point and retained. If nC = 1, mi is consistent with one mj
in its neighborhood and inconsistent with the other two mj in its neighborhood, then mi is
temporarily retained and judged again in the second iteration. If nC = 0, mi is inconsistent
with three mj in its neighborhood, then mi is judged to be a wrong mismatching point
and removed.

Table 4 shows the comparison of matching point pair number with and without LNCC-
based mismatching removal for license plate, logo, light and mirror, respectively. With
LNCC, the number of matching point pairs for each vehicle characteristic is significantly
reduced. Exemplary matching results with LNCC-based mismatching removal for license
plate, logo, light and mirror are, respectively, shown in Figure 5. The solid green line
represents the correct matching point pair.

Figure 5. An exemplary matching result with LNCC-based mismatching removal. (a) License plate.
(b) Mirror. (c) Logo. (d) Light.
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Table 4. Comparison of matching point pair number with and without LNCC.

No. 1 2 3 4 5 6 7 8 9 10

License plate SURF 84 123 149 160 184 238 264 288 324 665
SURF with LNCC 18 14 33 160 38 53 98 67 58 237

Logo SURF 36 40 46 65 84 95 104 114 137 169
SURF with LNCC 26 29 30 38 47 55 74 60 79 103

Light SURF 73 96 119 146 193 283 355 459 294 694
SURF with LNCC 33 77 88 113 141 197 234 312 195 403

Mirror SURF 26 27 29 29 36 48 48 50 79 99
SURF with LNCC 18 20 23 25 28 29 39 31 51 65

3.3. Speed Measurement Point Selection Based on STIF of Binocular Stereo Video

For the vehicle speed measurement, not all the correct matching point pairs are
needed, and only one optimum matching point pair needs to be selected from the matching
point pair set obtained by SURF with LPSC and LNCC. In [15], the matching point pair
closest to the license plate center is selected to represent the vehicle position in the current
frame. However, this selection method cannot guarantee that the matching point pairs
selected in two consecutive frames are at the same spatial position on the license plate. The
spatial position difference between the speed measurement points will also cause speed
measurement accuracy reduction. In this paper, a STIF-based speed measurement point
selection method is proposed, which constructs a smaller matching point pair set with SCC
and TCC, from which the speed measurement point is selected.

Figure 6 shows an exemplary result of speed measurement point selection by the
method in [15]. In Figure 6, Opre,− l is the center of the bounding box in the previous
left-view frame, Ocur− l is the center of the bounding box in the current left-view frame,
Al and Ar are the selected speed measurement point pair in the previous stereo frames,
Bl and Br are the selected speed measurement point pair in the current stereo frames.
The corresponding 3D speed measurement points A and B are obviously not on the
same position of the vehicle, hence the displacement between A and B is not accurate for
speed measurement.

Figure 6. An exemplary result of speed measurement point selection by the method in [15].
(a) Previous left-view. (b) Previous right-view. (c) Current left-view. (d) Current right-view.

Figure 7 shows an exemplary stereo video sequence. The upper row is the time-
continuous left-view video sequence, and the bottom row is the time-continuous right-view
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video sequence, either with temporal correlation [51]. Each column is a stereo image pair,
with spatial correlation. Thus, stereo video sequence contains both spatial and temporal
information, which should be fused to achieve more accurate speed measurement [52–54].

left-view

right-view

Figure 7. An exemplary stereo video sequence.

The matching point pair set obtained by SURF matching with LNCC-based mismatch-
ing removal on stereo frame pair is denoted as Sspa =

{(
pl−i, pr−i

)}M
i=1. The matching point

pair set Sspa of the current stereo frame pair is denoted as Scur−spa =
{(

pcur− l−i, pcur−r−i
)}M1

i=1.
The matching point pair set Sspa of the previous stereo frame pair is denoted as

Spre−spa =
{(

ppre− l− j, ppre−r− j

)}M2

j=1
. The matching point pair set obtained by SURF match-

ing with LNCC-based mismatching removal on the previous and current left-view frames

is denoted as Stemp =
{(

pl−cur−k, pl−pre−k

)}T

k=1
. If pl−cur−k in the temporal matching

point pair
(

pl−cur−k, pl−pre−k

)
is equal to pcur− l−i in the current spatial matching point pair(

pcur− l−i, pcur−r−i
)
, and if pl−pre−k in the temporal matching point pair

(
pl−cur−k, pl−pre−k

)
is equal to ppre− l− j in the previous spatial matching point pair

(
ppre− l− j, ppre−r− j

)
, that is,

pl−cur−k = pcur− l−i & pl−pre−k = ppre− l− j, then it can be judged that (pcur_l_i, pcur_r_i) and(
ppre_l_j, ppre_r_j

)
satisfy both SCC and TCC. All current (pcur_l_i, pcur_r_i) satisfying both

SCC and TCC are placed in a new smaller matching point set
Sspa_temp = {(pcur_l_m, pcur_r_m)}M3

m=1, Sspa_temp ⊂ Scur_spa. According to Equation (4),
the distance dm between the left-view matching point pcur_l_m(xcur_l_m, ycur_l_m) and the
left-view bounding box center Ocur_l(xcur_l , ycur_l) for each matching point pair in the set
Sspa_temp is calculated:

dm =
√
(xcur_l_m − xcur_l)

2 + (ycur_l_m − ycur_l)
2 (4)

The matching point pair with the minimum dm is selected as the optimum speed
measurement point

(
pcur_l_mopt , pcur_r_mopt

)
for the current stereo frame pair:(

pcur_l_mopt , pcur_r_mopt

)
∈ Sspa_temp, s.t. dmopt = {dm}min m = 1, ..., M3 (5)

Algorithm 1 describes the optimum speed measurement point selection process based
on STIF. Figure 8 shows an exemplary result of speed measurement point selection by the
proposed STIF-based method. The corresponding 3D speed measurement points ppre and
pcur are on the same position of the vehicle, hence the displacement between ppre and pcur
is more accurate for speed measurement.
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Algorithm 1 Optimum speed measurement point selection based on STIF.

Input: Scur_spa={(pcur_l_i, pcur_r_i)}M1
i=1

Spre_spa=
{(

ppre_l_j, ppre_r_j

)}M2

j=1

Stemp=
{(

pl_cur_k, pl_pre_k

)}T

k=1
Ocur_l(xcur_l , ycur_l)

Output:
(

pcur_l_mopt , pcur_r_mopt

)
1: function Optimum speed measurement point selection
2: for k = 1 to T do
3: take

(
pl_cur_k, pl_pre_k

)
∈Stemp

4: search Scur_spa
5: if pl_cur_k=pcur_l_i then
6: search Spre_spa
7: if pl_pre_k=ppre_l_j then
8: Sspa_temp⇐=(pcur_l_i, pcur_r_i)
9: end if

10: end if
11: end for
12: for m = 1 to size of Sspa_temp do

13: calculate dm=
√
(xcur_l_m − xcur_l)

2 + (ycur_l_m − ycur_l)
2

14: end for
15: select dmopt ={dm}min

16: return
(

pcur_l_mopt , pcur_r_mopt

)
with dmopt

17: end function

Figure 8. An exemplary result of speed measurement point selection by the proposed STIF-based
method. (a) Previous left-view. (b) Previous right-view. (c) Current left-view. (d) Current right-view.

Table 5 shows the comparison of information entropy (IE) and normalized mutual
information (NMI) with different constraints for license plate, logo, light and mirror,
respectively. IE is used to measure the uncertainty of the matching point sets. The smaller
the IE, the less the uncertainty. NMI is used to measure the similarity between the left-view
and right-view matching point sets. The closer the NMI is to 1, the higher the similarity
is, and the more accurate the matching point pair is. With LPSC, the IE of the left-view
and right-view matching point sets is reduced, while the NMI thereof is increased. With
LNCC, the IE of the left-view and right-view matching point sets is further reduced, while
the NMI thereof is further increased. With STIF, the IE of the left-view and right-view
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matching point sets is even more reduced, while the NMI thereof is even more increased.
The IE decreases and the NMI increases gradually with the increase of constraints, which
indicates that the matching point pairs in the sets are becoming more accurate from the
perspective of information entropy.

Table 5. Comparison of information entropy and NMI with different constraints.

Constraint
IE (Bit/Pixel) NMI

Left-View Right-View

License plate

SURF 3.5609 3.5549 0.7570
SURF with LPSC 3.1498 3.3349 0.8959
SURF with LPSC and LNCC 3.1680 3.3779 0.8959
SURF with LPSC, LNCC and STIF 2.7170 2.8372 0.9082

Logo
SURF 5.0988 4.7373 0.7966
SURF with LNCC 4.7376 4.6422 0.8725
SURF with LNCC and STIF 3.1219 3.1219 0.9359

Light
SURF 5.8604 5.6467 0.8080
SURF with LNCC 5.6615 5.3441 0.8430
SURF with LNCC and STIF 5.1881 5.0897 0.8991

Mirror
SURF 3.2924 2.9693 0.9085
SURF with LNCC 2.4619 2.4619 1.0000
SURF with LNCC and STIF 1.9219 1.9219 1.0000

4. Experiments

In a practical vehicle speed measurement test, a fixed binocular stereo camera is
set to capture images at a frame rate of 30 fps, and the vehicle speed is measured ten
times per second. The speed data measured by GPS satellite speedometer is used as the
ground truth for comparison. The vehicle drives towards the camera in a straight line at
a constant speed. Six groups of experiments are conducted with different vehicle speed,
i.e., 32 km/h, 36 km/h, 38 km/h, 43 km/h, 45 km/h and 46 km/h. For the captured
stereo video of each experiment, the stereo matching algorithm in [15], the proposed LNCC
stereo matching algorithm and the proposed LNCC+STIF stereo matching algorithm are,
respectively, used to measure the vehicle speed, and the measured speed, error, root-mean-
square error (RMSE), maximum absolute error (MAE) and maximum absolute error rate
(MAER) of the three algorithms compared together. The algorithms are verified from three
aspects: speed measurement results based on license plate, speed measurement results
based on other separate vehicle characteristic, and speed measurement result based on
multi-characteristic combination. Finally, the vehicle multi-characteristic combination-
based speed measurement result by LNCC+STIF algorithm is compared with other speed
measurement algorithms.

4.1. Speed Measurement Results Based on License Plate

First, the vehicle speed is measured using the license plate. Figure 9 shows the speed
measurement result curve based on a license plate at a vehicle speed of 32 km/h. The black
solid line represents the ground truth of vehicle speed measured by the satellite, the green
dotted line with hollow circle represents the vehicle speed measurement results measured
by the stereo matching algorithm in [15], the blue dotted line with cross represents the
vehicle speed measurement results measured by the proposed LNCC stereo matching algo-
rithm, and the red dotted line with solid circle represents the vehicle speed measurement
results measured by the proposed LNCC+STIF stereo matching algorithm. As it can be
seen from Figure 9, the vehicle speed measurement results based on license plate measured
by the proposed LNCC+STIF stereo matching algorithm are closer to the ground truth
speeds, with smaller fluctuations.
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Figure 9. Speed measurement result curve based on license plate at a vehicle speed of 32 km/h.

Table 6 shows the detailed speed measurement results based on license plate by the
three algorithms at a vehicle speed of 32 km/h. The RMSE of the speeds measured by the
stereo matching algorithm in [15], the LNCC stereo matching algorithm, the LNCC+STIF
stereo matching algorithm is 0.87 km/h, 0.70 km/h and 0.62 km/h, respectively. The MAE
of the speeds measured by the three algorithms is 1.47 km/h, 1.18 km/h and 0.89 km/h,
respectively. The MAER of the speeds measured by the three algorithms is 4.53%, 3.63%
and 2.75%, respectively. More experiments are carried out for the speed measurement by
license plate. Table 7 shows the experimental error results at a vehicle speed of 36 km/h,
38 km/h, 43 km/h, 45 km/h and 46 km/h. As can be seen from Tables 6 and 7, the speed
measurement error results based on license plate by the three algorithms do not exceed
the 6% error rate limit specified by the China national standard GB/T21255-2007 [55].
However, the speed measurement results based on license plate by the LNCC+STIF stereo
matching algorithm have the least RMSE, MAE and MAER of the three. Therefore, the
LNCC+STIF stereo matching algorithm effectively reduces the speed measurement error
by license plate and enhances the measurement accuracy thereof. Figure 10a–c show the
RMSE curve, the MAE curve and the MAER curve of the three algorithms, respectively.
The curves uniformly show a descending trend.

Table 6. Speed measurement results based on license plate at a vehicle speed of 32 km/h.

No. Satellite (km/h)
[15] LNCC LNCC+STIF

Speed (km/h) Error (km/h) Speed (km/h) Error (km/h) Speed (km/h) Error (km/h)

1 32.40 32.10 −0.30 32.82 0.42 33.29 0.89
2 32.40 32.07 −0.33 31.74 −0.66 31.71 −0.69
3 32.44 33.91 1.47 31.26 −1.18 31.76 −0.68
4 32.47 32.98 0.51 32.95 0.48 32.95 0.48
5 32.44 33.72 1.28 33.19 0.75 32.85 0.41
6 32.40 33.24 0.84 32.59 0.19 33.16 0.76
7 32.31 31.05 −1.26 33.01 0.70 32.62 0.31
8 32.31 32.36 0.05 33.39 1.08 33.14 0.83
9 32.34 32.27 −0.07 32.89 0.55 32.86 0.52

10 32.31 31.27 −1.04 32.70 0.39 32.44 0.13
RMSE 0.87 0.70 0.62
MAE 1.47 1.18 0.89

MAER 4.53% 3.63% 2.75%
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Table 7. Speed measurement error results based on license plate.

No.

36 km/h 38 km/h 43 km/h 45 km/h 46 km/h

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

1 −0.09 0.10 −1.02 1.79 −0.67 −0.95 0.15 −1.62 0.39 −1.89 1.40 −0.94 −1.14 1.03 −1.08
2 1.39 0.79 0.68 −0.16 0.26 −0.91 1.97 1.01 1.16 −1.09 −0.63 −1.31 −0.34 −1.04 −1.04
3 0.29 −0.71 −0.99 1.31 0.59 0.53 −0.98 −1.36 0.80 1.87 1.41 0.93 0.70 −0.69 −1.25
4 −0.74 −1.14 0.78 0.35 −1.04 −0.56 1.10 1.35 −0.57 −1.07 −0.24 −0.84 0.47 −1.12 0.91
5 −0.75 1.00 0.17 1.63 1.32 0.77 −0.46 −0.75 1.10 −0.08 −0.85 −1.24 0.70 0.32 −1.23
6 1.01 0.38 0.74 −0.13 1.02 −0.68 −0.48 −0.44 0.51 1.07 1.40 1.09 0.66 −1.19 −0.70
7 1.21 −0.91 0.56 2.23 −0.33 1.08 1.56 −0.93 0.55 1.26 −1.33 0.76 0.23 −1.28 0.58
8 −0.80 0.95 0.74 0.17 0.75 −0.54 0.99 −0.55 −0.93 −1.89 0.91 0.72 −1.59 0.71 −0.51
9 −0.70 0.77 0.65 1.44 1.24 0.63 0.18 −1.04 0.60 −1.63 −1.39 0.46 −1.64 0.62 −1.00

10 1.37 0.76 0.44 0.37 0.89 0.87 −1.08 −0.39 0.44 0.77 1.18 0.25 −1.56 0.80 −0.08
RMSE 0.93 0.81 0.72 1.22 0.88 0.77 1.06 1.02 0.75 1.38 1.14 0.91 1.04 0.93 0.91
MAE 1.39 1.14 1.02 2.23 1.32 1.08 1.97 1.62 1.16 1.89 1.41 1.31 1.64 1.28 1.25

MAER 3.85% 3.14% 2.82% 5.85% 3.49% 2.84% 4.54% 3.76% 2.67% 4.26% 3.16% 2.93% 3.49% 2.74% 2.70%
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(a) (b) (c)

Figure 10. Error curve. (a) RMSE curve. (b) MAE curve. (c) MAER curve.

4.2. Speed Measurement Results Based on Other Separate Vehicle Characteristic

Then, the vehicle speed is measured using other separate vehicle characteristics, i.e.,
logo, light and mirror. Table 8 shows the speed measurement error results based on logo,
light and mirror by the three algorithms at a vehicle speed of 32 km/h. The RMSE of the
logo-based speeds measured by the stereo matching algorithm in [15], the LNCC stereo
matching algorithm, the LNCC+STIF stereo matching algorithm is 0.87 km/h, 0.79 km/h
and 0.67 km/h, respectively. The MAE of the logo-based speeds measured by the three
algorithms is 1.63 km/h, 1.18 km/h and 0.98 km/h. The MAER of the logo-based speeds
measured by the three algorithms is 5.03%, 3.62% and 3.01%. The RMSE of the light-based
speeds measured by the three algorithms is 1.03 km/h, 0.92 km/h and 0.71 km/h. The
MAE of the light-based speeds measured by the three algorithms is 1.48 km/h, 1.46 km/h
and 0.93 km/h. The MAER of the light-based speeds measured by the three algorithms
is 4.57%, 4.49% and 2.89%. The RMSE of the mirror-based speeds measured by the three
algorithms is 8.63 km/h, 1.32 km/h and 0.97 km/h. The MAE of the mirror-based speeds
measured by the three algorithms is 19.07 km/h, 1.92 km/h and 1.85 km/h. The MAER of
the mirror-based speeds measured by the three algorithms is 58.86%, 5.93% and 5.70%.

More experiments are carried out for the speed measurement by logo, light and mirror.
Table 9 shows the experimental results at a vehicle speed of 36 km/h, 38 km/h, 43 km/h,
45 km/h and 46 km/h. As can be seen from Tables 8 and 9, the speed measurement results
based on logo and light by the three algorithms do not exceed the 6% error rate limit
specified by the China national standard GB/T21255-2007 [55], but the speed measurement
results based on mirror by the three algorithms are quite different. The mirror-based error
rate by the stereo matching algorithm in [15] is much higher than the 6% error rate limit.
The mirror-based error rate by the LNCC stereo matching algorithm also exceeds the 6%
error rate limit. Only the mirror-based error rate by the LNCC+STIF stereo matching
algorithm with the least RMSE, MAE and MAER satisfies the 6% error rate limit. Therefore,
the LNCC+STIF stereo matching algorithm effectively reduces the speed measurement
error by logo, light and mirror, and enhances the measurement accuracy thereof.
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Table 8. Speed measurement error results based on logo, light and mirror at a vehicle speed of 32 km/h.

No.
Logo Light Mirror

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

1 −0.30 −0.98 −0.98 0.59 −1.08 −0.76 19.07 −1.85 −1.85
2 0.64 −0.70 −0.34 1.48 1.46 0.79 −2.22 0.63 0.63
3 1.63 1.18 −0.51 −0.40 0.23 −0.73 −11.25 1.01 −0.44
4 0.10 0.63 0.86 0.24 0.51 −0.22 6.53 0.65 −0.29
5 0.81 1.12 0.64 1.43 0.84 0.86 −5.42 −1.39 −0.87
6 0.61 0.33 0.96 0.68 −1.24 −0.80 0.05 −1.92 1.24
7 −0.89 −0.94 0.83 −0.01 0.73 −0.84 3.21 −0.79 1.29
8 1.52 −0.56 0.42 −1.25 0.49 −0.93 9.25 1.39 0.15
9 −0.06 0.47 −0.42 1.34 1.20 0.54 −8.93 −0.65 −0.73
10 −0.59 −0.46 −0.31 1.40 0.70 0.08 1.37 −1.87 −0.90

RMSE 0.87 0.79 0.67 1.03 0.92 0.71 8.63 1.32 0.97
MAE 1.63 1.18 0.98 1.48 1.46 0.93 19.07 1.92 1.85

MAER 5.03% 3.62% 3.01% 4.57% 4.49% 2.89% 58.86% 5.93% 5.70%

Table 9. Speed measurement error results based on logo, light and mirror.

Speed Parameter
Logo Light Mirror

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

[15]
(km/h)

LNCC
(km/h)

LNCC+STIF
(km/h)

36 km/h
RMSE 0.85 0.81 0.75 1.13 0.89 0.79 4.89 1.43 1.04
MAE 1.29 1.18 1.06 1.92 1.33 1.07 11.18 2.19 1.68

MAER 3.57% 3.26% 2.91% 5.30% 3.66% 2.96% 30.96% 5.99% 4.65%

38 km/h
RMSE 1.01 0.91 0.87 1.15 1.06 0.81 13.48 1.48 1.06
MAE 1.49 1.31 1.10 1.82 1.70 1.11 19.79 2.30 1.74

MAER 3.97% 3.44% 2.87% 4.86% 4.45% 2.92% 52.71% 6.20% 4.54%

43 km/h
RMSE 1.05 0.95 0.90 1.39 1.12 0.79 40.57 1.39 1.23
MAE 1.62 1.58 1.14 2.45 1.76 1.12 88.03 2.35 2.35

MAER 3.71% 3.64% 2.63% 5.66% 4.06% 2.57% 201.53% 5.41% 5.41%

45 km/h
RMSE 1.04 1.26 0.91 1.30 1.15 0.98 10.10 1.72 1.50
MAE 1.97 1.88 1.24 2.17 1.80 1.30 21.76 2.60 2.55

MAER 4.38% 4.17% 2.75% 4.84% 4.02% 2.88% 48.25% 5.80% 5.66%

46 km/h
RMSE 1.35 1.23 0.86 1.39 1.01 0.89 27.25 2.05 1.54
MAE 2.33 1.69 1.39 2.79 1.58 1.31 60.93 3.24 2.72

MAER 5.01% 3.62% 2.96% 5.97% 3.39% 2.80% 130.88% 6.94% 5.92%

4.3. Speed Measurement Results Based on Multi-Characteristic Combination

Finally, to further reduce the error based on single-characteristic, the speed mea-
surement results of license plate, logo, light and mirror by the proposed LNCC+STIF
stereo matching algorithm are averaged as the final speed measurement results based on
multi-characteristic combination.

Figure 11 shows the speed measurement result curve by the proposed LNCC+STIF
stereo matching algorithm at a vehicle speed of 32 km/h and 36 km/h, respectively. The
black solid line with square represents the ground truth of vehicle speed measured by
the satellite, the red solid line with circle represents the average speed results, the green
dotted line with a hollow circle represents the speed results based on license plate, the blue
dotted line with cross represents the speed results based on logo, the green dotted line
with triangle represents the speed results based on light, and the purple dotted line with
diamond represents the speed results based on mirror. As it can be seen from Figure 11a,b,
the vehicle speed measurement results based on multi-characteristic combination measured
by the proposed LNCC+STIF stereo matching algorithm are closer to the ground truth
speeds, with smaller fluctuations.
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(a) (b)

Figure 11. Speed measurement result curve by the proposed LNCC+STIF at a vehicle speed. (a) 32 km/h. (b) 36 km/h.

Table 10 shows the detailed speed measurement results by the proposed LNCC+STIF
algorithm at a vehicle speed of 32 km/h. The RMSE of the speeds measured based
on license plate, logo, light, mirror and average is 0.62 km/h, 0.67 km/h, 0.71 km/h,
0.97 km/h and 0.38 km/h, respectively. The MAE of the speeds measured based on license
plate, logo, light, mirror and average is 0.89 km/h, 0.98 km/h, 0.93 km/h, 1.85 km/h and
0.67 km/h, respectively. The MAER of the speeds measured based on license plate, logo,
light, mirror and average is 2.75%, 3.01%, 2.89%, 5.70% and 2.08%, respectively. More
experiments are carried out for the speed measurement by the proposed LNCC+STIF
algorithm. Table 11 shows the experimental error results at a vehicle speed of 36 km/h,
38 km/h, 43 km/h, 45 km/h and 46 km/h. As can be seen from Tables 10 and 11, the speed
measurement error results based on license plate, logo, light, mirror and average by the
proposed LNCC+STIF algorithm do not exceed the 6% error rate limit. However, the speed
measurement results based on average have the least RMSE, MAE and MAER of the five.
Therefore, the LNCC+STIF stereo matching algorithm based on average effectively reduces
the speed measurement error and enhances the measurement accuracy, which is chosen as
the optimum stereo matching algorithm for the vehicle speed measurement system.

Table 10. Speed measurement results by the proposed LNCC+STIF algorithm at a vehicle speed of 32 km/h.

No. Satellite
(km/h)

Plate Logo Light Mirror Average

Speed
(km/h)

Error
(km/h)

Speed
(km/h)

Error
(km/h)

Speed
(km/h)

Error
(km/h)

Speed
(km/h)

Error
(km/h)

Speed
(km/h)

Error
(km/h)

1 32.40 33.29 0.89 31.42 −0.98 31.64 −0.76 30.55 −1.85 31.73 −0.67
2 32.40 31.71 −0.69 32.06 −0.34 33.19 0.79 33.03 0.63 32.50 0.10
3 32.44 31.76 −0.68 31.93 −0.51 31.71 −0.73 32.00 −0.44 31.85 −0.59
4 32.47 32.95 0.48 33.33 0.86 32.25 −0.22 32.18 −0.29 32.68 0.21
5 32.44 32.85 0.41 33.08 0.64 33.30 0.86 31.57 −0.87 32.70 0.26
6 32.40 33.16 0.76 33.36 0.96 31.60 −0.80 33.64 1.24 32.94 0.54
7 32.31 32.62 0.31 33.14 0.83 31.47 −0.84 33.60 1.29 32.71 0.40
8 32.31 33.14 0.83 32.73 0.42 31.38 −0.93 32.46 0.15 32.43 0.12
9 32.34 32.86 0.52 31.92 −0.42 32.88 0.54 31.61 −0.73 32.32 −0.02

10 32.31 32.44 0.13 32.00 −0.31 32.39 0.08 31.41 −0.90 32.06 −0.25
RMSE 0.62 0.67 0.71 0.97 0.38
MAE 0.89 0.98 0.93 1.85 0.67

MAER 2.75% 3.01% 2.89% 5.70% 2.08%
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Meanwhile, the speed measurement performances are compared between the system
with the proposed optimum stereo matching algorithm and the various existing speed
measurement systems. Table 12 shows a comparison of the speed measurement error
results between the proposed system and the other four systems. The systems in [11,56]
are 2D video-based speed measurement which are only suitable for measuring the speed of
vehicle traveling in a straight line and are not accurate enough. The systems in [13,15] are
3D video-based speed measurement, which are suitable for measuring the speed of vehicle
traveling in a straight or curved line. However, the stereo matching in [13,15] is simple and
rough, which may lead to inaccurate speed measurement as well. The proposed system
improves the stereo matching with LNCC and STIF, which results in more accurate speed
measurement. It can be seen that the RMSE of the proposed system is smaller than that of
the other four systems, and the maximum error is also smaller than that of the other four
systems. Therefore, the speed measurement accuracy of the proposed system is superior
to that of the other four systems, that is, the speed measurement accuracy of the system
is improved.

Table 11. Speed measurement error results by the proposed LNCC+STIF algorithm.

Speed Parameter Plate (km/h) Logo (km/h) Light (km/h) Mirror (km/h) Average (km/h)

36 km/h
RMSE 0.72 0.75 0.79 1.04 0.30
MAE 1.02 1.06 1.07 1.68 0.54

MAER 2.82% 2.91% 2.96% 4.65% 1.48%

38 km/h
RMSE 0.77 0.87 0.81 1.06 0.54
MAE 1.08 1.10 1.11 1.74 1.06

MAER 2.84% 2.87% 2.92% 4.54% 2.79%

43 km/h
RMSE 0.75 0.90 0.79 1.23 0.37
MAE 1.16 1.14 1.12 2.35 0.77

MAER 2.67% 2.63% 2.57% 5.41% 1.77%

45 km/h
RMSE 0.91 0.91 0.98 1.50 0.40
MAE 1.31 1.24 1.30 2.55 0.90

MAER 2.93% 2.75% 2.88% 5.66% 1.99%

46 km/h
RMSE 0.91 0.86 0.89 1.54 0.43
MAE 1.25 1.39 1.31 2.72 0.84

MAER 2.70% 2.96% 2.80% 5.92% 1.79%

Table 12. Comparison of speed measurement error results among different vehicle speed measure-
ment systems.

System RMSE (km/h) Max Error (km/h)

Luvizo et al. [11] 1.36 [−4.68,+6.00]
Tang et al. [56] 6.59 NA
VSS-SURF [13] 1.29 [−2.0,+2.0]
Yang et al. [15] 0.65 [−1.6,+1.1]

Proposed 0.40 [−0.9,+1.06]

5. Conclusions

In this study, we improved the stereo matching algorithm for vehicle speed measure-
ment system based on binocular stereovision. We first proposed a mismatching removal
algorithm based on LPSC for the license plate. We then proposed a mismatching removal
algorithm based on LNCC for multiple characteristics of the vehicle. We finally proposed a
speed measurement point selection algorithm based on STIF. We combined LNCC with
STIF to further improve the stereo matching algorithm. Vehicle speed measurement experi-
ments were carried out by three stereo matching algorithms and the results were compared,
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based on license plate and other separate vehicle characteristic, respectively. Experimental
results demonstrate that the proposed LNCC+STIF stereo matching algorithm can effi-
ciently enhance the speed measurement accuracy. Vehicle speed measurement experiments
based on license plate, logo, light, mirror and average were also carried out by the pro-
posed LNCC+STIF stereo matching algorithm. Experimental results demonstrate that the
proposed LNCC+STIF stereo matching algorithm based on average can further improve the
speed measurement accuracy. Performance comparisons were made between the system
with the proposed optimum stereo matching algorithm and the various existing speed
measurement systems, which demonstrates that the vehicle speed measurement system
with the proposed optimum stereo matching algorithm can significantly outperform the
state-of-the-art system in accuracy.
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