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Abstract: An important achievement in the functional diagnostics of memory devices is the devel-
opment and application of so-called transparent testing methods. This is especially important for
modern computer systems, such as embedded systems, systems and networks on chips, on-board
computer applications, network servers, and automated control systems that require periodic testing
of their components. This article analyzes the effectiveness of existing transparent tests based on the
use of the properties of data stored in the memory, such as changing data and their symmetry. As a
new approach for constructing transparent tests, we propose to use modified address sequences with
duplicate addresses to reduce the time complexity of tests and increase their diagnostic abilities.

Keywords: memory testing; RAM; transparent test; march test

1. Introduction
Semiconductor memory is a crucial part of today’s electronic systems. The percentage

of silicon areas devoted to memory components in systems-on-chip (SoCs) is still on the
rise [1]. Modern computers typically contain a variety of embedded memory arrays, such
as caches, branch prediction tables or priority queues for instruction execution, along with
random access memory (RAM). Fault-free memory operations are crucial for the correct
behavior of the complete embedded system.

Moreover, memory chips are very often designed to exploit the technology’s limits
(to get the highest storage density and access speed), which makes them prone to defects.
Hence, efficient techniques for production testing and for periodic maintenance testing are
mandatory to guarantee the required quality standards. However, advances in memory
technology and system design have turned memory testing into a nontrivial task [2–4].
The complexity of the memory chips makes fault modeling and testing an evermore
challenging problem. As a result, testing semiconductor memories is becoming a major cost
factor in the production of memory chips for modern computers. Therefore, the selection of
the most appropriate diagnostic techniques, test algorithms and target set of fault models
is still a very hot topic in both academia and industry.

When testing the memory devices (MD) of modern computing systems, one of the
main criteria, in addition to effective fault detection, is the ability of tests to restore opera-
tional data after each test session [5]. This job can be realized by transparent tests [6–9].

The transparent technique is a well-known memory testing approach that retrieves
the initial contents of the memory once the test phase has been finished. It eliminates the
problem of restoring the RAM contents after the system function has been interrupted
for a periodic memory testing procedure. It is therefore suitable for periodic field testing
while allowing for preserving the memory content. A transparent BIST (built-in self-test)
is based on a transparent march test that uses the initial memory data to derive the test
patterns. The write data can be either the read value or its opposite value. A transparent
test algorithm ensures that the last write data are always equal to the first values read
in order to satisfy the transparency property. The basic principle is that during testing,
the memory stored data are complemented an even number of times. Several transparent
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test solutions can be found in [7,8,10,11]. However, the traditional approaches for trans-
forming nontransparent march algorithms to transparent tests imply substantial amounts
of test time needed for calculating the fault-free signatures. The prediction phase for fault-
free signature calculation takes up to 50% of the transformed march test complexity. To
avoid this overhead, adaptive signature analyses [11] and symmetric memory testing [12]
have been proposed. In both cases, the final results of the test procedure rely on the only
one comparison of the fault-free signature with the real signature obtained during the test
session, which reduces the ability to detect and locate the memory faults.

In this paper, we propose the use of modified address sequences to build a new class
of transparent test of memory and improve the efficiency of transparent testing.

2. Transparent Tests
The term transparent has been used to define the main property of transparent tests,

which is the preservation of data stored in memory after the testing procedure.

2.1. Introduction to Transparent Tests
The first systems for transparent periodic testing of memory devices used backup

memory modules for temporary data storage. This approach requires memory duplica-
tion, which is time consuming for data transfer, and is not commonly used in modern
applications due to the steady growth in the volume of their memory devices. Due to
these limitations, a need arose for new solutions for the implementation of transparent
memory testing.

One of the first ideas based on a radical new approach was presented by B. Koneman
at the Design for Testability seminar in 1986. The proposed technology used signature
analysis with the property of linearity, which led to masking of some faults [7,13]. The test
procedure consisted of a small number of steps, and its effectiveness depended on the
masks determining the validity of testing. However, most of the fault models used to
describe real memory defects are quite complicated, and their detection requires the use of
more complex testing procedures.

Due to the linear complexity, regularity, symmetry and simplicity of the hardware
implementations, the march tests are usually a preferred method, and often the only
reasonable method, for RAM testing [14–19]. Therefore, to maximize the efficiency of
transparent testing, a method based on the use of classic march tests was proposed by M.
Nicolaidis [7,8]. It has been shown that an arbitrary march test can be converted to its
transparent version and provide almost the same fault-detecting ability as the original
test. Due to the changing contents of the memory between testing procedures, transparent
tests guaranteed, in principle, the detection of all kinds of memory faults after repeated
use [13,20]. However, the implementation of such transparent tests requires a significant
increase in their time complexity, reaching 40–50% for most known march tests. In addition,
this technology does not guarantee 100% coverage, even for single faults, due to the
masking effect [9,21]. Another drawback of the technology based on classical transparent
testing is associated with a decrease in diagnostic ability, which is caused by the difficulty
of obtaining information about the type and location of the memory faults.

A further development in transparent testing was the emergence of symmetric trans-
parent tests [7,9,22]. These tests utilize the symmetry of the data read from the memory
during their testing to avoid the time-consuming phase of obtaining the reference signature,
and accordingly, reduce the time complexity of the testing procedure. The theory and
practice of transparent tests with global and local symmetry are systematically presented
in works [9,13,20,22], in which both the effectiveness of their applications and some limi-
tations and disadvantages are discussed. Among the shortcomings, the poor diagnostic
ability of these tests is highlighted, since the difference of some signature from its refer-
ence value (this is also the case in classical transparent tests) only allows obtaining the
information of a faulty state of memory and does not indicate a fault. Thus, the known
transparent technologies for testing memory devices are characterized by either a signifi-
cant increase in time complexity or a decrease in diagnostic ability, and often both at the
same time [7,9,13,20,22].
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2.2. Analysis of the Effectiveness of Transparent Tests
It is important to note two features of transparent tests. First, transparent tests are

built on the foundations of classical march tests, due to the fact that acceptable time
complexity for such testing procedures is achieved only in the case of march tests [7,9,13,14].
Secondly, all existing tests, including transparent march tests, are always considered for
memory containing N one-bit memory cells (MC), where typically N = 2m. In general,
a march test consists of a finite number of march elements, often called test phases [14].
Each march element contains a symbol that determines the order of formation of the
memory address sequence: ⇑ defines sequential enumeration of memory addresses in
ascending order (in direct order), ⇓ determines sequential enumeration of addresses in
descending order (in reverse order) and m signifies the selection of addresses in ascending
or descending order [5,14]. In addition, the march element contains a sequence of read and
write operations, enclosed in parentheses and separated by semicolons. Each operation
is an element from the following set: r0 is the operation of reading the contents of the
MC with the expected value of 0, r1 is the operation of reading the MC with the expected
value of 1, w0 is the operation of writing 0 to the MC and w1 is the operation of writing
1 to the MC. One or more operations in the march element are used sequentially for the
addressed memory cell. The transition to the next cell is carried out only after performing
all operations with the current memory cell [5,14]. As an example of a march test, consider
the March Y test: {m(w0);⇑(r0, w1, r1);⇓(r1, w0, r0);m(r0)}, which consists of four march
elements and has complexity 8N. The first march element, m(w0), is the initialization phase
used to record the initial state of the memory. This phase is performed when the addresses
change from the lowest addresses to the highest addresses, or conversely, by making all
cells equal to zero. The second phase of the test, March Y ⇑(r0, w1, r1), determines the
increasing order of addresses and consists of a read operation r0: when the expected value
in an MC is 0, 1 is written in that cell. After that, the transition to the next memory cell is
performed. The subsequent phases of this test are performed in the same way.

For a formal description of the faulty states of memory, mathematical models of
their faults are used, reflecting the real physical defects of the memory [5,9,13,14,23,24].
Let us consider in more detail the dominating faults of the memory device (MD) using
their generally accepted classification [14,24]. Faults affecting one memory cell include
constant faults (stuck-at faults—SAF), when a faulty memory cell is permanently in a state of
logical zero (SAF0) or a logical one (SAF1), regardless of the operations performed with the
faulty MC and other cells. Transitions faults (TF) are characterized by the impossibility of
transition of the state of a faulty MC from 0 to 1 (TF↑) or from 1 to 0 (TF↓) when performing
the corresponding write operations [13,14].

Coupling faults (CF) are among the faults in which two memory cells are involved.
When describing this fault, an influencing MC (aggressor cell) is noted, a change in the
logical state of which affects the state of the dependent MC (victim cell). There are three
types of mutual coupling faults. The dominant type of such faults are called direct-acting
idempotent coupling faults (CFid ), for which a change in the value of the influencing MC
from zero to one ↑ or from one to zero ↓ leads to the forced setting of a certain logical
value of 0 or 1 in the dependent MC. Eight CFid are distinguished:〈↑, 0〉, 〈0, ↑〉 〈↑, 1〉, 〈1, ↑〉,
〈↓, 0〉, 〈0, ↓〉, 〈↓, 1〉 and 〈1, ↓〉 [14]. The location of the aggressor in relation to the victim is
determined by the fault record; for example, in fault 〈0, ↑〉, the address of the aggressor cell
is less than the address of the victim cell, and in 〈↑, 0〉, vice versa.

Pattern sensitive faults (PSFs) are viewed as a generalized class of the complex fault
models. For such faults, the logical state or a change in the logical state of one MC, known
as the base cell of the memory, may depend on the contents (0 or 1), or on the logical
transitions from 1 to 0 or from 0 to 1, affecting the MC of the memory [13,14]. In the case of
a pattern sensitive fault PSFk , in which k memory cells of the memory are involved, it is
assumed in the limiting case that any k− 1 out of the N MC of the memory can influence
one base cell out of the remaining N− k + 1 MC [9]. In practice, restricted or neighborhood
pattern sensitive faults (NPSF) are most often used. NPSFfaults involve a restriction which is
imposed both on the number of k memory cells involved in the fault and on their physical
locations. When modern memory testing devices are used, such faults typically adhere
to the latest, most realistic model of pattern sensitive faults, for which a small number of
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k ≤ 9 memory cells included in the NPSFk fault are considered, and their locations can be
arbitrary. There are three classic NPSFk fault models: active (ANPSFk ), passive (PNPSFk )
and static (SNPSFk ) [13,14]. Active or dynamic models include the NPSFk for which the
base cell changes its content due to a change in the set stored in neighboring k− 1 cells.
Passive faults PNPSFk are those NPSFk for which the content of the base cell cannot be
changed for a certain set of data in neighboring k − 1 cells. Static SNPSFk are faults in
which the content of the base cell is forced to one of two states, 0 or 1, due to a certain set in
neighboring k− 1 cells.

As an object of research, passive pattern sensitive faults (PNPSFk ) are most often
considered, where k denotes the number of arbitrary memory cells of MD with a capacity
of N bits involved in a particular fault. Note that the results obtained for PNPSFk can be
easily generalized to other classes of pattern sensitive faults, since PNPSFk is the memory
fault model that is most difficult to detect and that covers other types of faults [13,14,25].
The number of all possible PNPSFk for MD with the N bits is determined according to
expression (1) [13,26].

QTN(PNPSFk) = k× 2k ×
(

N
k

)
. (1)

The maximum possible number of QMAX(PNPSFk) detected faults PNPSFk when
using a single run march test is determined according to (2) [13,26].

QMAX(PNPSFk) = (8× (k− 2) + 2× 4)×
(

N
k

)
= 8× (k− 1)×

(
N
k

)
(2)

Accordingly, single run march tests cannot exceed the maximum possible coverage of
PNPSFk faults defined by expression (3) [13].

FCMAX(PNPSFk) =
QMAX(PNPSFk)
QTN(PNPSFk)

× 100% =
k− 1

k× 2k−3 × 100% (3)

Equation (3) shows the limited capabilities of classic march tests, in terms of detecting
complex pattern sensitive faults PNPSFk . Using the previously described March Y test as
an example, let us consider the PNPSFk fault detection efficiency of the original classic test
and its transparent modifications. Table 1 shows the original March Y test and two of its
transparent modifications [9,13,20].

Table 1. Three versions of the March Y test implementation.

Description Test Complexity

March Y test {m(w0);⇑(r0, w1, r1);⇓(r1, w0, r0);m(r0)} 8N

Transparent
Nicolaidis test

{⇑(ra, rā);⇓(rā, ra);m(ra)} {⇑ (ra, wā, rā);
⇓(rā, wa, ra);m(ra)} 12N

Symmetric test {⇓(rā);⇑(rā, ra, wā, rā);⇓ (ra, rā, wa, ra);m(ra)} 10N

In the descriptions of the tests presented in Table 1, value a takes an arbitrary mean-
ing of 0 or 1, and ā the inverse value with respect to a. The Nicolaidis transparent
test consists of two parts, namely, the initial prediction test {⇑(ra, rā);⇓(rā, ra);m(ra)}
which is necessary to obtain the reference signature SF, and the base transparent test
{⇑(ra, wā, rā);⇓(rā, wa, ra);m(ra)} [20]. During the base test implementation, a real SR sig-
nature is generated and then compared with the previously obtained reference SF. Based
on the comparison result, a decision is made on the presence or absence of faults in the
memory. The symmetric transparent test does not require a preliminary calculation of the
reference signature, as it is always standard, i.e., SF = 000 . . . 0 [5,12]. In both transparent
versions of the March Y test, the discrepancy between the real SR signature and its refer-
ence value SF indicates only a faulty memory state. Obtaining clarifying information about
a fault requires additional time-consuming investigations [9,13,20].
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Let us evaluate the effectiveness of the three versions of the March Y test shown in
Table 1. First, consider the classical implementation of this test, for which 100% coverage
was shown for the simplest faults such as SAF and TF [9,13,14,20]. For a fault of mutual
influence such as CFid , only four of their eight types are detectable—namely, 〈↑, 0〉, 〈↓, 0〉,
〈1, ↑〉 and 〈1, ↓〉—giving only 50% of the fault coverage CFid . An even lower coverage of
the March Y test is achieved in the class of complex pattern sensitive faults. For PNPSFk
faults, only two of their types are detectable: 〈0, 0, 0, . . . , 0, ↑, 1, 1, 1, . . . , 1〉 and 〈0, 0, 0, ..., 0, ↓
, 1, 1, 1, . . . , 1〉. For example, for k = 3, the March Y test detects 〈0, 0, ↑〉, 〈0, ↑, 1〉,〈↑, 1, 1〉,
〈↓, 1, 1〉, 〈0, ↓, 1〉 and 〈0, 0 ↓〉, which is 6 out of k× 2k = 3× 23 = 24 faults in k fixed memory
cells. In percentage terms, PSF3 coverage is only 25%. For arbitrary k, the fault coverage of
PSF3 is calculated according to the expression (4).

FCMarchY(PNPSFk) =
QMarchY(PNPSFk)

QTN(PNPSFk)
× 100% =

1
2k−1 × 100% (4)

The efficiency of PNPSFk fault detection by transparent versions of the March Y
test (see Table 1) is also quantitatively estimated using expression (4). However, unlike
the classical implementation, transparent March Y will detect faults PNPSFk of the form
〈a, a, a, . . . , a, l, ā, ā, ā, . . . , ā〉 and 〈ā, ā, ā, . . . , ā, l, a, a, a, . . . , a〉, where the symbol l signifies
inverting the current value a of the memory cell. A similar statement is also true for CF;
however, in the first and second cases, the indicated faults may not be detected due to their
mapping in the configuration of multiple errors, which can be masked when obtaining
a real signature [27]. The effect of masking multiple errors by signature analysis also
results in even single constant faults possibly not being detected. Therefore, the previously
considered versions of transparent tests do not guarantee 100% detection of even the
simplest memory faults [9,25].

3. Double Address Sequences
With a single application of march tests, including their transparent versions, the fault

coverage of PNPSFk , along with any other faults, remains unchanged [13,25]. The only dif-
ference is the specific configurations of PNPSFk faults, which are detected (or not detected)
by a transparent test with a fixed memory content and a given sequence of addresses [9,26].
Changing the contents of the memory during the operation of the computer system can
significantly increase the fault coverage of PNPSFk with repeated use of transparent march
tests [28]. However, as shown in [29], in the memory of modern computer systems, two
characteristic components are distinguished: in one component, the content changes quite
intensively, and in the second it remains practically unchanged. To improve the efficiency
of multiple uses of march tests, a radical approach involves changing the sequence of
addresses used in each of the subsequent iterations of the march test [25]. The range of
uses of different address sequences is quite wide and was investigated in the frameworks
of multiple tests [26,30,31]. The focus was on the choices of address sequences and their
various modifications [13].

First, we will consider the general properties of address sequences and their modifi-
cations to implement transparent tests. Under the counter (counting) address sequence
AC = AC(0)AC(1)AC(2) . . . AC(N − 2)AC(N − 1), where AC(j) ∈ {0, 1, 2, . . . , N − 1},
j ∈ {0, 1, 2, . . . , N − 1} and N = 2m, we understand the sequence of addresses
AC = cm−1cm−2 . . . c2c1c0, where ci ∈ {0, 1} and i ∈ {0, 1, 2, . . . , m − 1} are generated
in accordance with the algorithm of the binary m-bit adding counter [13]. The starting
address AC(0) of AC is the zero address AC(0) = 000 . . . 0, and the finish address is
AC(N − 1) = 111 . . . 1.

In the general case, an arbitrary address sequence A = am−1am−2 . . . a2a1a0, where
ai ∈ {0, 1}, i ∈ {0, 1, 2, . . . , m− 1}, has the following properties [13]:

Property 1. The sequence of addresses A = am−1am−2 . . . a2a1a0 consists of all possible 2m

addresses (binary combinations am−1am−2 . . . a2a1a0) generated in arbitrary order, and each address
is generated only once.
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Property 2. For any sequence of bits ai of addresses A, there are 2m−1 different binary combinations
am−1am−2 . . . ai+1ai−1 . . . a2a1a0 for ai = 0 and the same number of nonrepeating combinations
am−1am−2 . . . ai+1ai−1 . . . a2a1a0 for ai = 1.

The last property can be generalized as the following statement:

Statement 1. An arbitrary collection of any m− 1 bits am−1am−2 . . . ai+1ai−1 . . . a2a1a0 out of
m bits am−1am−2 . . . a2a1a0 of the original address sequence A forms an address sequence in which
each m− 1 bit address is generated twice.

As an example, Table 2 shows similar address sequences for the case of the original
counter sequence AC = c3c2c1c0 and the gray code sequence AG = g3g2g1g0 for m = 4.

Table 2. Address sequences AC and AG, and their 2AC and 2AG modifications.

AC =
c3c2c1c0

2AC =
c3c2c1

2AC =
c3c2c0

2AC =
c3c1c0

2AC =
c2c1c0

AG =
g3g2g1g0

2AG =
g3g2g1

2AG =
g3g2g0

2AG =
g3g1g0

2AG =
g2g1g0

0000 (0) 000 (0) 000 (0) 000 (0) 000 (0) 0000 (0) 000 (0) 000 (0) 000 (0) 000 (0)

0001 (1) 000 (0) 001 (1) 001 (1) 001 (1) 0001 (1) 000 (0) 001 (1) 001 (1) 001 (1)

0010 (2) 001 (1) 000 (0) 010 (2) 010 (2) 0011 (3) 001 (1) 001 (1) 011 (3) 011 (3)

0011 (3) 001 (1) 001 (1) 011 (3) 011 (3) 0010 (2) 001 (1) 000 (0) 010 (2) 010 (2)

0100 (4) 010 (2) 010 (2) 000 (0) 100 (4) 0110 (6) 011 (3) 010 (2) 010 (2) 110 (6)

0101 (5) 010 (2) 011 (3) 001 (1) 101 (5) 0111 (7) 011 (3) 011 (3) 011 (3) 111 (7)

0110 (6) 011 (3) 010 (2) 010 (2) 110 (6) 0101 (5) 010 (2) 011 (3) 001 (1) 101 (5)

0111 (7) 011 (3) 011 (3) 011 (3) 111 (7) 0100 (4) 010 (2) 010 (2) 000 (0) 100 (4)

1000 (8) 100 (4) 100 (4) 100 (4) 000 (0) 1100 (12) 110 (6) 110 (6) 100 (4) 100 (4)

1001 (9) 100 (4) 101 (5) 101 (5) 001 (1) 1101 (13) 110 (6) 111 (7) 101 (5) 101 (5)

1010 (10) 101 (5) 100 (4) 110 (6) 010 (2) 1111 (15) 111 (7) 111 (7) 111 (7) 111 (7)

1011 (11) 101 (5) 101 (5) 111 (7) 011 (3) 1110 (14) 111 (7) 110 (6) 110 (6) 110 (6)

1100 (12) 110 (6) 110 (6) 100 (4) 100 (4) 1010 (10) 101 (5) 100 (4) 110 (6) 010 (2)

1101 (13) 110 (6) 111 (7) 101 (5) 101 (5) 1011 (11) 101 (5) 101 (5) 111 (7) 011 (3)

1110 (14) 111 (7) 110 (6) 110 (6) 110 (6) 1001 (9) 100 (4) 101 (5) 101 (5) 001 (1)

1111 (15) 111 (7) 111 (7) 111 (7) 111 (7) 1000 (8) 100 (4) 100 (4) 100 (4) 000 (0)

Similar sequences with double repetitions of all addresses can be obtained in other
ways, such as by permutations of both the addresses themselves and their bits of the
original sequence obtained in accordance with Statement 1. In general, such sequences
have to comply with the following definition:

Definition 1. The sequence of addresses 2A = am−1am−2 . . . a2a1a0 consists of all possible 2m

addresses (binary combinations am−1am−2 . . . a2a1a0), each of which is generated twice, and their
collection is formed in arbitrary order.

Hereafter, such sequences with a period of 2m+1 will be referred to as double address
sequences (2A), since each m-bit address is listed twice, as can be seen in Table 2.

An increasing sequence of such addresses will be denoted as 2⇑, and a decreasing
sequence as 2⇓. For each address sequence in Table 2, their binary address values are
shown, with their decimal equivalents presented in brackets. The form of the double
address sequence depends both on the selected bits of the original address sequence A and
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on their permutations; accordingly, the total number of 2A sequences obtained from the
original sequence A is equal to m!. Clearly, the number of such sequences for real values of
m generated according to Statement 1 is high, as is the variety of their properties. As an
example of the features of their properties, we note that in the sequence 2A = 2Ac0 = c3c2c1,
all addresses are formed in time sequentially and in pairs, and in 2A = 2Ac3 = c2c1c0,
the repeating addresses are maximally distant in time from each other (see Table 2).

The concept of transparent march tests utilizing double address sequences is based on
the fact that when the contents of the memory cell are inverted twice, its value will remain
the same. In accordance with this simplest property of the inversion operation, we construct
a base element of a transparent march test based on a double address sequence 2A. As in
classical transparent tests, the marching element must begin with the operation of reading
ra of the contents of a of the current memory cell. This is necessary for unambiguous
predicted actions with the current memory cell, which are based on knowledge of the
meaning of its contents. The next operation is the operation of writing the inverse of the
value just read from the cell content ā. This operation is followed by a read operation of
the same current memory cell to check the correctness of the operation of inverting its
contents. The next operation is to go to the following memory cell, which corresponds
to the next address of the address sequence. The use of double address sequences 2A
provides reinversion of each memory cell’s contents, resulting in its original state. Thus,
the base element is written as follows:

2⇑(ra, wā, ra). (5)

Note that the use of a double address sequence (2A) in the base element means that
each memory cell will sequentially perform two transitions from a to ā, and conversely,
from ā to a, thereby preserving its initial value. The base element performs the operation of
reading both zero and one values from each memory cell and executing transitions from
zero to one (↑) and from one to zero (↓) in it. The correctness of the transitions and the
operations of reading zero and one values are ensured by the second operation of reading
ra of the base element (5). To illustrate the implementation of the base element (5), let us
consider its application for testing an MD containing N = 8 cells with the initial content
0 0 1 0 1 1 1 0. The sequence of addresses 2AC = 2Ac2 = c3c1c0 and 2AG = 2Ag2 = g3g1g0
is used as a double address sequence, provided in Table 2. The step-by-step change of the
memory contents for both cases of double addressing is given in Table 3.

In each step of the implementation of the base element (5), only one memory cell
changes its state to the opposite one. After completing all steps (5), each memory element
will perform both transitions ↑ and ↓, and 0 and 1 will be read from each cell. As can be
seen from Table 3, after the execution of the base element (5), the initial state of the memory
remains unchanged.

The base element based on double address sequences allows the synthesis of two
transparent march tests (6).

March_2A_1 :{m(ra); 2⇑(ra, wā, ra);m(ra)}, (8N)

March_2A_2 :{m(ra); 2⇑(ra, wā, ra); 2⇓(ra, wā, ra);m(ra)}, (14N)
(6)

In both tests, the arbitrary order of addresses m for the first and last read operations
must be the same. This is due to the fact that the first phase of the March_2A_1 and
March_2A_2 tests is used to compress the initial state of the memory and obtain the reference
SF signature, and the last phase is used to obtain the real value of the SR signature after
the previous base elements have been executed. Regarding faults detected during the
execution of base elements, their presence will be determined by the fulfillment of the
inequality SF 6= SR.
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Table 3. The procedure for implementing the base element (5) of a nondestructive test for two types of addressing.

MD
Addr. 7 6 5 4 3 2 1 0

MD
Address 7 6 5 4 3 2 1 0

Content 0 0 1 0 1 1 1 0 Content 0 0 1 0 1 1 1 0

2Ac2

000 (0) 0 0 1 0 1 1 1 ↑

2Ag2

000 (0) 0 0 1 0 1 1 1 ↑

001 (1) 0 0 1 0 1 1 ↓ 1 001 (1) 0 0 1 0 1 1 ↓ 1

010 (2) 0 0 1 0 1 ↓ 0 1 011 (3) 0 0 1 0 ↓ 1 0 1

011 (3) 0 0 1 0 ↓ 0 0 1 010 (2) 0 0 1 0 0 ↓ 0 1

000 (0) 0 0 1 0 0 0 0 ↓ 010 (2) 0 0 1 0 0 ↑ 0 1

001 (1) 0 0 1 0 0 0 ↑ 0 011 (3) 0 0 1 0 ↑ 1 0 1

010 (2) 0 0 1 0 0 ↑ 1 0 001 (1) 0 0 1 0 1 1 ↑ 1

011 (3) 0 0 1 0 ↑ 1 1 0 000 (0) 0 0 1 0 1 1 1 ↓

100 (4) 0 0 1 ↑ 1 1 1 0 100 (4) 0 0 1 ↑ 1 1 1 0

101 (5) 0 0 ↓ 1 1 1 1 0 101 (5) 0 0 ↓ 1 1 1 1 0

110 (6) 0 ↑ 0 1 1 1 1 0 111 (7) ↑ 0 0 1 1 1 1 0

111 (7) ↑ 1 0 1 1 1 1 0 110 (6) 1 ↑ 0 1 1 1 1 0

100 (4) 1 1 0 ↓ 1 1 1 0 110 (6) 1 ↓ 0 1 1 1 1 0

101 (5) 1 1 ↑ 0 1 1 1 0 111 (7) ↓ 0 0 1 1 1 1 0

110 (6) 1 ↓ 1 0 1 1 1 0 101 (5) 0 0 ↑ 1 1 1 1 0

111 (7) ↓ 0 1 0 1 1 1 0 100 (4) 0 0 1 ↓ 1 1 1 0

4. Analysis of the Effectiveness of New Transparent Tests
Consider the fault coverage of new tests starting with the March_2A_1 test. Let us

assume that in the case of the specified test the initial content of the memory is zero; that is,
for all cells with a = 0 and the base element 2m(ra, wā, ra) represented by two consecutive
elements ⇑(ra, wā, ra) and ⇓(ra, wā, ra), we can conclude that the tests March_2A_1 and
March Y are equivalent. Their equivalence lies both in the time complexity equal to 8N and
in the ability to cover various types of faults. Let us sequentially consider the detection
efficiency of March_2A_1 for the most significant types of memory faults.

As noted earlier, the base element (5) provides the activation and detection of all
the simplest faults, such as SAF and TF. The write operation wā and double addressing
2A provide both the reading of zero and one from the current cell and the execution of
two transitions of its state, creating a condition for activating these faults. Their detection
is provided by the second read operation ra, the result of which is compared with the
value obtained during the first read operation ra of the base element (5). In the absence
of the indicated faults, these values should be opposite. If the values obtained during the
implementation of the first and second operations of reading the base element are the same,
this indicates the presence of faults, and in the case of SAF and TF, allows us to localize
these faults. Thus, for the simplest faults, the proposed March_2A_1 test, in contrast to the
known transparent tests, provides the maximum diagnostic ability.

Similarly, the maximum possible diagnostic ability for march tests by the March_2A_1
test is achieved for the case of complex pattern sensitive faults PNPSFk . Execution of the
base element in the case of PNPSFk allows the identification of the address of the base cell,
which cannot perform one of the transitions in this cell for specific content in neighboring
cells. In addition, the March_2A_1 test achieves the same fault coverage for PNPSFk as the
March Y test; in this case, only two of their types are detected, 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉
and 〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, where u, d ∈ {0, 1}. The values of the contents of neigh-
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boring cells u and d depend both on the initial state of the MD and another type of sequence
for addresses 2A. For example, for the case of an MD with eight cells and PNPSF3 faults in
cells with addresses 1, 3 and 5, using the address sequence 2Ac2, the base element (5) allows
the detection of the following faults: 〈1, 0, ↑〉, 〈1, 1, ↓〉, 〈1, ↑, 1〉, 〈1, ↓, 0〉, 〈↑, 1, 1〉 and 〈↓, 1, 1〉
(see Table 3). Under the same conditions, changing the double address sequence 2Ac2
to 2Ag2 leads to the detection of another set of PNPSF3: 〈1, 1, ↑〉, 〈1, 1, ↓〉, 〈1, ↑, 0〉, 〈1, ↓, 0〉,
〈↑, 1, 1〉 and 〈↓, 1, 1〉 (see Table 3). Thus, a single application of the March_2A_1 test gives a
fault coverage of 25% for PNPSF3, and its repeated use with variable 2A address sequences
gives a fault coverage of 100% for arbitrary PNPSFk . The multiplicity of the test to achieve
the maximum coverage completeness for a given k depends on many factors, and as in the
case of classic march tests, requires additional analysis [7,8].

To detect the coupling faults, it is necessary to analyze the state of the victim’s cell after
activating a specific fault, which is impossible within the framework of the base element (5).
Therefore, these faults are detected when an even number of inversions of the contents of
the victim’s cell by the base element changes by an odd number. Thus, the final state of the
memory will differ from its initial state, which will lead to the fulfillment of the inequality
SF 6= SR. Quantitatively, the fault coverage of the March_2A_1 test of such faults is equal
to the fault coverage of the March Y test, as can be seen for CFid from the experimental
data provided in Table 4.

Table 4. Fault coverage of CFid faults by March_2A_1 test in percent (%).

CFid 2Ac0 2Ac1 2Ac2 2Ac3 2Ac4 2Ac5 2Ac6 2Ac7 2Ac8

〈0, ↑〉 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

〈1, ↑〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

〈0, ↓〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈1, ↓〉 100.00 99.61 98.82 97.25 94.12 87.84 75.29 50.20 0.00

〈↑, 0〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈↑, 1〉 100.00 99.61 98.82 97.25 94.12 87.84 75.29 50.20 0.00

〈↓, 0〉 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

〈↓, 1〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Total 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

The table shows that the total number of faults detected by the March_2A_1 test,
regardless of the address sequence 2A, was always 50%. The data presented were obtained
for a memory with a capacity of N = 256 bits with a zero initial state. Address sequences
2Ac0, . . . , 2Ac7, 2Ac8 were formed from the counter sequence AC = c8c7c6c5c4c3c2c1c0 by
removing the corresponding bit—for example, 2Ac2 = c8c7c6c5c4c3c1c0.

Analyzing the data given in Table 4 allowed us to conclude that the fault coverage of
complex memory faults by the March_2A_1 test is independent from the address sequence
used. Any address sequence corresponding to Definition 1 provides quantitatively the
same fault coverage of complex memory faults. Regardless of the 2A address sequence
used, the fault coverage for a given fault type remains unchanged. Changing the address
sequence 2A affects the specific types of fault detected, as can be seen from the examples of
CFid faults given in Table 4.

The March_2A_2 transparent march test differs from March_2A_1 by the presence
of a second base element with reverse address order of 2A, which enhances its ability
to detect complex faults while maintaining the effectiveness of March_2A_1 for simple
faults. For example, the March_2A_1 test with the address sequence 2Ac2 detects PNPSF3:
〈1, 1, ↑〉, 〈0, 0, ↓〉, 〈0, ↑, 0〉, 〈1, ↓, 1〉, 〈↑, 1, 0〉, and 〈↓, 0, 1〉 for storage cells 5, 6 and 7 (see
Table 3). At the same time, the first base element of the March_2A_2 test detects the same
PNPSF3, and the second base element additionally provides the detection of the follow-
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ing faults: 〈0, 0, ↑〉, 〈1, 1, ↓〉, 〈1, ↑, 1〉, 〈0, ↓, 0〉, 〈↑, 0, 1〉 and 〈↓, 1, 0〉. Thus, the number of
PNPSF3 detected by the March_2A_2 test doubled compared to March_2A_1. Note that
doubling the PNPSFk faults detected by the March_2A_2 test is achievable only for the case
in which the first base element detects such faults as 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉 and
〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, for which the states of neighboring cells are different. Other-
wise, the second base element will detect the same two faults 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉
and 〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, but in reverse order. For example, for the case of a mem-
ory device with eight cells and PNPSF3 faults in cells with addresses 1, 3 and 5, the first
base element of the March_2A_2 test with the address sequence 2Ac2 detects 〈↓, 1, 1〉 and
〈↑, 1, 1〉, among other faults (see Table 3). The second base element of the same March_2A_2
test also detects these faults, which ultimately does not lead to a twofold increase in PNPSF3
faults detected by this test. At the same time, as the value of k increases, the probability of
the coincidence of the states of cells of neighbors in faults 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉 and
〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉 noticeably decreases, resulting in a coverage completeness of
PNPSFk close to 50%.

To ensure the fault coverage of the PNPSFk faults equal to 50%, it is necessary to select
the appropriate address sequence. This statement is confirmed by the experimental data
given in Table 5, which were obtained under the same conditions as the data shown in
Table 4.

Table 5. Fault coverage of CFid faults by March_2A_2 test in percent (%).

CFid 2Ac0 2Ac1 2Ac2 2Ac3 2Ac4 2Ac5 2Ac6 2Ac7 2Ac8

〈0, ↑〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈1, ↑〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

〈0, ↓〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈1, ↓〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

〈↑, 0〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈↑, 1〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

〈↓, 0〉 0.00 0.39 1.18 2.75 5.88 12.16 24.71 49.80 100.00

〈↓, 1〉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Total 50.00 50.20 50.59 51.37 52.94 56.08 62.35 74.99 100.00

As can be seen from the above table, the fault coverage of CFid faults changed
significantly, depending on the 2A address sequence used in the March_2A_2 test. There-
fore, for the case in which 2Ac0 = c8c7c6c5c4c3c2c1, the fault coverage was only 50%; for
2Ac8 = c7c6c5c4c3c2c1, the fault coverage reached a maximum value of 100%. Thus, in con-
trast to the single run test March_2A_1, the application of the March_2A_2 test required
the choice of an address sequence to ensure high coverage of faults involving two or more
memory cells.

5. March_2A_2 Test Requirements for Maximum Efficiency
Initially, we note that the standard one-run implementation of the test March_2A_1

does not depend on the specific type of address sequence 2A used. Any sequence of
addresses 2A corresponding to Definition 1 will provide the same fault coverage for all
types of memory faults discussed earlier. At the same time, for the March_2A_2 test,
the type of addressing used by 2A is of fundamental importance; this is exemplified by
the data provided in Table 5. For the most complex PNPSFk fault, the previous section
showed that the March_2A_2 test, with an appropriate choice of 2A addressing, can double
the fault coverage of PNPSFk compared with March_2A_1. When increasing the fault
coverage of PNPSFk faults by factor of two, for fixed k cells, detection by the March_2A_2
test is achievable only for the case in which the first base element detects such faults
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as 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉 and 〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, for which the states of
neighboring cells are different. Otherwise, the second base element will detect the same
two faults, 〈u, u, u, . . . , u, ↑, u, u, u, . . . , u〉 and 〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, but in reverse
order, due to reverse addressing ⇓2A.

Two examples are provided in Tables 6 and 7 to illustrate the importance of the
address sequence 2A in terms of the fault coverage of the CFid and PNPSFk by one-run
implementation of the March_2A_2 test. Both examples are given for the case of 8-bit
memory with an all zero initial state. In the first case, 2Ac0 = c3c2c1 was used as the
address sequences, and in the second case, 2Ac3 = c2c1c0 was used. Each table provides
the step-by-step implementation of both phases of the March_2A_2 test (6).

Table 6. One-run implementation of the March_2A_2 test with 2Ac0 addressing.

MD
Addr. 7 6 5 4 3 2 1 0

MD
Addr. 7 6 5 4 3 2 1 0

Content 0 0 0 0 0 0 0 0 Content 0 0 0 0 0 0 0 0

First 000 (0) 0 0 0 0 0 0 0 ↑ Second 111 (7) ↑ 0 0 0 0 0 0 0

phase 000 (0) 0 0 0 0 0 0 0 ↓ phase 111 (7) ↓ 0 0 0 0 0 0 0

⇑2Ac0 001 (1) 0 0 0 0 0 0 ↑ 0 ⇓2Ac0 110 (6) 0 ↑ 0 0 0 0 0 0

001 (1) 0 0 0 0 0 0 ↓ 0 110 (6) 0 ↓ 0 0 0 0 0 0

010 (2) 0 0 0 0 0 ↑ 0 0 101 (5) 0 0 ↑ 0 0 0 0 0

010 (2) 0 0 0 0 0 ↓ 0 0 101 (5) 0 0 ↓ 0 0 0 0 0

011 (3) 0 0 0 0 ↑ 0 0 0 100 (4) 0 0 0 ↑ 0 0 0 0

011 (3) 0 0 0 0 ↓ 0 0 0 100 (4) 0 0 0 ↓ 0 0 0 0

100 (4) 0 0 0 ↑ 0 0 0 0 011 (3) 0 0 0 0 ↑ 0 0 0

100 (4) 0 0 0 ↓ 0 0 0 0 011 (3) 0 0 0 0 ↓ 0 0 0

101 (5) 0 0 ↑ 0 0 0 0 0 010 (2) 0 0 0 0 0 ↑ 0 0

101 (5) 0 0 ↓ 0 0 0 0 0 010 (2) 0 0 0 0 0 ↓ 0 0

110 (6) 0 ↑ 0 0 0 0 0 0 001 (1) 0 0 0 0 0 0 ↑ 0

110 (6) 0 ↓ 0 0 0 0 0 0 001 (1) 0 0 0 0 0 0 ↓ 0

111 (7) ↑ 0 0 0 0 0 0 0 000 (0) 0 0 0 0 0 0 0 ↑

111 (7) ↓ 0 0 0 0 0 0 0 000 (0) 0 0 0 0 0 0 0 ↓

As can be seen from Table 6, the second phase of the March_2A_2 test detects the
same CFid and PNPSFk faults as the first phase of this test, but in reverse order. Moreover,
this is true for any k ≤ N for memory of any size N and an arbitrary initial state. For the
general case of an 2Ac0 = cmcm−1 . . . c3c2c1 (2Ac0 = c3c2c1) address sequence, obtained
from counting sequence AC, only four CFid s, namely, 〈1, ↑〉, 〈↑, 1〉, 〈1, ↓〉 and 〈↓, 1〉, will be
actually detectable by March_2A_2, as can be seen from Table 6 (see also Tables 4 and 5).
At the same time, the example shown in Table 6 indicates that only two PNPSFk faults,
namely, 〈0, 0, 0 . . . , 0, ↑, 0, 0, 0, . . . , 0〉 and 〈0, 0, 0, . . . , 0, ↓, 0, 0, 0, . . . , 0〉 are detectable.

A significantly different situation is illustrated by the second example shown in
Table 7. Application of the address sequence 2Acm = cm−1cm−2 . . . c2c1c0 (2Ac3 = c2c1c0)
doubled the coverage of both CFid and PNPSFk faults. In this case, all eight types of
CFid , 〈↑, 0〉, 〈0, ↑〉, 〈↑, 1〉, 〈1, ↑〉, 〈↓, 0〉, 〈0, ↓〉, 〈↓, 1〉 and 〈1, ↓〉; and four PNPSFk faults,
〈1, 1, 1 . . . , 1, ↑, 0, 0, 0, . . . , 0〉, 〈0, 0, 0, . . . , 0, ↓, 1, 1, 1, . . . , 1〉, 〈1, 1, 1, . . . , 1, ↓, 0, 0, 0, . . . , 0〉 and
〈0, 0, 0, . . . , 0, ↑, 1, 1, 1, . . . , 1〉 were detected.
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Table 7. One-run implementation of the March_2A_2 test with 2Ac3 addressing.

MD
Addr. 7 6 5 4 3 2 1 0

MD
Addr. 7 6 5 4 3 2 1 0

Content 0 0 0 0 0 0 0 0 Content 0 0 0 0 0 0 0 0

First 000 (0) 0 0 0 0 0 0 0 ↑ Second 111 (7) ↑ 0 0 0 0 0 0 0

phase 001 (1) 0 0 0 0 0 0 ↑ 1 phase 110 (6) 1 ↑ 0 0 0 0 0 0

⇑2Ac3 010 (2) 0 0 0 0 0 ↑ 1 1 ⇓2Ac3 101 (5) 1 1 ↑ 0 0 0 0 0

011 (3) 0 0 0 0 ↑ 1 1 1 100 (4) 1 1 1 ↑ 0 0 0 0

100 (4) 0 0 0 ↑ 1 1 1 1 011 (3) 1 1 1 1 ↑ 0 0 0

101 (5) 0 0 ↑ 1 1 1 1 1 010 (2) 1 1 1 1 1 ↑ 0 0

110 (6) 0 ↑ 1 1 1 1 1 1 001 (1) 1 1 1 1 1 1 ↑ 0

111 (7) ↑ 1 1 1 1 1 1 1 000 (0) 1 1 1 1 1 1 1 ↑

000 (0) 1 1 1 1 1 1 1 ↓ 111 (7) ↓ 1 1 1 1 1 1 1

001 (1) 1 1 1 1 1 1 ↓ 0 110 (6) 0 ↓ 1 1 1 1 1 1

010 (2) 1 1 1 1 1 ↓ 0 0 101 (5) 0 0 ↓ 1 1 1 1 1

011 (3) 1 1 1 1 ↓ 0 0 0 100 (4) 0 0 0 ↓ 1 1 1 1

100 (4) 1 1 1 ↓ 0 0 0 0 011 (3) 0 0 0 0 ↓ 1 1 1

101 (5) 1 1 ↓ 0 0 0 0 0 010 (2) 0 0 0 0 0 ↓ 1 1

110 (6) 1 ↓ 0 0 0 0 0 0 001 (1) 0 0 0 0 0 0 ↓ 1

111 (7) ↓ 0 0 0 0 0 0 0 000 (0) 0 0 0 0 0 0 0 ↓

The two examples provided demonstrate the dependence of the effectiveness of the
March_2A_2 test on the selected address sequences 2A. This is true for any arbitrary
address sequence satisfying Definition 1, and not only for 2A obtained from the counter
sequence AC.

Based on these examples of the March_2A_2 test implementation for different 2A
address sequences, we can formulate the conditions for achieving the maximum coverage
of faults CFid and PNPSFk with a one-run March_2A_2 test.

Regarding CFid faults, 100% fault coverage will be achieved if the following four
states are formed for each N− 1 remaining memory cell of the memory, when the aggressor
cell makes the transitions (7).

b b b . . . b ↑ b̄ b̄ b̄ . . . b̄

b̄ b̄ b̄ . . . b̄ ↓ b b b . . . b

b b b . . . b ↓ b̄ b̄ b̄ . . . b̄

b̄ b̄ b̄ . . . b̄ ↑ b b b . . . b

(7)

Indeed, for an arbitrary state b ∈ {0, 1} in each of presumed victim cells, the fulfillment
of condition (7) will lead to the detection of all eight CFid faults: 〈b, ↑〉, 〈b̄, ↑〉, 〈b, ↓〉, 〈b̄, ↓〉,
〈↑, b〉, 〈↑, b̄〉, 〈↓, b〉 and 〈↓, b̄〉.

Initially, it should be noted that the maximum number of PNPSFk faults detected by
any single-run march test, including the March_2A_1 and March_2A_2 tests, is equal to
the number of write operations of inverse values used in the test. This means that for any
k fixed memory cells and for each aggressor cell, the March_2A_1 test detects two faults,
and the March_2A_2 test detects a maximum of four PNPSFk faults.
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As noted earlier, the single test March_2A_1 detects two PNPSFk faults, 〈u, u, u, . . . , u, ↑
, u, u, u, . . . , u〉 and 〈d, d, d, . . . , d, ↓, d, d, d, . . . , d〉, where u, d ∈ {0, 1} for any k, including
k = N, and the following inequality:

u, u, u, . . . , u 6= d, d, d, . . . , d (8)

For the states of the k − 1 neighboring cells, excluding the base cell for these two
faults is a necessary and sufficient condition to double the fault coverage of PNPSFk by
the March_2A_2 for a given k. However, the fulfillment of condition (8), which ensures
the detection of four PNPSFk faults for a given number k of fixed memory cells, does not
guarantee the detection of PNPSFk faults for smaller values of k. For example, for two faults
〈1, ↑, 1, 1〉 and 〈0, ↓, 1, 1〉 for 2, 3, 4 and 5 memory cells, as shown in Table 3, the conditions
of (8) satisfy 1, 1, 1 6= 0, 1, 1, and two additional PNPSF4〈1, ↓, 1, 1〉 and 〈0, ↑, 1, 1〉 are detected
by the March_2A_2 test. At the same time, for k = 3 and memory cells with addresses 2, 3
and 4, only two PNPSF3 faults are detected by March_2A_2, namely, 〈↑, 1, 1〉 and 〈↓, 1, 1〉,
due to the nonfulfillment of condition (8). To avoid such situations, condition (8) must be
extended to the case in which d, d, d, . . . , d = ū, ū, ū, . . . , ū.

The above analysis allowed us to formulate a generalized requirement for the
March_2A_2 test, and accordingly, for the address sequence 2A used to implement it.

To achieve the maximum fault detection ability by the March_2A_2 test, for any
arbitrary cell acting as an aggressor (in a case CFid ) or as a base cell (in a case PNPSFk ),
the following condition must be met for all remaining N − 1 cells:

b b b . . . b ↑ b̄ b̄ b̄ . . . b̄

b̄ b̄ b̄ . . . b̄ ↓ b b b . . . b .
(9)

In this case, the symbols ↑ and ↓ denote an arbitrary cell, and the random b ∈ {0, 1}
states of the remaining cells are changed in an orderly manner to the opposite values b̄.

6. Investigation of the Properties of Double Address Sequences 2A
The sequence of addresses 2A = am−1am−2 . . . a2a1a0 consists of all possible 2m ad-

dresses A(0)A(1)A(2) . . . A(2m − 2)A(2m − 1), where A(j) ∈ {0, 1, 2, . . . , 2m − 1},
j ∈ {0, 1, 2, . . . , 2m − 1} are binary combinations am−1am−2 . . . a2a1a0, each of which is
generated twice. This means that in an arbitrary sequence 2A, two addresses A(j) are
generated at a certain distance from each other, which is determined by the algorithm for
generating 2A. For example, for the address sequence 2AC = c2c1c0, addresses A(1) = 001
are generated at a distance of 8 from each other, and the same two addresses in the sequence
2AG = g2g1g0 are generated at a distance of 13 (see Table 3). Thus, each address A(j) of
the 2A sequence has a fixed distance between its repeated generation.

For the general case, an arbitrary address A(j) has two values of the distance metric
AD(A(j), 2A), namely, r and 2m+1 − r, which depend on the starting A(0) address of the
2A sequence. This follows from the properties of cyclic sequences, and can be explained as
follows. Given that the period of the sequence of addresses 2A is equal to 2m+1, and the
distance between the first and second addresses A(j) is equal to r, the distance between
the second and the first addresses A(j) will be equal to 2m+1 − r. In the previous example,
the starting address for both 2AC = c2c1c0 and 2AG = g2g1g0 sequences was an all-
zero address A(0) = 000. Changing the starting address to A(3) = 011 would cause
AD(A(1), 2AG) to change its value r = 13 by 2m+1 − r = 24˘13 = 3, and AD(A(1), 2AC)
would remain unchanged at 8.

A more general characteristic describing the sequence 2A determines the average
distance of addresses and is calculated according to the following expression:

SD(2A) =
1

2m

2m−1

∑
j=0

AD(A(j), 2A).

Specifically, we will assume that both metrics are calculated at a zero starting address
A(0), understanding that they both depend on it; AD(A(j), 2A) is the distance between
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the first A(j) and second, and not vice versa. For example, for the sequence 2AG = g2g1g0,
the average address distance SD(2A) is calculated as follows: SD(2AG) = (15 + 13 + 9 +
11 + 1 + 3 + 7 + 5)/8 = 8 (see Table 3).

Furthermore, we use the metric of the average distance ASD(2A) between the same
addresses A(j) of sequence 2A, which is invariant with respect to the starting address. This
metric is calculated according to expression (10).

ASD(2, A) =
1

2m

2m−1

∑
j=0

MIN[AD(A(j), 2A), (2m−1 − AD(A(j), 2A))] (10)

Then, for the same example 2AG = g2g1g0, the average distance between the same
addresses 2AG is calculated according to (10) as 4, and this value is repeated for any initial
values of the address.

Now consider the main properties of two metrics, AD(A(j), 2A) and ASD(2A).

1. The minimum value of the metric AD(A(j), 2A) does not depend on the starting
address of the sequence 2A, so for any starting address, it takes one out of two values,
r or 2m+1 − r. Similarly, the value of the metric ASD(2A) does not depend on the
starting address of the sequence 2A.

2. For any sequence 2A with period equal to 2m+1 satisfying Definition 1, the metrics
AD(A(j), 2A) and ASD(2A) take the following values:

1 ≤ AD(A(j), 2A) ≤ 2m+1 − 1

1 ≤ ASD(2A) ≤ 2m
(11)

3. The maximum value of the metric ASD(2A) is achieved when AD(A(j), 2A) = 2m

for all j ∈ {0, 1, 2, . . . , 2m − 1}, as described by expression (10).

The metrics AD(A(j), 2A) and ASD(2A) for the sequence 2A allow us to formulate
condition (9) for the maximum efficiency of the March_2A_2 test in terms of these char-
acteristics. Indeed, only in the case in which for any memory cell with the address A(j),
the distance AD(A(j), 2A) will be equal to 2m, in the remaining memory cells, the inverse
states given in (9) will be formed. Recall that condition (9) was formulated for all memory
cells, the number of which, N, equals 2m.

Thus, the condition for the maximum effectiveness of the March_2A_2 test can be
formulated as the following statement:

Statement 2. The maximum efficiency of the March_2A_2 test, characterized by 100% coverage
of SAF, TFand CF id faults, and fault coverage equal to 1/2k−2 × 100% for PNPSF k, is achieved
when using the address sequence 2A, for which ASD(2A) = 2m.

The value 1/2k−2 × 100% of the coverage of PNPSFk faults follows from the fact that
the March_2A_2 test detects four types of similar faults determined by the condition (9)
fulfilled by their detection.

It should be noted that the address sequence 2ACm = cm−1cm−2 . . . c2c1c0,
(2Ac3 = c2c1c0) given in Table 7 for m = 3 satisfies Statement 1 and provides the maximum
covering ability of the March_2A_2 test.

7. Conclusions
This article presented a new approach for constructing transparent memory tests

based on the use of address sequences with repeated addresses. The primary innovation
in this work is the base element (5) based on the use of double address sequences 2A.
The use of this element for constructing tests March_2A_1 and March_2A_2 significantly
reduces the complexity of transparent tests in comparison with the known approaches,
and in particular, with the classic transparent Nicolaidis tests. The second clear advantage
of the new tests is their diagnostic ability, which is comparable to the diagnostic ability of
march tests, particularly for simple faults such as SAF and TF. The third definite advantage
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is the preservation of the covering ability of the March_2A_1 test in relation to the test
March Y due to the elimination of the masking effect of errors caused by memory faults,
since any memory fault is transformed by both tests if errors of a multiplicity do not exceed
two. Newly introduced double address sequence metrics allow the selection of address
sequences to maximize the effectiveness of the March_2A_2 test. These metrics make it
possible to further synthesize the repeated use of the developed tests March_2A_1 and
March_2A_2 to achieve their maximum efficiency with the minimum number of runs.
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