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Abstract: Simple, controllable models play an important role in learning how to manipulate and
control quantum resources. We focus here on quantum non-Markovianity and model the evolution
of open quantum systems by quantum renewal processes. This class of quantum dynamics provides
us with a phenomenological approach to characterise dynamics with a variety of non-Markovian
behaviours, here described in terms of the trace distance between two reduced states. By adopting
a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is
influenced by the constituents defining the quantum renewal process, namely the time-continuous
part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the
mere value of the non-Markovianity measure, but also on how different features of the trace distance
evolution are altered, including times and number of revivals.

Keywords: open quantum systems; renewal processes; memory effects; master equations; non-Markovianity

1. Introduction

Quantum phenomena are deemed to be the main ingredients of the next techno-
logical breakthroughs. Quantum correlations, quantum coherences and quantum non-
Markovianity are the key resources to outperform classical protocols in many tasks,
within the contexts of, for example, communication [1,2], teleportation [3], cryptography [4],
metrology [5] and thermodynamics [6], thus providing the pillars for future progress in
quantum technology [7]. Even though developments in quantum theory started at the
beginning of the last century, a deep and thorough understanding of the above-mentioned
features in view of their operational exploitation is still being developed [5,8,9]. This is
why simple, controllable models play an important role in learning how to manipulate and
control the quantum resources.

In this article, we focus on the analysis of a Markov property in the quantum setting
and on the description of a class of open quantum system dynamics featuring memory
effects and allowing for a phenomenological treatment. The Markov property is a concept
from the theory of classical stochastic processes, where a clear definition of the Markov
process can be introduced in terms of conditional probability distributions. This notion
is connected with the memorylessness of the process, i.e., the fact that the future of the
process is independent of its history. As stochastic processes are used to model reality in
many different fields of research, such as finance, biology, chemistry and social science, this
is a highly relevant and often recurring concept [10]. Stochastic processes naturally appear
in the description of (open) classical systems where, at least in principle, the stochasticity
can be always traced back to the lack of knowledge on the underlying total Hamiltonian
and the initial conditions [10,11]. The extension of the classical formalism to the theory of
open quantum systems is not straightforward, due to the invasive nature of the quantum
measurements. As a consequence, many different, nonequivalent definitions of the quan-
tum Markov process have been introduced, all of them aimed at revealing the occurrence
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of memory effects in quantum evolutions. In this respect, the notion of memory in the
quantum realm still calls for a full physical interpretation. Some hints in this direction come
from the framework of quantum thermodynamics, where, for example, the connection
between non-Markovianity and irreversible entropy production was explored [12,13].

We point out how the class of quantum renewal processes can be used as a phenomeno-
logical tool to describe dynamics with different non-Markovian behaviours. Our study
complements other approaches, whose starting point is rather a microscopic description
specifying a reference total Hamiltonian, although some exceptions exist [14]. In partic-
ular, strategies aimed at controlling the non-Markovianity of the dynamics explored the
manipulation of system–environmental coupling [15–17], or modification of the reduced
system itself [18,19]. The possibility of delaying the occurrence of non-Markovianity [20]
and enhancing it by means of feedback control [21] was also investigated.

The existence of an underlying microscopical description of the evolution ensures
that the reduced dynamics is indeed physical, i.e., the corresponding dynamical map Λt,
which maps the initial reduced density operator ρ(0) to a density operator at later time
t: ρ(t) = Λt[ρ(0)], is completely positive and trace preserving (CPTP). This follows from
the assumption that, initially, the reduced system and its environment are not correlated,
i.e., the initial total state is factorised: ρtot(0) = ρ(0) ⊗ ρE(0). The density operator yields
the probability distributions in quantum physics, so that trace preservation of the dynamics
keeps the correct normalisation of the probabilities, while complete positivity takes into
account the possible entanglement of the system state with other, otherwise not involved,
degrees of freedom [22], ensuring that joint probabilities are properly defined. On the other
hand, if one chooses a more phenomenological approach and fixes the form of the dynami-
cal map or of the corresponding evolution equation for ρ(t), the so-called master equation,
the CPTP property of Λt needs to be warranted. For Markovian semigroups, this issue is
well under control, i.e., one can specify the general structure of the corresponding master
equation of the so-called Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form [23,24],
which describes any proper quantum evolution obeying a semigroup composition law. Its
generalisation to the case of the so-called CP-divisible dynamics satisfying a more general
composition law: Λt = Λt,sΛs, with Λt,s being a CPTP map, is also known [25,26]. However,
a comparable result is still missing for general non-Markovian evolutions, although the
topic has attracted a lot of interest [27–40]. Remarkably, in the case of the quantum renewal
processes that we analyse here, CPTP of the dynamical map is guaranteed by construction.
This makes this class of open quantum system dynamics a valuable tool for the phenomeno-
logical description of reduced dynamics. In addition, despite their simplicity, quantum
renewal processes can show a wide range of non-Markovian behaviours, which we analyse
in details in the following.

The rest of the article is organized as follows. In Section 2, we introduce the concept
of non-Markovianity for stochastic processes. After this, we describe a possible definition
of quantum non-Markovianity based on the monotonicity of the trace distance between
two reduced states, which we adopt in the whole article. In Section 3, we continue with
the presentation of the renewal processes in the classical and the quantum domain, while
Section 4 is devoted to the trajectory picture of the reduced dynamics and to the description
of the different elements that influence the non-Markovianity of the quantum renewal
process: the time-continuous part of the dynamics, the type of jumps and the waiting time
distributions governing the whole stochasticity of the jump times. In Section 5, we analyse
the impact on the non-Markovianity measure and, more generally, on the main features of
the trace distance evolution, such as the number and instants of its revivals. Finally, we
summarise our findings in Section 6.
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2. Memory Effects in Quantum Dynamics

We say that a stochastic process X(t), t ≥ 0, taking values in a discrete set {xi}i∈N, is
Markov if the corresponding conditional probability distributions satisfy for any finite n
the following inequalities:

p1∣n(xn+1, tn+1∣xn, tn; . . . ; x1, t1) = p1∣1(xn+1, tn+1∣xn, tn), (1)

where the times are ordered: tn+1 ≥ tn ≥ . . . ≥ t1 ≥ 0, i.e., once we know the value xn of
the stochastic process at time tn, the past history prior to tn does not affect the predic-
tions about the value of the process at any future time tn+1. Due to the invasive nature
of quantum measurements, the extension of this definition to the quantum regime is not
straightforward [41], and many different, non-equivalent definitions of quantum Marko-
vianity have been introduced [9,42,43]. In most of them Markovianity is a property of
the dynamical map Λt itself, such as (C)P-divisibility [26,44,45], the change of the volume
of accessible states [46] and monotonicity of the trace distance as a quantifier of state
distinguishability [47,48]; the latter is the one we will adopt here. On the other hand, other
approaches, such as the process matrix formalism [49,50], ground the notion of quantum
Markovianity on conditional probabilities associated with sequences of measurements,
going beyond the single-time description of the open system dynamics and calling for
multi-time correlations.

The definition of non-Markovianity we use here is based on the change in distin-
guishability between system states, quantified in the original paper [47] by means of the
trace distance between two reduced states in the course of the evolution. The trace distance
between two quantum states ρ, σ is defined as follows:

D(ρ, σ) =
1
2

Tr∣ρ − σ∣ =
1
2
∑

i
∣vi∣, (2)

where vi are the eigenvalues of the operator ρ − σ. The quantum dynamics fixed by the
map Λt is non-Markovian if and only if the trace distance is not a monotonous function of
time, i.e., there exists a couple of initial states ρ(0) and σ(0) and a time t > 0 for which the
following holds:

d
dt
D(ρ(t), σ(t)) > 0, (3)

where ρ(t) = Λt[ρ(0)] and σ(t) = Λt[σ(0)].
Importantly, since the trace distance is contractive under the action of any (C)PTP

map φ,

D(φ(ρ), φ(σ)) < D(ρ, σ), (4)

(C)P-divisibility [26,44,45,51] implies monotonicity of the trace distance and thus Marko-
vianity according to the definition above, while the inverse does not hold [48]. The trace-
distance-based definition of non-Markovianity provides a clear-cut interpretation in terms
of the information flow between the open quantum system and the environment as the key
element, possibly leading to the occurrence of memory effects in the dynamics. In addition,
this picture allows us to trace back the exchange of information between the open system
and the environment to the correlations established by their mutual interaction [52–57];
see Figure 1. Initially, the whole information is contained in the reduced system; however,
due to the system–environment interaction, some information gets transferred to external
degrees of freedom over the course of the evolution. Such information can be stored
both in the environment and in the system–environmental correlations. In Markovian
dynamics, the information flow is unidirectional, i.e., the information is always flowing
from the open system to the outside world and any couple of reduced states get closer and
closer with the passing of time. On the other hand, for non-Markovian evolutions, some
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information backflow occurs, which is witnessed by an increase in the distance between
pairs of reduced states on certain intervals of time. Let us stress that this viewpoint was
recently strengthened, as it was shown that also different distinguishability measures
between two quantum states, including entropic quantities, can be used to quantify the
information flow; it appears in particular that the quantum Jensen–Shannon divergence is
a natural entropic quantifier of information backflow [58]. Additionally, a connection be-
tween the monotonic contractivity of a generalisation of the trace distance and P-divisibility
exists [51,59], providing a common background to these approaches to non-Markovianity,
which, however, goes beyond the scope of this work. Note that, even though the defini-
tion of non-Markovianity used here has an interpretation in terms of information flow
between the system and environment as explained above, it can be directly used at the
level of the reduced evolution without the necessity to specify an underlying microscopical
model. With this, it can also be applied to our phenomenological approach, where we
construct the proper dynamical maps without directly starting from the total Hamiltonian,
although realisations—for example, with collisional models—are possible [60,61].

Figure 1. Sketch of the information backflow in open quantum system dynamics, which is at the basis of the notion of
quantum non-Markovianity used in this paper: initially the reduced states ρ, σ approach each other since the information
is flowing out of the reduced system to the environment or to the correlations between the system and the environment
(left); on the other hand, an information backflow makes the two states diverge from each other at a later time (right),
as can be witnessed via proper state distinguishability quantifiers. This behaviour was observed in fundamental open
system models [27,62–64] as well as in general classes of dynamics arising by repeated random interactions as those that are
considered in this paper [27,60].

Relying on the trace distance, it is then possible to define a measure of the degree
of non-Markovianity of quantum dynamics. The idea is to integrate all the revivals of
the trace distance over the duration of the dynamics, i.e., to quantify the overall amount
of information flown back to the reduced system. In addition, since we want the non-
Markovianity measure to be a property of the dynamical map, while the change in the
trace distance, Equation (3), generally depends on the chosen initial states ρ(0) and σ(0),
the non-Markovianity measure involves optimisation over all the possible couples of initial
states [47]:

N = max
ρ(0),σ(0)

∫

dD(ρ(s),σ(s))/ds>0

d
ds
D(ρ(s), σ(s))ds. (5)

It was shown in [65] that the optimal pair of states, i.e., the one achieving the maximum
in the non-Markovianity measure, lies on the boundary of the states space and is made of
orthogonal states. In particular, for qubit states, this means that the optimal pair consists of
pure states that can be represented as a pair of antipodal points on the Bloch sphere.

3. Renewal Processes: Classical and Quantum

Here, we investigate a class of open quantum system dynamics, quantum renewal
processes, which are a generalisation of a classical concept. Firstly, we briefly review semi-
Markov processes of which renewal processes are a subset, and then provide a formulation
of the relevant notions in the quantum realm [66,67].
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As discussed in Section 1, the characterization of a Markovian time evolution is
essentially fixed by the GKSL theorem, determining the expression of the generator of the
dynamics. An equivalent result for an arbitrary dynamics featuring non-Markovian effects
is not known, and only very specific results have been obtained. The main difficulty lies in
providing evolution equations whose solutions are indeed CPTP maps. These so-called
master equations can be recast in two forms, either time local, i.e., with the following
functional expression [22]:

d
dt

ρ(t) = L(t)[ρ(t)], (6)

or time non-local, that is in the following form [68,69]:

d
dt

ρ(t) =
t

∫

0

K(t − s)[ρ(s)]. (7)

The superoperators L(t) and K(t) are generally related [70–73], though in a highly
non-trivial way. Moreover general conditions on their expression warranting CPTP are not
known, except for special cases. In this contribution, we make reference to a large class of
well-defined evolutions obtained by building on an analogy with classical non-Markovian
stochastic processes, which we shortly recapitulate below for the reader’s convenience.

A semi-Markov process is a continuous time random jump process between sites
identifying system states for which the jump probabilities are possibly site dependent
but independent from each other. In a quantum semi-Markov process, the jumps are
implemented by the application of CPTP maps on the reduced density operators; see
Equation (11). The probability distribution of the time between the jumps is called waiting
time distribution (WTD) and provides a probability density over the positive real line
as follows:

f (s) ≥ 0,
∞

∫

0

ds f (s) = 1. (8)

If the WTD is exponentially distributed, then the semi-Markov process reduces to a
continuous time Markov chain. Otherwise, for general distributions, the memory about
the time already spent in the state affects the subsequent statistics of the process, which is
then non-Markovian.

The transition probabilities Tnm(t) from the site m to the site n in a semi-Markov
process can be written in the following form [34]:

Tnm(t) = nnm(t) + (n ∗Π f )nm(t) + (n ∗Π f ∗Π f )nm(t) + . . . , (9)

where the matrix nnm(t) = δnmgn(t) is a diagonal matrix fixed by the survival probabilities
gn(t) defined by the following:

gn(t) = 1−
t

∫

0

ds fn(s), (10)

corresponding to possibly site dependent WTDs fn(t); the entries of the semi-Markov
matrix Π are the jump probabilities between sites. This expression for the transition
probabilities Tnm(t) has a quantum analogue in terms of a corresponding expansion for
the reduced density operator, Equation (11). Moreover, note that a semi-Markov process
can also be seen as the merging of a renewal process and a Markovian jump process. In a
renewal process, the events, here the transitions among sites, occur randomly in time, and
the time intervals between successive events are independent. Accordingly, the evolution
depends only on the current site and the time elapsed since arriving at it. In the case of the
standard renewal process, all waiting times are identical, while for a so-called modified
process, the first k waiting time distributions are different.
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The notion of trajectory is one of the basic concepts in the description of classical
stochastic processes. Indeed, in abstract terms a stochastic process can always be charac-
terized by a suitable measure over a sample space of trajectories. Recovering a notion of
trajectory is less straightforward in the quantum case, where the object of interest is the
reduced density matrix ρ(t), but this can actually be done in the context of open quantum
systems [22,74]. More specifically, the dynamics we are considering allow for an interpreta-
tion in terms of an average over trajectories in the space of operators. All the trajectories
start in the same initial state ρ(0), and then for each trajectory the times at which the
system state undergoes discontinuous changes, the so-called jumps, are random variables.
Accordingly, the reduced density operator of the open quantum system can be obtained by
a weighted sum of all possible trajectories, corresponding to fixed jump times. We see that
this point of view also helps us understand the dependence of non-Markovianity on the
specific parameters.

Quantum renewal processes are a subclass of quantum semi-Markov processes [28,31,32,41,72],
for which the time evolution reads as follows:

ρ(t) =p0(t)F0(t)ρ(0)+

∞

∑
n=0

t

∫

0

dtn . . .
t2

∫

0

dt1 pn(t; tn, . . . , t1)Fn(t − tn)En . . . .F2(t2 − t1)E1F1(t1)ρ(0), (11)

where the CPTP maps En describe the jumps, while the CPTP maps Fn(t) give the time-
continuous evolutions between the jumps, and pn(t; tn; . . . , t1)dtn . . . dt1 is the probability
that the jumps occur (solely) around fixed times t1, . . . , tn. Note the close analogy to
the classical description recalled above. In the case of the standard process the jump
times are independent and identically distributed, i.e., each waiting time has the same
probability distribution and they are all mutually independent. In a modified process,
instead, the probability distributions for the first jumps can differ from each other and the
following ones.

To obtain the quantum renewal processes from the general quantum semi-Markov
processes, one fixes the time evolution between the jumps to be of GKSL form [33]. What
is more, one also introduces only two kinds of jumps: anterior J and subsequent E with
respect to the time continuous evolution. Consequently, in quantum renewal processes
one focuses on the stochastic distribution of the jumps, as in the case of classical renewal
processes. Accordingly, we obtain the following form of the open quantum system density
operator at time t:

ρ(t) =p0(t)eLtρ(0)+

∞

∑
n=0

t

∫

0

dtn . . .
t2

∫

0

dt1 pn(t; tn, . . . , t1)eM(t−tn)EeL(tn−tn−1)J . . . EeL(t2−t1)J EeLt1J ρ(0). (12)

Here, we use a “left-ordering”, as explained in [31], since a particular ordering of
the operators has to be chosen in order to construct the quantum evolution from the
classical counterpart. We also set in the followingM= L (the time continuous evolution
is always the same) and J = 1. With this, the above mentioned trajectories correspond to
the dynamical maps eL(t−tn)EeL(tn−tn−1) . . . EeLt1 , which contribute to the overall evolution
with weights pn(t; tn, . . . , t1)dtn . . . dt1.

For the standard quantum renewal process, the same WTD f (t) governs the whole
stochasticity of the jumps’ times as follows:

pn(t; tn, . . . , t1) = g(t − tn) . . . f (t2 − t1) f (t1), (13)
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where g(t) is the corresponding survival probability. When the renewal process is modified,
the first k WTDs can be different.

pn(t; tn, . . . , t1) = gn+1(t − tn) fn(tn − tn−1) . . . f1(t1), n ≤ k (14)

pn(t; tn, . . . , t1) = g(t − tn) f (tn − tn−1) . . . f (tk+1 − tk) fk(tk − tk−1) . . . f1(t1), n > k. (15)

Here, we investigate how the non-Markovianity of the dynamics, in terms of the
monotonicity of the trace distance, depends on the choice of the involved operators,
describing intermediate continuous evolutions and jumps as well as the chosen probability
distribution for the jumps. We observe a rich variety of possible behaviours and analyse the
influence of particular parameters to control the strength, time of occurrence and precise
manifestation of quantum non-Markovianity.

4. Trajectory Picture

In general, there exist infinitely different decompositions of reduced dynamics, i.e., dif-
ferent ways to write the reduced density operator in the form

ρ(t) = ⨋
`∈I

p`(t)ρ`(t), (16)

where I can be a countable or uncountable set. In this representation the prefactors p`(t)
can be interpreted as probabilities or probabilities densities, i.e., they are positive and
normalized, and the operators ρ`(t) are themselves proper density operators, i.e., trace
one and positive semi-definite. If the operators can be obtained by the action of CPTP
maps Λ`

t applied on the very same initial state ρ(0), each ρ`(t) can be associated to a
different trajectory, whose occurrence probability is indeed given by the corresponding
p`(t). There exist two main types of decompositions directly linked to a trajectory picture of
the dynamics: time-continuous, as exemplified by quantum state diffusion [75–77], and so
called jump unravelings [78,79]. As recalled above, also quantum renewal processes have
direct decomposition in terms of trajectories, which are defined at the level of the density
operators; see, in particular, Equation (12). Finally, note that an important question still
far from being completely answered is the connection between the trajectory description
of the reduced dynamics and the existence of a continuous measurement interpretation
associated with it [74,80–84].

The construction of a particular trajectory can take place in two different ways. In the
first method, one firstly fixes the time interval [0, T] of interest and then draws the jumps’
times according to the WTDs. After each drawing, if the sum of waiting times exceeds T,
one terminates the process. Then, the generation of the trajectory is obtained by inserting
the jumps at the given times. In the second method, the generation of the trajectory and
drawing of the jump times take place in parallel. The time interval [0, T] is divided into
small intervals of length ∆t, and at each intermediate midpoint, one determines randomly
if the jump takes place or not, with the probability fixed by the corresponding waiting
time distribution. In this second approach, fixing the time interval [0, T] in advance is in
principle not necessary, as one can decide along the trajectory when to stop the evolution.
Note that, for a modified renewal process, only the first method is applicable for the case in
which the last k waiting time distributions are different, a situation which was introduced
in [33] under the name of inverse time operator ordering. The same is true when the last
time-continuous evolution is different from the preceding ones,M ≠ L in Equation (12),
or in processes starting with a jump rather than with a time continuous evolution, J ≠ 1 in
Equation (12). In all these situations one has to know beforehand, i.e., before one starts to
generate the trajectory, how many jumps occur in the investigated time interval [0, T] to
know which waiting time distribution or which time evolution has to be used to generate
the trajectory at a particular point of time. In this paper, for simplicity, we restrict ourselves
to cases where both methods to generate the trajectory can be implemented. We see that the
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trajectory point of view in describing the evolution lets us better understand the influence
of the particular parameters on the non-Markovianity of the corresponding dynamical map.

The quantum renewal processes, due to the non-trivial interplay between the operato-
rial and stochastic contributions, can manifest a wide range of non-Markovian behaviours.
However, if one assumes that all WTDs coincide, i.e., the quantum renewal process is
unmodified, and are given by an exponential distribution

f (t) = µe−µt, (17)

where µ is the corresponding rate, the issue simplifies significantly. In this case, a sim-
ple connection between the WTD f (t) and the associated survival probability g(t) ex-
ists: f (t) = µg(t). As shown in [33], the corresponding memory kernel in the Laplace
picture reads as follows:

K̃(u) = L+ (E − 1) f̃ (u −L)g̃−1
(u −L). (18)

Accordingly, in time domain we obtain for this case the following:

K(t) = δ(t)[L+ µ(E − 1)], (19)

no matter what the generator L and the jump operator E are. This memory kernel corre-
sponds to a quantum dynamical semigroup, and, accordingly, the underlying evolution
is Markovian.

To go beyond this case, we analyse how the time continuous dynamics, type of
jumps and waiting time distributions influence qualitatively and quantitatively the non-
Markovianity of the corresponding process. We focus on qubit evolutions, so that the trace
distance between two quantum states equals the half of the Euclidian distance of these
states when depicted on the Bloch ball. Recall that any qubit state can be written as follows:

ρ =
1
2
(1+ r⃗ ⋅ σ⃗), (20)

with the vector σ⃗ consisting of the Pauli matrices, σ⃗T = (σ1, σ2, σ3), and r⃗T = (x, y, z) defining
the Bloch vector representation of the state ρ. Accordingly, the trace distance between two
qubit states evolving via a quantum renewal process reads:

D(ρ1
(t), ρ2

(t)) =
1
2

lim
N→∞

¿
Á
Á
ÁÀ(

1
N

N
∑
n=1

∆x
n(t))

2

+(
1
N

N
∑
n=1

∆y
n(t))

2

+(
1
N

N
∑
n=1

∆z
n(t))

2

, (21)

where the sums are running over realisations of the stochastic process governed by the
associated WTDs, and ∆i

n(t) corresponds to difference of the i-coordinates in n-th realisa-
tion, e.g., the following:

∆x
n(t) = x1

n(t) − x2
n(t), (22)

which we call an x-trajectory. Each of these trajectories has an equal weight 1/N, and in
principle some of them can be equal. Consequently, the trace distance between two states
is not an average trace distance between the corresponding random trajectories, and one
has to calculate the trace distance after generating the whole set of trajectories. Note that
to have non-monotonicity in the trace distance, a non-monotonicity of the absolute value
of at least one of the i-trajectory ∆i

n(t) is necessary. This is the case not only when one of
the trajectories is non-monotonous, but also when it changes its sign. These are, however,
not sufficient conditions as we will see in the following.

We now set the different elements of the quantum renewal processes fixing the result-
ing trajectories and average dynamics.
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4.1. Intermediate Evolutions

We choose the time continuous evolution to be unital:

L[ρ] =
3
∑
k=1

1
2

γk(σkρσk − ρ), (23)

with γj ≥ 0 and

eLt
[σi] = e−tλi σi λi = γj + γk, for i ≠ j ≠ k. (24)

Choosing a unital dynamical map does not affect the trace distance measure of non-
Markovianity, which is insensitive to translations [42,58,85]. As the time-continuous evo-
lution introduced above describes a monotonic contraction of the Bloch sphere, we do
not expect that it introduces any memory effects. Indeed, the dynamical map eLt is not
only Markovian, according to the distinguishability criterion introduced in [47], but it is
a CP-divisible semigroup. We see that a greater “strength” of this dephasing evolution—
corresponding to larger values of the λ’s introduced in Equation (24)—results in smaller
non-Markovianity of the associated quantum renewal process.

4.2. Jumps

As said above, the quantum non-Markovianity does not occur if for all realisations of
the stochastic process, the coordinates, Equation (22), are monotonic and do not change sign.
Accordingly, a jump channel that only consists of a contraction (and possibly translation,
which, however, cannot be detected by the trace distance condition; see comment above)
necessarily leads to Markovian dynamics. An example of such a channel is the amplitude
damping (AD) channel EAD, with Kraus operators as follows:

K0 = (
1 0
0

√
1− γ

), K1 = (
0

√
γ

0 0
), (25)

which shrinks the Bloch ball and translates it along the z-axis by factors determined by
the decay rate γ. The amplitude damping channel can model, among others, the qubit
transmission across a spin chain [86] and is widely used in the literature. Consequently, no
non-Markovianity is detected, no matter what probability distribution drives the stochas-
ticity of the jump times. In particular, also for a choice of classically non-Markovian
waiting time distributions, such as the Erlang distributions introduced later, one still ob-
tains Markovian evolution, according to the trace distance criterion. This strengthens the
results obtained in [87], where it was observed that the classical lack of memory in the
stochastic process driving the evolution of a qubit cannot be directly linked to quantum
non-Markovianity.

Consequently, the next step is to choose a jump channel that results in changing the
sign of the trajectories. We have chosen the x-Pauli channel composed with AD:

Ex−AD = Ex ○ EAD, (26)

with

Ex[ρ] = σxρσx. (27)

The Pauli channels describe a π rotation about the corresponding axis and are,
among others, typically used to model the noise for quantum error correction [88]. In
particular, we focus here on the composition of the AD channel with the x-PC. For this
jump channel we, indeed, manage to detect non-Markovianity, depending on the choice of
parameters determining the dynamics.

Note that, as the superoperators Ex and EAD do not commute, the jump channels
Ex−AD and EAD−x = EAD ○ Ex are different. Generally speaking, the latter possibility leads to
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a slightly greater non-Markovianity measure, as the jumps occur before the disruptive AD
channel. Nonetheless, the qualitative behaviour for both of the choices is similar, and for
simplicity, we restrict here to Ex−AD.

4.3. Waiting Time Distributions

As noticed earlier, when the underlying WTDs are exponentials and the process is
unmodified, i.e., all WTDs are the same, the evolution is Markovian, independent of the
choice of the jump channel. This is the case, even if the trajectories are non-monotonic
and the sign changes take place, so, in particular, for the channel Ex−AD investigated by us.
However, the situation drastically changes if we allow for a modified quantum renewal
process. Even if all the WTDs are exponentials, but the first k-th of them have different
rates, we can observe a high variety of different behaviours. In particular, the number of
revivals strongly depends on the choice of the rates.

There is, however, no need to restrict our choice of WTDs to exponentials. To go
beyond this case, we also analyse the quantum renewal process dynamics, where the
stochasticity of the jumps is governed by the Erlang WTD (also called the special Erlangian
distribution), which reads in the Laplace domain [89]:

f̃r(u) = (
µ

µ + u
)

r

, (28)

from which one can see that it is the convolution of r exponential distributions with the
same rate parameter µ. The ratio r/µ fixes the mean waiting time while the variance
reads r/µ2. Accordingly, for the Erlang WTDs the mean value and the variance can be
independently varied, as contrasted with the exponential WTD, where the mean waiting
time 1/µ fixes the variance.

We see that in the case of Erlang WTDs, even the unmodified process can lead to non-
Markovianity.

5. Non-Markovianity of Quantum Renewal Processes

As mentioned in Section 2, the occurrence and strength of memory effects depend
on the chosen pair of initial states. This is clarified in Figure 2, left, where the value of
the non-Markovianity measure for the case of the jump operator Ex−AD is plotted as a
function of the direction identifying a pair of pure orthogonal states, corresponding to
points on the Bloch sphere. It clearly appears that the maximum is attained for states
∣φ1/2⟩ =

1√
2
(∣0⟩ ± i∣1⟩). We, therefore, in the following consider always this pair of initial

states lying on the y-axis. Note that for this choice ∆x(t) = ∆z(t) = 0, corresponding
to the fact that the x and z components of the Bloch vector of the two evolving states
remain equal so that the only relevant parameter in the continuous time evolution is the
rate λ2. This behaviour is due to our particular choice in the jump channel, leading to a
rotation about the x-axis. A typical trajectory of the y-component of the Bloch vector is
depicted in Figure 2, right, characterized by sign changes, which determine the possible
non-monotonicity of the trace distance obtained, such as in Equation (21). In our analysis,
we not only investigate the mere change of the non-Markovianity measure, but also the
way that the trace distance evolution is altered, with the number of revivals, times of
revivals and other qualitative features.
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Figure 2. Left: Value of the non-Markovianity measure of a quantum renewal process as given in Equation (5) in the
dependence on the choice of initial orthogonal pure states, identified by the extremes of a diameter in the Bloch sphere; it
clearly appears that optimal pairs lie on a vertical equator. Right: y-component for the trajectory in a particular realization
of the process corresponding to an initial optimal pair ∣φ1/2⟩ = 1√

2
(∣0⟩ ± i∣1⟩). We are here considering a Ex−AD jump channel

and parameters γ = 0.3, µ = 1, µ1 = 10, λ1 = λ2 = λ3 = 0.9. Here and in the following, we work in arbitrary units.

5.1. Exponential WTD—General Results

Here, we focus on the behaviour of the trace distance in the case of exponential WTDs,
which are investigated with numerical methods. Accordingly, beside the dependence on
the dephasing rate of the continuous time evolution λ2 and the decay rate γ corresponding
to the strength of AD jumps, the non-Markovianity is also influenced by the rates µi fixing
the exponential WTDs.

The number of revivals, i.e., time intervals where the trace distance grows, strongly
depends on the number of different WTDs and on the corresponding rates. It can be
observed that for a process with k-WTDs, the maximal number of revivals is k − 1 and can
only be reached if the following relation between the rates is satisfied:

µ1 > µ2 > . . . > µk−1 > µ. (29)

Note that this ordering corresponds to the opposite ordering in terms of the mean waiting
times given by the inverse of the rates. The numerical observations are strengthened
by the analytical results in Section 5.2, where a case of purely jump dynamics without
amplitude damping is elaborated. This fact is investigated in Figure 3, where we report the
number of revivals for a modified process with Ex jump channel and with 3 WTDs (left) or
4 WTDs (right) in dependence on the rate values. Note that throughout the manuscript, we
work in arbitrary units. The different coloured areas correspond to different numbers of
revivals, clearly growing with the number of WTDs and depending on the corresponding
rates. The presence of amplitude damping in the jump decreases the parameter range
corresponding to higher number of revivals. At the same time, the AD reduces the value
of the non-Markovianity measure. This is put into evidence in Figure 4, left, where the
behaviour of the trace distance is plotted together with the estimate for the associated
non-Markovianity measure, corresponding to the sum of the revival heights. A similar
effect is obtained by increasing the strength of the dephasing rate λ2 describing the time
continuous dynamics, as shown in Figure 4, middle, where only Ex determines the jumps.
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no revivals

1 revival

2 revivals

3 revivals

Figure 3. The number of revivals of the trace distance for a quantum renewal process with Ex jump channel in its dependence
on the value of the rates fixing the WTDs. The maximal number of revivals for the modified quantum renewal process with
k exponential WTDs equals k − 1 (here, we take k = 3 and k = 4 from left to right; λ2 = 0.9, µ = 1 and µ3 = 3 (right panel)
in arbitrary units). The white lines mark the boundaries between parameter regions corresponding to processes whose
trajectories exhibit different number of jumps.
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Figure 4. The trace distance, testifying non-Markovianity when showing a non-monotonic behaviour, for a quantum
renewal process with exponential WTDs. In the left panel, jumps are realized by means of a Ex−AD jump channel, and one
can appreciate the reduction in the revivals for growing damping. In the middle panel, jumps are given by Ex−AD, and
stronger dephasing in the intermediate time evolution again suppresses non-Markovianity. The right panel, with jump
operator Ex, shows how a larger number of revivals does not necessarily lead to a higher non-Markovianity measure across
the panels λ2 = 0.9, µ = 3 and µ1 = 13, apart from the last panel with µ1 = 30.

We further stress that a higher number of revivals does not necessarily lead to a higher
non-Markovianity measure; see Figure 4, right. Non-Markovianity is enhanced when the
rate of the first WTD is much larger than the rate of the following one, µ1 ≫ µ2, allowing for
a larger revival. Subsequent rates play a less relevant role since, on average, the dephasing
becomes more effective by the time the corresponding jump occurs.

The different role of γ and λ2 is visible by comparing Figure 4 left and Figure 4 middle,
noticing that only γ affects the value of the (first) revival time. Their different influence
at the level of the trajectories is visualised in Figure 5. As one can observe, an increase
in the decay rate implies that the height of the jumps decreases, while it does not affect
the previous time continuous dynamics. This is different in the case of varying λ2, where
both the extension and the starting point of the jumps is changed, and the influence on the
revival time after averaging over all trajectories is wiped out.
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Figure 5. Examples of jump trajectories with parameters as in Figure 4, left and middle, respectively. In the left panel,
we vary the damping rate γ, while in the right panel, we vary the decay strength λ2 associated to the intermediate
time evolution.

One can also understand the necessity of the hierarchy given in (29) to have the
maximal number of revivals, as well as their maximum number k − 1. When the condition
is satisfied, then (approximately) the first, second, . . . , k − 1 jumps do not influence each
other. With this, we mean that the n-th jump occurs when n − 1 jumps have already taken
place in most of the trajectories. Accordingly, the k − 1 first jumps are connected with
the revival of the trace distance, while the following jumps do not result in the revivals.
The reason is that for the exponential WTDs, the mean value and the variance cannot be
modified independently and are such that for an unmodified process, the trace distance is
monotonically decreasing as was shown in Section 4. This is different in the case of Erlang
WTD, which we discuss in Sections 5.3 and 5.4. When the condition (29) is not satisfied,
the number of the revivals for a modified process with k different WTDs is smaller than
k − 1.

All revivals depicted until now are started when the trace distance assumes value
zero, i.e., when at the associated time, the evolved states are the same. This can be seen as
a special realization of non-Markovian behaviour since in this case, the dynamical map
is neither invertible nor divisible. This is, however, not always the case. We observe that
a revival occurs for larger values of the trace distance when the condition µ2 ⪆ µ1 ≫ µ
(3-WTDs process) is satisfied; see Figure 6, left, where the µ2 is varied, and right, where µ
is altered. The mean waiting time of the second jump is small enough with respect to the
first jump to prevent the trace distance to reach zero, and the following third jumps occur
too late to change this tendency. Note that, in this case, the maximal number of revivals,
k − 1, cannot be reached.
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Figure 6. The plots show the dependence of the times at which revivals take place on the rates of the exponential WTDs.
We consider the Ex−AD jump channel together with damping rate γ = 0.3 and relaxation rate λ2 = 0.1. Overall, µ1 = 15,
with fixed µ = 1 in the left panel and µ2 = 12 in the right panel.
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5.2. Exponential WTD—Purely Jump Dynamics

As already elaborated, in the considered case, the time continuous dynamics between
the jumps does not strongly affect the qualitative picture of non-Markovianity. It is,
therefore, of interest to consider the effect of jumps and modified waiting time distributions
alone, setting L(t) = 0; see Equation (12). In this case, the density operator follows the
following evolution:

ρ(t) =
∞

∑
n=0

pn(t)Enρ(0), (30)

where pn(t) is the probability of having exactly n jumps till time t, i.e., no statements
about the times of the particular jumps are made as contrasted with pn(t; tn, . . . , t1) in
Equation (12). As the influence of the AD jump is also mainly in decreasing the non-
Markovianity measure, with the same argument, we take E → Ex so that we have idempo-
tency of the jump transformation E2

x = 1. Accordingly, the sum in Equation (30) can be split
in two terms, one with even n and one with odd n (see [41]) for an analogous discussion
with the z-Pauli channel as follows:

ρ(t) = (peven(t) + podd(t)Ex)ρ(0). (31)

The difference between the matrices ρ1(t) and ρ2(t) then simply becomes the following:

ρ1(t) − ρ2(t) = (
∆11 peven(t)∆10 − podd(t)∆∗

10
peven(t)∆∗

10 − podd(t)∆10 −∆11
), (32)

where ∆ij gives the difference of the associated components of the operators ρ1(t) and ρ2(t)
in the σz basis. With the choice of the optimal states, ∣φ1/2⟩ =

1√
2
(∣0⟩ ± i∣1⟩), we obtain for

the trace distance the following:

D(ρ1(t), ρ2(t)) = ∣peven(t) − podd(t)∣ = ∣q(t)∣, (33)

which is the absolute value of the difference between the probability of the even number
of jumps and odd number of jumps. Distinct from investigations in [41], here we take
into account also the case of modified processes, where first k WTDs are different from
the following one. The quantities peven(t) and podd(t) take then, in Laplace picture, the
following form:

p̃even(u) = g̃1(u) + f̃1(u) f̃2(u)g̃3(u) + . . .

+ f̃1(u) . . . f̃k(u)(
1+ f̃ (u)

2
− (−)

k 1− f̃ (u)
2

)
1

1− f̃ 2(u)
g̃(u), (34)

p̃odd(u) = f̃1(u)g̃2(u) + f̃1(u) f̃2(u) f̃3(u)g̃4(u) + . . .

+ f̃1(u) . . . f̃k(u)(
1+ f̃ (u)

2
+ (−)

k 1− f̃ (u)
2

)
1

1− f̃ 2(u)
g̃(u). (35)

In the case of the exponential WTDs, we can accordingly go beyond the Markovian
case of an exponential distribution corresponding to q(t) = e−2µt. For the simplest case of
2 WTDs, one obtains the following:

q(t) =
2(µ − µ1)e−tµ1 + µ1e−2µt

2µ − µ1
. (36)

The expression of q(t) for a larger number of WTDs retains the same form, i.e., a
weighted sum of k exponentials e−2tµ, e−tµ1 ,. . . , e−tµk . Non-monotonicity of the absolute
value of the function q(t) can arise in two ways: non-monotonicity of q(t) itself or its
sign change. Note that these are not independent, as q(t) convergences to zero for t →∞.
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Accordingly, with every sign change, at least one local maximum or minimum has to follow.
On the other hand, a local maximum (minimum) can occur without a sign change, but then
needs to be followed by a minimum (maximum).

For the case of two waiting time distributions, one can analytically verify that the
maximal number of revivals is one, and that revivals take place at the following:

t = −
1

2µ − µ1
ln

2(µ1 − µ)

µ1
, (37)

where the condition µ1 > µ has to be satisfied. This corresponds to the requirement obtained
for the dynamics considered in Section 5.1, Equation (29), which, however, could feature
an intermediate time continuous evolution and a jump transformation containing AD.
Note that the time t is smaller than the mean jump time of the first jump 1/µ1 for µ1 > 2µ;
otherwise, it is larger. For larger k, in general, no closed-form formula for the number or the
times of revivals can be given, as the exponential function is transcendental. Nonetheless,
thanks to the Descartes’ rule of signs, the maximal number of revivals (q(t) = 0) equals
the number of sign changes of the prefactors of the exponential functions, where the rates
are put in ascending (or descending) order [90]. The sign change can happen maximally
k − 1 times for k-terms, which explains the observation we made earlier in Section 5.1.
Note that the same argument could be used for the derivative of q(t), connected with the
occurrence of the local maxima/minima. However, the maximal number of revivals k − 1
can only happen when all of the revivals are at zero distance, as the non-monotonicity of
q(t) without sign change involves one minimum and one maximum per revival. Note that
consequently for a process with 2 WTDs, the revival can only occur because of the sign
change of q(t), i.e., at zero trace distance.

5.3. Erlang WTD—General Results

Considering WTDs that can lead to non-Markovianity for unmodified processes,
the maximal possible number of revivals can become larger. This can be observed by taking
into account an Erlang distribution, whose WTD is given by Equation (28), governing the
randomness of the jump times, while here, we focus on numerical results; see Section 5.4
for analytical findings. For Erlang distributions with fixed mean value, the higher the
shape parameter r or the larger the rate µ, the narrower the distribution. Accordingly,
with growing r or µ, the revivals of the trace distance can be seen to be more and more
like independent phenomena. In this case, the jumps do not “destructively interfere” with
each other, and the time intervals of the jumps are almost disjointed. This explains the
increase in the non-Markovianity measure with higher shape parameter r or larger rate µ,
as one can see in the simulations in Figure 7, left. This slightly influences also the time of
the revivals, and the higher the shape parameter, the closer this time is to the mean value
of the first WTD.
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Figure 7. Behaviour of the trace distance for the case of a quantum renewal process with a Ex−AD jump channel and WTDs
given by Erlang distributions. In the left and middle panel, we see that revivals increase with the shape parameter r1 (µ = 4,
r = 2, r1/µ1 = 1/2 left and µ = 12, r = 6, r1/µ1 = 2/3 right). In the right panel, we see dependence on the parameter r with
fixed µ1 = 3, r1 = 2 and r/µ = 1/2.
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Additionally, in the case of the Erlang WTDs, the trace distance revivals do not
necessarily occur when the trace distance takes the value zero. This behaviour was observed
for modified renewal processes. The small r of the first WTD and the large r of the
subsequent WTD boost the phenomenon; see Figure 7, middle and right. Note that,
contrary to the case of the exponential WTDs, here, the revival can occur at non-zero trace
distance also for the simplest modified process, i.e., with two distinct WTDs.

5.4. Erlang WTD–Purely Jump Dynamics

For the limiting case of no time continuous evolution in between the jumps Ex, re-
lying on Equation (33) for the trace distance between the optimal pair of states, one can
analytically show that an infinite number of revivals is possible. The difference of the
probability of the even and odd number of jumps for an unmodified process is given in
Laplace domain by:

q̃(u) =
(µ + u)r − µr

u(µr + (µ + u)r)
. (38)

In particular, for r = 2, so for WTD given by a convolution of two exponential functions
with the same rate, we obtain:

q(t) = e−µt
(sin(µt) + cos(µt)), (39)

which obviously leads to an infinite number of revivals, always occurring at the zero
trace distance. For the modified process, with two different WTD and when both shape
parameters equal two, r = r1 = 2, one gets:

q(t) = κ(µ, µ1)[2(µ1 − µ)e−µ1t(µ3
1 − 3µ2

1µ + 2µ1µ2
− 2µ3

+ tµ1(µ3
1 − 3µ2

1µ + 4µ1µ2
− 2µ3))

−µ2
1e−µt(((2µ − µ1)

2
− 2µ2

) cos(µt) − (2µ2
− µ2

1) sin(µt))], (40)

with a prefactor κ(µ, µ1) = (2µ2 − 2µ1µ + µ2
1)
−2

. Accordingly, we have a term characterised
by an oscillation, which is damped with a damping rate µ, and a polynomial of the first
order in t, damped with a damping rate µ1. From Figure 8, we see that for µ = 1 and
r = r1 = 2, if the rate of the first waiting time distribution µ1 is between zero and a value
close to one, no revivals take place. This can be understood from Equation (40) since if the
rate µ is larger than the rate of the first WTD, the oscillatory part is strongly suppressed.
However, for this regime, the polynomial part stays always positive, and no revivals occur.
Otherwise, we have an infinite number of revivals.
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Figure 8. Plot of the function q(t) as in Equation (40). The non-monotonicity of this function
determines non-Markovianity in the model; see Equation (33). The function q(t) corresponds to the
difference between the probability of having an even or an odd number of jumps as a function of
time and WTDs’ rates. We consider two Erlang WTDs with shape parameters r = r1 = 2 and µ = 1 so
that the vertical black line corresponds an unmodified renewal process. Note the periodic change of
values along the vertical axis determining an infinite number of revivals.

6. Conclusions and Outlooks

In this work, we analysed a simple and versatile class of quantum dynamics—the quan-
tum renewal processes—focusing on the different kinds of non-Markovian behaviours that
can be obtained by controlling their defining properties.

Quantum renewal processes naturally allow for a representation of the dynamics
in terms of an average over stochastic trajectories, and we have here investigated the
influence that the time-continuous part of the trajectories, the type of jumps and the
waiting time distributions have on the quantitative and qualitative features of the trace
distance evolution. In particular, we focused not only on the measure of non-Markovianity,
but also on relevant modifications of the trace distance evolution as the number, times
of occurrence and extension of the revivals. Among others, the revivals of the trace
distance can be significantly altered or even enhanced when dealing with modified renewal
processes, where there is a difference between a certain number of initial waiting time
distributions and the subsequent ones, or if one considers Erlang waiting time distributions,
which are classically non-Markovian and can lead to higher number of revivals than the
exponential ones.

Our analysis shows that the trajectory picture of quantum renewal processes yields
further insights into how to manipulate the trace distance evolution for a varied class of
dynamics built on the analogy with classical stochastic processes. Indeed, it will be of
interest to explore to what extent the trajectory viewpoint can be a convenient starting
point to engineer non-Markovianity in more complex and general quantum dynamics,
pointing to different features of the evolution that can be addressed to enhance or suppress
the presence of memory effects.
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