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Abstract: The bearing-only tracking of an underwater uncooperative target can protect maritime
territories and allows for the utilization of sea resources. Considering the influences of an unknown
underwater environment, this work aimed to estimate 2-D locations and velocities of an underwater
target with uncertain underwater disturbances. In this paper, an adaptive two-step bearing-only
underwater uncooperative target tracking filter (ATSF) for uncertain underwater disturbances is pro-
posed. Considering the nonlinearities of the target’s kinematics and the bearing-only measurements,
in addition to the uncertain noise caused by an unknown underwater environment, the proposed
ATSF consists of two major components, namely, an online noise estimator and a robust extended
two-step filter. First, using a modified Sage-Husa online noise estimator, the uncertain process and
measurement noise are estimated at each tracking step. Then, by adopting an extended state and by
using a robust negative matrix-correcting method in conjunction with a regularized Newton-Gauss
iteration scheme, the current state of the underwater uncooperative target is estimated. Finally, the
proposed ATSF was tested via simulations of a 2-D underwater uncooperative target tracking sce-
nario. The Monte Carlo simulation results demonstrated the reliability and accuracy of the proposed
ATSF in bearing-only underwater uncooperative tracking missions.

Keywords: bearing-only tracking; two-step filter; adaptive tracking; Kalman filter

1. Introduction

Accurate and robust underwater target tracking and advanced parameter estimation
are becoming increasingly important research areas in marine science. Underwater surveil-
lance is a core component of national defense and economic development [1,2]. Good
estimates of the motion parameters of an underwater uncooperative target not only can
be used to obtain useful prior information about a target but also can provide support for
further military or economic actions. Therefore, developing more advanced underwater
uncooperative target tracking techniques to more robustly and accurately track the target
is of great value.

Two kinds of tracking mechanisms can be applied to underwater target tracking
scenarios, namely, active tracking [3,4] and passive tracking [5–7]. By utilizing the active
sonar systems mounted on facility platforms (usually ship-borne or shore-based platforms),
the active tracking system can track an underwater target with high precision in terms
of both angle information and range information. However, because the active tracking
system depends on the active sonar system, which needs to emit acoustic signals, the
tracking system has a high power consumption and is hard to conceal. In addition, due to
its implementation on fixed shore-based facility platforms and exposed ship platforms, the
active tracking system lacks mobility and the capacity for concealment. However, flexibility
and concealment are key considerations for applications in national defense. Therefore,
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passive tracking systems, which accomplish tracking only via the angle information ob-
tained from the passive radiated noise created by the underwater uncooperative target,
have been examined by several researchers [8–10]. In the specific underwater tracking
scenario in which an underwater target operates at a depth that is far less than the distance
between the target and the passive tracking system, passive underwater tracking can be
modeled as a 2-D bearing-only tracking (BOT) problem, which is subject to a large number
of technical challenges.

According to References [11,12], the underwater 2-D BOT problem is characterized by
the inherent challenges in low observability and high nonlinearity. As a result, the tracking
system is unobservable when only one fixed observer works during the passive tracking
procedure. To ensure that the tracking process is observable and thus to satisfy the require-
ments of robust estimation, the single observer must maneuver with significantly more
agility than that of the target; if this cannot be achieved, more observers are needed [13,14].
Usually, deploying more observers not only saves energy but also allows for concealment.
Therefore, the deployment of more than one observer during the target tracking procedure
can resolve the issue of low observability.

Due to the high nonlinearity of the bearing-only measurements, a 2-D BOT is difficult
in the context of underwater target tracking [15]. To address this problem, a few nonlinear
tracking techniques have been proposed for passive underwater target tracking scenarios.
Among the techniques that ensure reliable tracking of an uncooperative underwater target,
nonlinear Bayesian estimating techniques are the most popular due to their robust and
accurate performance. By assuming that the disturbance caused by the environment has
a Gaussian stochastic process, significant research accomplishments have been achieved
by various researchers [16–19]. An extended Kalman filter (EKF)-based underwater target
tracking algorithm was designed by Reference [16] to perform suboptimal estimations of an
underwater target. Considering the linearization error introduced by the first-order Taylor
series expansion, a group of determined sigma points was utilized by Reference [17] to
linearize the nonlinear measurement equations in target tracking and thus to theoretically
enhance the tracking accuracy of the second-order Taylor series expansion. Similarly,
to enhance tracking accuracy, more complex tracking algorithms based on the cubature
Kalman filter (CKF) and sigma-point Kalman filter with interpolation were proposed
by References [18,19], respectively. Unlike the abovementioned studies, which utilized
linearization techniques or determined sigma points to linearize the nonlinear system
models, a particle filter (PF)-based estimating scheme using arbitrary “particles” to reform
the nonlinear tracking system and to track the target was proposed by Reference [20]. By
utilizing the Monte Carlo method to generate particles with an arbitrary distribution, the
PF-based tracking algorithms can accurately estimate the distribution of the uncertainties
of the tracked states. By generating many particles during the tracking procedure, the
PF-based tracking algorithms can theoretically achieve accurate tracking results in any
nonlinear tracking systems with any distributions of the uncertainties. However, the PF-
based tracking algorithms have a significant computational burden, particularly when the
system is highly nonlinear. As a result, the applications of PF-based tracking techniques
are limited.

Considering the linearization errors of nonlinear tracking algorithms and the signif-
icant computational load of PF-based tracking techniques, novel tracking mechanisms
must be developed. In particular, new approaches are required for the scenario of bearing-
only underwater uncooperative target tracking, in which the measurements are strongly
nonlinear, but the kinematics is linear when the target operates in constant velocity (CV)
mode. Rather than linearizing the system model to address the linearization error, a novel
recursive tracking scheme, named the two-step filter, was developed by References [21,22].
By setting a nonlinear projection of the states to be tracked and the nonlinear measurements
into a new extended space, the nonlinear measurement model can be transformed into a
linear model in the first-step extended state estimation [21]. Then, by taking the nonlinear
projection as a function of the original states, and the estimation bias from the first step, the
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original states can be extracted from the extended state via a recursive Newton iteration
technique. The two-step filter has a superior performance when applied to nonlinear mea-
surements because it eliminates the nonlinearities in the measurement update procedure,
particularly when the measurements are abundant but the process model is simple [22].
In addition, based on the prototype designed by References [21,22], some modifications
of the two-step filter have been made by several researchers. Reference [23] modified
the time update procedure of the traditional two-step filter to ensure its robustness. This
work was extended by Reference [24], in which a more comprehensive and complete time
update method for the traditional two-step filter was proposed. Reference [25] proposed
an adaptive two-step filter based on the modified Sage-Husa technique in combination
with the multiple model technique to estimate the measurement noise online and thus
to achieve higher tracking accuracy. In addition to theoretical studies, References [26,27]
implemented the two-step filtering technique in applications of satellite attitude estimation
and aerial target tracking. The studies verified the performance of the two-step filter
and demonstrated its superior characteristics as an alternative solution to the various
Bayesian nonlinear filters (i.e., EKF, UKF, PF, etc.). However, few studies can be found in
which this approach has been implemented in underwater uncooperative target tracking
despite the fact that the CV and nonlinear bearing-only measurement models represent a
perfect tracking prototype for the two-step filter. In addition, modifications implemented
by former researchers are not perfect in the underwater target tracking scenario because
the uncertain underwater environment not only influences the measurements but also
generates uncertainties in the model kinematics. Furthermore, the measurement update
procedure has been paid little attention in previous research. As a result, few modifications
have been made, leading to an incomplete theory of two-step tracking.

This study aimed to robustly and accurately implement passive tracking of an under-
water uncooperative target under the conditions of uncertain underwater disturbances
while taking the advantages and shortcomings of existing tracking techniques into con-
sideration. For this purpose, a novel adaptive two-step tracking algorithm is proposed.
Inspired by the accomplishments of References [23,25] in the research area of aerospace
engineering, this study adopted a modified Sage-Husa technique for online estimation
of both the process noise and measurement noise to mitigate the influences caused by
underwater uncertain disturbances. In addition, considering the specific scenario of under-
water uncooperative target tracking in which measurements are limited, a negative matrix
modification method in conjunction with a regularized Newton-Gauss iteration technique
is proposed for both the time update and the measurement update procedures to ensure
greater robustness and accuracy of the adaptive two-step filter. The main contributions of
this study are summarized as follows:

1. First, a modified Sage-Husa online noise estimator was developed to simultaneously
estimate the uncertain process noise and measurement noise during the underwater
uncooperative target tracking procedure;

2. Second, a negative matrix modification method was utilized in the first step of the
ATSF to ensure the time update process was steady. In addition, a regularized
Newton-Gauss iteration technique was used in the measurement updating procedure
to increase the robustness of the numerical recursion operation;

3. Finally, an adaptive two-step filter (ATSF) that combines an online noise estimator
and a robust numerical recursive technique was used to robustly and accurately track
the underwater uncooperative target.

The remainder of this paper is organized as follows. In Section 2, the problem men-
tioned above is formulated by introducing the kinematics of the underwater uncooperative
target and the bearing-only measurement model. In Section 3, the principle of nonlinear
least-squares estimation and the scheme of the traditional two-step filter for passive un-
derwater uncooperative target tracking are reviewed. The modified Sage-Husa online
noise estimator, the negative matrix modification method, the regularized Newton-Gauss
iteration technique, and the adaptive two-step filter (ATSF) for underwater uncooperative
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target tracking are proposed in Section 4. Sections 5 and 6 present the comprehensive
simulation results and a discussion, respectively, to verify the effectiveness of the designed
algorithm. Finally, in Section 7, the conclusions are drawn.

2. Problem Formulation

The 2-D bearing-only underwater uncooperative target tracking problem is formulated
in this section by modeling the linear CV kinematics of the underwater uncooperative
target and the nonlinear bearing-only measurements from two observers. The following
section provides the details of the models.

2.1. Linear Kinematic Model of the Underwater Uncooperative Target

We assume that the underwater uncooperative target performs under constant velocity
(CV) mode because the underwater uncooperative target is usually not maneuvering to
save energy and to remain concealed. As the depth of the underwater uncooperative target
is usually significantly smaller than the tracking range and the underwater target is usually
maintained at a constant depth, the tracking procedure only focuses on the 2-D tracking
of the XOY plane. Consider that

[
x y

]
represents the current 2-D location of the

underwater target and
[

vx vy
]

represents the 2-D velocities. According to Reference [9],
the kinematics model of the underwater uncooperative target can be represented as the
following discrete formation:

Xk = Φk/k−1Xk−1 + Wk (1)

where Xk =
[

xk yk vxk vyk
]T is the system state at tracking time k and where Wk is

the Gaussian process noise caused by the unknown underwater environment with first-
and second-order moments, q and Q, respectively. Φk/k−1 is the state transition matrix and
can be represented as the following matrix if the target is in the CV operation mode:

Φk/k−1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (2)

2.2. Nonlinear Bearing-Only Measurement Model by Two Observers

As single bearing-only measurements cannot ensure that the 2-D underwater target
tracking problem is fully observable, this paper considers that a distributed bearing-only
measurement system simultaneously provides two independent bearing measurements.
The configuration of the two observers and the uncooperative underwater target is shown
in Figure 1.

Figure 1. The configuration of the distributed bearing-only measurement system.
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Considering that the two-independent bearing-only measurements are utilized at
every tracking step, the measurements model can be expressed as follows:

zk =

[
θ1,k
θ2,k

]
+ Vk = h(Xk)+Vk

=

[
arctan yk−y1,k

xk−x1,k

arctan yk−y2,k
xk−x2,k

]
+

[
V1,k
V2,k

] (3)

where (xi,kyi,k)(i = 1, 2) is the location of the ith observer at tracking time k of the XOY
plane. θi,k(i = 1, 2) represents the bearing-only measurements measured by the ith observer
at tracking time k. Similar to the consideration of Wk in the process model, Vi,k(i = 1, 2) is
also modeled as the Gaussian measurement noise caused by the underwater environment
with first- and second-order moments, rk and Rk, respectively. In this paper, we assume that
both observers have the same stochastic process of the measurement noise. The overview
of the target to the ith observer in the XOY plane is shown in Figure 2.

Figure 2. Measurement of the target by the ith observer in the XOY plane.

3. Nonlinear Least-Squares Estimation and the Traditional Two-Step Filter for
Bearing-Only Underwater Uncooperative Target Tracking
3.1. Nonlinear Least-Squares Estimation for Underwater Uncooperative Target Tracking

From Equations (1) and (3), it is clear that the bearing-only underwater uncooper-
ative target tracking system is nonlinear with a linear process equation and a nonlinear
measurement equation. Thus, according to Reference [21], the principle of the nonlinear
least-squares estimation of the bearing-only underwater target tracking problem can be
restricted to minimize the following quadratic cost function subject to the system model
formed by Equations (1) and (3):

J =
1
2
(
X0 − X0

)TP−1
X0

(
X0 − X0

)
+

1
2

N

∑
k=0

WT
kQ−1

k Wk +
1
2

N

∑
k=0

[zk − h(Xk)]
TR−1

k [zk − h(Xk)] (4)

where X0 and X0 are the initial value and initial expectation of the states of the underwater
uncooperative target, respectively. PX0

is the initial covariance matrix, and the other
parameters have the same definitions as those of Section 2. N is the total number of discrete
tracking steps.

From Equation (4), it can be found that the goals of the bearing-only tracking procedure
are to eliminate the initial errors between the real initial states and the initial estimates
(the first term of Equation (4)), to mitigate the influence of the disturbance caused by the
uncertain underwater environment (the second term of Equation (4)), and to minimize the
measurement noise (the third term of Equation (4)). Hence, to obtain a robust and accurate
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tracking process, the initial errors and the uncertain disturbances of both the process model
and measurement model should be taken into consideration.

To minimize the quadratic cost function depicted by Equation (4) for the bearing-only
underwater uncooperative target tracking scenario, one can adjoin the system model and
the cost function using Lagrange multipliers [21]. It is clear that the tracking algorithm is
a KF approach if the measurements model is linear and a global optimal can be ensured.
However, due to the high nonlinearity in Equation (3), it is impossible to achieve globally
optimal tracking results in the problem of bearing-only underwater target tracking, and
every linearization of Equation (3) can be regarded as introducing linearization errors to the
optimal estimation problem. In particular, from Equations (3) and (4), the errors existing
in the measurements may lead to low estimation accuracies because the measurements
contain the most information, from theoretical models and practical applications, to tune
the tracking system.

3.2. Traditional Two-Step Filter for Bearing-Only Underwater Uncooperative Tracking

Considering the abovementioned issues, the traditional two-step filter was proposed
by References [21,22] without a linearization procedure in the measurements model to
better utilize the measurements and thus to improve the tracking results. Before implement-
ing the traditional two-step filter in the bearing-only underwater uncooperative tracking
problem, the principle of the two-step filter should be reviewed.

Considering a linear measurement model, Equation (4) can be represented as follows:

J =
1
2
(
X0 − X0

)TP−1
X0

(
X0 − X0

)
+

1
2

N

∑
k=0

WT
kQ−1

k Wk+
1
2

N

∑
k=0

[zk − HkXk]
TR−1

k [zk − HkXk] (5)

where the measurement model can be represented as follows:

zk = HkXk + Vk (6)

with a measurement noise Vk, which has the same definition as that in Section 2.
According to the optimal control theory, the least-squares estimation of a linear system

can be derived using the KF method and the tracking procedure is stable when the system
is observable [26]. Consequently, the quadratic cost function can be simplified to the
following:

J =
1
2

N

∑
k=0

[zk − HkXk]
TR−1

k [zk − HkXk] (7)

Equation (7) shows that the optimal tracking results can be obtained by minimizing
the measurement quadratic cost function if the system is linear, and the initial error and the
process disturbances can be eliminated during the estimation process. Hence, to linearize
the measurement model in the bearing-only underwater target tracking system represented
by Equation (3), the extended state yk is first introduced as follows:

yk = fy(Xk) =

(
Xk

h(Xk)

)
(8)

Depending on the extended state yk, the measurement model depicted by Equation
(3) can be rewritten as follows:

zk = Ykyk + Vk (9)

where

Yk =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
(10)

is the extended measurement matrix.
From Equations (8) and (9), it can be found that the nonlinear bearing-only underwater

uncooperative target tracking system formed by Equations (1) and (3) has been transformed
to linear expressions by the extended state yk with the measurement matrix Yk. Therefore,
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the quadratic cost function to be minimized by the extended state can be represented as
minimizing the following linearized quadratic cost function:

J =
1
2

N

∑
k=0

[Zk − Ykyk]
TR−1

Vk[zk − Ykyk] (11)

where RVk is the covariance matrix of the extended measurement noise.
Thus, from the optimal control theory [28], the nonlinear bearing-only underwater

uncooperative target tracking problem can be first solved using the KF method under the
extended states to obtain its optimal solution. According to Reference [28], the extended
state yk can be computed recursively using the KF method under the system model formed
by Equations (1) and (3) via the following time update and measurement update steps:

1. Time update:
Xk/k−1=ΦkXk−1/k−1 (12)

Pk/k−1=ΦkPk−1/k−1ΦT
k+Qk (13)

yk/k−1=yk−1/k−1+ fy(Xk/k−1)− fy(Xk−1/k−1) (14)

Py,k/k−1=Py,k−1/k−1+Fk/k−1Pk/k−1FT
k/k−1−Fk−1/k−1Pk−1/k−1FT

k−1/k−1 (15)

2. Measurement update:

Kk=Py,k/k−1YT
k

(
YkPy,k/k−1YT

k+Rk

)−1
(16)

yk/k=yk/k−1+Kk
(
zk−Ykyk/k−1

)
(17)

Py,k/k=(I−KkYk)Py,k−1(I−KkYk)
T+KkRkKT

k (18)

where Fk/k−1 =
∂ fy(Xk/k−1)

∂Xk/k−1
and Fk−1/k−1 =

∂ fy(Xk−1/k−1)
∂Xk−1/k−1

are the Jacobian matrices of the
extended state at Xk/k−1 and Xk−1/k−1, respectively.

Equations (12) to (18) recursively yield the optimal estimation of the extended sate
yk and its covariance matrix Pyk. This optimal extended state estimation process is called
the first-step extended state estimation. As the extended state linearizes the passive
underwater uncooperative target tracking system, the estimation results are optimal and
are not affected by the initial errors when the system is fully observable. This is particularly
the case when the target is uncooperative and prior information is too limited to allow
for an accurate initial guess. In addition, it is clear that the nonlinearities are removed
from the measurement process, which can ensure the tracking procedure makes full use of
the measurements to enhance the estimation accuracy. Instead, the nonlinearities of the
measurement models are transformed to the time update process with original states at
different tracking steps. This adds more information to the nonlinear measurement model
compared to the traditional linearization methods, which only linearize the nonlinear
measurement model at the current state. Therefore, by adopting the extended state in the
first step, the nonlinearity of the passive underwater uncooperative target tracking system
decreases and the estimation accuracy is enhanced.

Then, considering the original state Xk defined in Section 2.1, and the extended state yk
and the estimation error in the first step, the following recursive equation can be obtained:

yk/k= fy(Xk)+Vy,k (19)

where Vy,k is the estimation error of the first-step extended state.
According to Reference [28], the original state can be extracted from the extended state

by minimizing the following quadratic cost function:

Jy =
1
2
(
yk/k − fy(Xk)

)TP−1
y,k/k

(
yk/k − fy(Xk)

)
(20)
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Utilizing the Newton-Gauss iteration technique, the original state can be computed
recursively as follows:

X(i+1)
k =X(i)

k −
(

G(i)
k

)−1(
g(i)

k

)T
(21)

where

G(i)
k

.
=

∂ fy

∂Xk

∣∣∣∣
X(i)

k

P−1
y,k/k

∂ fy

∂Xk

∣∣∣∣∣
X(i)

k

(22)

and

g(i)
k =

∂Jy

∂X(i)
k

∣∣∣∣∣
X(i)

k

= −
[
yk/k− fy

(
X(i)

k

)]T
P−1

y,k/k
∂ f

∂Xk

∣∣∣∣
X(i)

k

(23)

Equations (21) to (23) form the second-step original state estimation scheme. From
the Newton–Gauss iteration technique, the original state Xk can be extracted from the
extended state yk that was recursively estimated from the first step.

Therefore, by utilizing the traditional two-step filter technique and by considering the
passive underwater uncooperative target tracking system depicted by Equations (1) and (3),
the traditional two-step filter for the bearing-only underwater uncooperative tracking
algorithm can be summarized in Algorithm 1 as follows:

Algorithm 1: Traditional two-step filter for bearing-only underwater uncooperative tracking.

1: Considering the system model depicted by Equations (1) and (3), initialize the state X0 and
the covariance matrix P0;

2: Set up the initial extended sate y0 and extended covariance matrix Py0 according to
Equation (8);

3: Estimate the extended state yk and the extended covariance matrix Py,k at the kth tracking
step by the first-step estimation depicted by Equations (12) to (18);

4: Extract the original state Xk from the extended state yk by the second-step estimation
depicted by Equations (21) to (23);

5: Calculate the iteration difference δ =
∥∥∥Xi+1

k − Xi
k

∥∥∥, and check whether δ is less than the
preset threshold for stopping iteration. If δ is larger than the preset threshold, the iteration
for the second step continues; otherwise stop the iteration of the second step;

6: Time propagation to run the whole algorithm at tracking time k + 1. Then, jump to step (3).

4. Adaptive Two-Step Bearing-Only Underwater Uncooperative Target Tracking

From Algorithm 1 proposed in the former section, two main drawbacks exist in
the traditional two-step filter. First, the traditional two-step filter assumes the process
noise, and the measurement noise remain unchanged and are known as prior information
during the first-step estimation. However, in a real bearing-only underwater uncoopera-
tive target tracking scenario, the process noise and the measurement noise are unknown
and uncertain. As a result, online noise estimating techniques should be considered to
increase the robustness and accuracy of the tracking procedure. In addition, both the
first-step and second-step iteration processes have their own drawbacks. As described in
References [23,24], Equation (14) in the time-update procedure of the first-step estimation
sometimes becomes negative. To address this problem, References [23,24] provide several
numerical and analytical solutions to avoid the negative time-updated extended covariance
matrix. Then, in the second step, the original state Xk is extracted recursively from the esti-
mated extended state yk by the Newton-Gauss method. However, the iteration procedure
sometimes diverges because, during the bearing-only underwater uncooperative target
tracking procedure, the Hessian matrix becomes ill-conditioned.

Considering the uncertainties in the tracking process, various kinds of adaptive
tracking techniques have been developed to deal time different uncertain situations. Ref-
erences [29,30] considered the irregular sampling time during the measuring procedure,
several robust parameter estimating algorithms are proposed. If the target is a far slow-
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moving object, the measurement intervals can be regarded as regular and adaptive tracking
techniques dealing with the uncertain noise can be adopted to enhance the tracking ac-
curacy. Inspired by the former research of References [23–25,27] and considering the
application simplicity and the estimation performance, an adaptive two-step bearing-only
underwater uncooperative target tracking filter (ATSF) is proposed in this paper. The
proposed ATSF consists of three main parts, namely, online noise estimation, first-step
negative matrix correction, and the second-step regularized Newton-Gauss iteration. The
details are described in this section.

4.1. Modified Sage-Husa Online Noise Estimation

The Sage–Husa online noise estimator was first introduced by Reference [31] for linear
system noise estimation. For the nonlinear tracking system depicted by Equations (1)
and (3), the first and second momentum of the uncertain noise at tracking time k can be
estimated online using the nonlinear Sage–Husa estimator as follows:

q̂k =
1
k

k

∑
j=1

(
X̂j/j − Φj/j−1X̂j−1/j−1

)
(24)

Q̂k =
1
k

k

∑
j=1

[
∆Xj − q

]
[∆Xj − q]T (25)

r̂k =
1
k

k

∑
j=1

(
zj −

(
X̂j/j

))
(26)

R̂k =
1
k

k

∑
j=1

[
∆zj − r

]
[∆zj − r]T (27)

where q and r are the first-order momentum of the process noise and measurement noise,
respectively; Φj/j−1 is the transfer matrix from tracking time j − 1 to j; and ∆Xj and ∆zj are
represented as follows:

∆Xj = X̂j/j − Φj/j−1X̂j/j−1 (28)

∆Zj = Zj − h
(
X̂j/j−1

)
(29)

From Equations (24) to (29), it can be found that the classic nonlinear Sage–Husa online
noise estimator must utilize all of the smooth values of the state within a certain tracking
period; as a result, the total process is hard to compute. According to Reference [20], the
recursive suboptimal representation of the nonlinear Sage–Husa online noise estimator can
be represented as follows:

q̂k =

(
1 − 1

k

)
q̂k−1 +

1
k

∆Xk (30)

r̂k =

(
1 − 1

k

)
r̂k−1 +

1
k

∆zk (31)

Q̂k =

(
1 − 1

k

)
Q̂k−1 +

1
k

(
Kkεkε

T
kKT

k + Pk/k − Φk−1Pk−1/k−1ΦT
k−1

)
(32)

R̂k = R̂k−1 +
1
k

(
εkε

T
k − Pzz,k/k−1

)
(33)

where Kk is the filter gain by a designed tracking algorithm, Pk/k is the covariance of the
estimated state at time k, and εk is the innovation represented as the following equation:

εk = zk − h
(
X̂k/k−1

)
− rk (34)
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The representation of Pzz,k/k−1 is dependent on different nonlinear tracking algo-
rithms.

For the uncertain noise, the most recent measurement should be given more attentions
than the historical data. Therefore, the fading factor dk at tracking time k is introduced to
Equations (30) to (33) as follows:

q̂k = (1 − dk)q̂k−1 + dk∆Xk (35)

r̂k = (1 − dk)r̂k−1 + dk∆zk (36)

Q̂k = (1 − dk)Q̂k−1 + dk

(
Kkεkε

T
kKT

k + Pk/k − Φk−1Pk−1/k−1ΦT
k−1

)
(37)

R̂k = (1 − dk)R̂k−1 + dk

(
εkε

T
k−Pzz,k/k−1

)
(38)

with
dk =

1 − b
1 − bk (39)

It can be found in Equation (39) that, when the index b is close to 1, the noise calculated
by Equations (35) to (38) focuses on the measurements from the total tracking period. On
the contrary, if b is close to 0, the estimated noise is more focused on the current time
innovation. Consequently, by tuning the value of index b, the fading factor dk changes
dynamically to affect the online noise estimation performance. By combining Equations (35)
to (39), we obtain the modified Sage–Husa online noise estimator to address the uncertain
characteristic of the process and measurement noise during the tracking procedure.

4.2. First-Step Negative Matrix Correction

In the first-step time update procedure of the traditional two-step filter described as
Equation (15), the matrix subtraction operation sometimes results in an ill-conditioned
Py,k/k−1, as discovered by References [23,24]. Thus, to ensure the positive characteristic of
the computed Py,k/k−1, a small positive scalar ε is introduced to modify the original, as
proposed by Reference [23] as the following:

Py,k/k−1=Py,k−1/k−1+Fk/k−1Pk/k−1FT
k/k−1−Fk−1/k−1Pk−1/k−1FT

k−1/k−1+εI (40)

Although References [24,26] utilized a more comprehensive analytical expression to
calculate the extended state and its covariance matrix in the first-step time updating step,
the continuous differential computation introduces a significant amount of computational
complexity. Therefore, we utilize the regularization technique to make Py,k/k−1 positive.

4.3. Second-Step Regularized Newton-Gauss Iteration

From Equation (21), the Hessian matrix is inverted during the iteration process. How-
ever, this inversion diverges when the values of components of the Hessian matrix G(i)

k
are nearly zero, particularly when the target is uncooperative and few measurements can
be obtained. Therefore, to ensure the robustness of tracking, a regularization technique
is adopted. The implementation of the regularization process in Equation (21) can be
represented as the following equation:

X(i+1)
k = X(i)

k −
(

G(i)
k + λI

)−1(
g(i)

k

)T
(41)

where λ is the coefficient of the regularization process and the other matrixes have the
same definitions as previously mentioned in Section 3.

From Equation (41), by setting a specific small value λ, the inversion computation can
avoid the ill-conditioned situation and thus ensures a stable second-step iteration while
extracting the original state Xk from the extended state yk.
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4.4. Adaptive Two-Step Filter for Bearing-Only Underwater Uncooperative Target Tracking

From Equations (37), (38), (40), and (41), in conjunction with the traditional two-
step filter described in Section 3, the adaptive two-step filter (ATSF) for passive un-
derwater uncooperative target tracking can be summarized as Algorithm 2, as follows:

Algorithm 2: Adaptive two-step filter for bearing-only underwater uncooperative tracking.

1: Considering the system model depicted by Equations (1) and (3), initialize the state X0 and
the covariance matrix P0;

2: Set up the initial extended sate y0 and extended covariance matrix Py0 according to
Equation (8);

3: Estimate the process noise and measurement noise online by Equations (37) and (38);
4: Estimate the extended state yk and the extended covariance matrix Py,k at the kth tracking

step by the first-step estimation depicted by Equations (12) to (14), Equation (40), and
Equations (16) to (18);

5: Extract the original state Xk from the extended state yk by the second-step estimation
depicted by Equations (41), (22), and (23);

6: Calculate the iteration difference δ =
∥∥∥Xi+1

k − Xi
k

∥∥∥, and check whether δ is less than the
preset threshold for stopping the iteration. If δ is larger than the preset threshold, the
iteration for the second step continues; otherwise stop the iteration of the second step;

7: Time propagation to run the whole algorithm at tracking time k + 1. Then, jump to step (3).

Compared to Algorithm 1 proposed in Section 3, it is clear that the modified step
(3) in Algorithm 2 enables the online noise estimation process to increase the accuracy of
the tracking procedure. In addition, the modified steps (4) and (5) in Algorithm 2 ensure
that the two-step filter has a robust estimation performance. Hence, the proposed ATSF
can increase the robustness and accuracy of the passive underwater uncooperative target
tracking process.

5. Simulations and Discussions
5.1. Simulation Scenario

As presented in this section, comprehensive simulations were undertaken to verify the
proposed bearing-only 2-D underwater uncooperative target passive tracking algorithm.

In addition, by setting the reference coordination, the coordinates of each observer
and the target are represented in the reference coordination. The detailed configuration of
the observers is presented in Table 1. In this paper, we assume that both observers have the
same sensing and communication range.

Table 1. Detailed configuration of the observers.

Observer Number Coordinate

1 (x1, y1) = (0, 600)
2 (x2, y2) = (600, 0)

In the simulations, the underwater target was assumed to perform in CV motion
mode with an actual initial state as X0 =

[
2000 2000 5 −4

]
and a constant velocity

[ vx vy ] =
[

5 −4
]
m/s from tracking time 0 to 200 s. In addition, to verify the

tracking performance of the proposed ATSF, different initial guesses are presented in
Table 2 with the same covariance matrix of P0 = diag( 100, 000 10, 000 1000 1000 ).
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Table 2. Different initial guesses.

Number Initial Guesses

1 X̂0 =
[

1800 1800 0 0
]

2 X̂0 =
[

2500 2500 0 0
]

3 X̂0 =
[

1000 1000 0 0
]

In addition, the uncertain process noise was modeled as a combination of the certain
noise and an uncertain adding term. For the tracking process, the stochastic process of the
certain noise is known a priori and the uncertain adding noise is unknown. The process
noise is modeled as the following equations:

Wk =
[

0 0 wvx wvy
]T (42)

with
wvi = wvi + Nwi(i = x, y) (43)

where wvi(i = x, y) and Nwi(i = x, y) are the zero-mean Gaussian white noise, with
expectations of the variance matrix of E

(
wvi,1wT

vi,1

)
= 0.01 and E

(
Nwi NT

wi
)
= 0.005,

respectively.
Furthermore, it was assumed that both observers have the same stochastic process of

the measurement noise and can be modeled as follows:

Vi,k =
[
vθi

]T
(i = 1, 2) (44)

with
vθi = vθi + Nvi(i = 1, 2) (45)

where vθi and Nvi(i = 1, 2) are the zero-mean Gaussian white noise, with expectations of

the variance matrix of E
(

vθi v
T
θi

)
= 0.25 and E

(
Nvi NT

vi
)
= 0.05, respectively.

All of the simulations presented in this paper were performed using MATLAB R2019b
on a computer with a Microsoft Windows 10 system; the computer was configured with
Intel (R) Core (TM) i7-9700k CPU @3.2 GHz. The simulation results are the average of 50
Monte Carlo experiments. The total simulation time was set as 200 s with a 1 s measurement
interval. To evaluate the performance of the proposed algorithm, the root mean square error
(RMSE) for locations, velocities, and the angular velocity of the underwater uncooperative
target were used and can be represented as follows:

RMSEl =

√
1
N

N
∑

i=1

(
∆x2

k + ∆y2
k
)

RMSEv =

√
1
N

N
∑

i=1

(
∆v2

xk + ∆v2
yk

) (46)

with
∆xk = xk − xk
∆yk = xk − yk

(47)

and
∆vxk = vxk − vxk
∆vyk = vyk − vyk

(48)

where N is the total number of the Monte Carlo trials; ( xk yk ) and ( xk yk ) are the
real and estimated locations of the underwater target, respectively; and ( vxk vyk ) and
( vxk vyk ) are the real and estimated velocities of the underwater target, respectively.
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5.2. Simulation Results and Discussions

As presented in this subsection, the ATSF proposed in Section 4 was tested and com-
pared to the traditional two-step filter and the extended Kalman filter used in Reference [16],
under the same simulation environment for bearing-only underwater uncooperative target
tracking scenario. The simulation results and discussions are described in detail in this
subsection.

5.2.1. Accuracy Analysis under Different Initial Errors

According to the three different initial guesses presented in Table 2, the tracking
results from the ATSF, the traditional two-step filter (TSF), and the EKF are shown in
Figures 3–5, with the calculated RMSEl and RMSEl shown in Table 3. ATSF (1) in Table 3
means the tracking results from the ATSF under the initial guess with number 1 and the
other notations are defined similarly.

Figure 3. (a) Error of x by ATSF, TSF, and EKF under initial guess 1; (b) error of y by ATSF, TSF, and
EKF under initial guess 1; (c) error of vx by ATSF, TSF, and EKF under initial guess 1; and (d) error of
vy by ATSF, TSF, and EKF under initial guess 1.

From Figure 3 and the tracking results with number 1 (under initial guess 1 from
Table 2) shown in Table 3, it is clear that all three tracking algorithms can converge within
the simulation time. From Table 3, the localization error between the ATSF and the EKF is
12.25 m and the velocity error is 1.73 m/s. In addition, the tracking accuracy of the ATSF is
higher than that of the traditional two-step filter in terms of its online noise estimation and
robust iteration characteristics. Although the ATSF has the highest tracking accuracy, the
differences among the three tracking algorithms are minor, and the bias between the initial
value of the target and the initial guesses of the tracking algorithm is small. Consequently,
the linearization error has a limited influence during the tracking procedure.
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Figure 4. (a) Error of x by ATSF, TSF, and EKF under initial guess 2; (b) error of y by ATSF, TSF, and
EKF under initial guess 2; (c) error of vx by ATSF, TSF, and EKF under initial guess 2; and (d) error of
vy by ATSF, TSF, and EKF under initial guess 2.

From Figure 4 and the tracking results with number 2 (under initial guess 2 from
Table 2) shown in Table 3, the differences between the ATSF and EKF are apparent. Due to a
larger initial bias, the initialization error in the EKF significantly influences the final tracking
accuracy, and the two-step tracking techniques can achieve substantially greater tracking
accuracy by shifting the initialization error from the measurement-updating process to the
time-updating process. In addition, from the tracking results, the ATSF can achieve a higher
tracking accuracy than the traditional two-step filter since it can estimate the uncertain
noise online to adjust its performance at each tracking step. From Figure 4, it can also be
seen that the traditional two-step filter fluctuates during the tracking process compared to
the proposed ATSF. This phenomenon occurs because the ATSF adopted the regularization
technique to ensure the tracking procedure remains steady. As a result, when the initial
error becomes large, the proposed ATSF has superior performance compared to the EKF
and can achieve more stable and robust results than the traditional two-step filter.

From Figure 5 and the tracking results with number 3 (under initial guess 3 from
Table 2) shown in Table 3, the proposed ATSF is the only method that can provide reliable
tracking results. As the initial errors are relatively large, the linearization-based EKF
diverged after several tracking steps. In addition, for the uncertain noise and ill-conditioned
matrixes in the tracking procedure, the tracking accuracy of the traditional two-step filter
is limited, although it can converge within the tracking period. However, the ATSF can
achieve reliable and robust tracking under this circumstance due its online noise estimating
ability and stable iteration characteristic. As a result, for the bearing-only underwater
uncooperative target tracking scenario, the ATSF has superior tracking ability since a
priori knowledge is unavailable for an underwater uncooperative target and a large initial
bias exists.
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Figure 5. (a) Error of x by ATSF, TSF, and EKF under initial guess 3; (b) error of y by ATSF, TSF, and
EKF under initial guess 3; (c) error of vx by ATSF, TSF, and EKF under initial guess 3; and (d) error of
vy by ATSF, TSF, and EKF under initial guess 3.

Table 3. The RMSEl and RMSEl for the ATSF, the traditional two-step filter (TSF), and the EKF for
different initial guesses.

Tracking Algorithm RMSEl (m) RMSEv (m/s)

ATSF (1) 11.72 1.83
Traditional two-step filter (1) 21.88 3.53

EKF (1) 23.97 3.56

ATSF (2) 16.03 2.79
Traditional two-step filter (2) 31.06 5.46

EKF (2) 51.05 11.66

ATSF (3) 33.23 10.36
Traditional two-step filter (3) 116.48 46.47

EKF (3) 277.81 125.56

5.2.2. Computational Time Analysis under Different Thresholds δ during Regularized
Newton-Gauss Iteration

From Sections 3 and 4, it is clear that the threshold δ is the key parameter that affects
the efficiency of the two-step tracking scheme. If δ is set to a smaller value, the total iteration
process becomes relatively longer and the tracking accuracy becomes higher. To increase
the applicability of the proposed algorithm, computational load analysis was undertaken,
as presented in this subsection, to discover a balance between the computing time and the
tracking accuracy of the proposed ATSF.

Under the initial guess 3 from Table 2, the ATSF was implemented under three different
thresholds δi(i = 1, 2, 3), and the tracking results, tracking accuracy, and computational
time are shown in Figure 6 and Table 4.



Entropy 2021, 23, 907 16 of 18

Figure 6. (a) Error of x by ATSF using different iteration thresholds; (b) error of y by ATSF using
different iteration thresholds; (c) error of vx by ATSF and TSF using different iteration thresholds;
and (d) error of vy by ATSF using different iteration thresholds.

Table 4. Computational time and tracking accuracies under different thresholds.

Threshold δi(i = 1, 2, 3) Computational Time Tracking Accuracy

δ1 = 0.1 18.84 s
RMSEl (m) = 33.23

RMSEv (m/s) = 10.36

δ2 = 0.01 212.5 s
RMSEl (m) = 32.25
RMSEv (m/s) = 9.6

δ3 = 0.5 3.71 s
RMSEl (m) = 68.17
RMSEv (m/s) = 20.1

It can be found in Figure 6 and Table 4 that a smaller threshold can provide a relatively
accurate tracking result. However, the computational time increases when a smaller
threshold is adopted. From the tracking results of δ1 and δ2, the accuracy was significantly
enhanced at the expense of additional computational time, which increased by 15.13 s.
In addition, from the tracking results of δ1 and δ3, the tracking accuracy was slightly
enhanced but the computational time increased by 193.7 s. The simulation results indicate
that a suitable threshold should be selected to balance the tracking accuracy and the
computational time. In our case, threshold δ1 is optimal.

6. Discussion

From the comprehensive simulation results and analysis, a brief summary can be
made of the following empirical principles:

1. The proposed ATSF, the traditional two-step filter, and the EKF can obtain good
tracking results when the initial errors are small. This phenomenon occurs because
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the linearization error is limited by small errors between the initial values of the
target and the initial guesses of the tracking algorithms. However, when the initial
errors become large, the tracking performances are different. The superior tracking
performance of the two-step filtering scheme for both the ATSF and the traditional
two-step filter shows their effectiveness.

2. As the ATSF is more robust and accurate due to the online noise estimation function
and the regularization operation in the two-step filtering process, the ATSF can
achieve more accurate tracking results when the online noise varies. In addition, the
tracking performance of the ATSF is more stable than that of the traditional two-step
filter because the regularization operations prevent the core matrixes from becoming
ill-conditioned during the filtering procedure. On the contrary, when the noise is
uncertain, the tracking procedure of the traditional two-step filter fluctuates and the
tracking results have larger errors when compared to the ATSF.

3. Regarding the computational time, the computational loads for the proposed ATSF
and the traditional two-step filter rely significantly on the second-step Newton-Gauss
iterating operation. A smaller difference between the state at the ith and i + 1th
iteration steps results in an increase in computational time. Therefore, setting a
rational iteration threshold is important to control the computational load of the two-
step filtering techniques. In real applications, this threshold can be predetermined for
a specific tracking system by empirical simulations.

7. Conclusions

The 2-D bearing-only tracking of an underwater uncooperative target with uncertain
underwater disturbances was examined in this study. By adopting the modified Sage-Husa
online noise estimator in conjunction with the regularization technique in the two-step
filtering scheme, the proposed ATSF can obtain accurate and robust tracking results under
the condition of uncertain disturbances. The simulation results verified the superior
tracking ability of the proposed ATSF, and comprehensive discussions are presented to
provide empirical insight for the implementation of the proposed ATSF in real bearing-
only underwater uncooperative tracking scenarios. It is believed that the ATSF proposed
by this paper has significant potential in real-time 2-D bearing-only underwater target
tracking missions.
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