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Abstract: In this paper, we focus on extended informational measures based on a convex function
φ: entropies, extended Fisher information, and generalized moments. Both the generalization of
the Fisher information and the moments rely on the definition of an escort distribution linked to
the (entropic) functional φ. We revisit the usual maximum entropy principle—more precisely its
inverse problem, starting from the distribution and constraints, which leads to the introduction of
state-dependent φ-entropies. Then, we examine interrelations between the extended informational
measures and generalize relationships such the Cramér–Rao inequality and the de Bruijn identity in
this broader context. In this particular framework, the maximum entropy distributions play a central
role. Of course, all the results derived in the paper include the usual ones as special cases.

Keywords: φ-entropy; state-dependent φ-entropy; (inverse) maximum φ-entropy problem; φ-escort
distributions; φ-Fisher information; φ-moments; generalized Cramér–Rao inequality; φ-heat equation;
generalized de Bruijn.

1. Introduction

Since the pioneer works of von Neumann [1], Shannon [2], Boltzmann, Maxwell, Planck,
and Gibbs [3–9], many investigations were devoted to the generalization of the so-called Shan-
non entropy and its associated measures [10–22]. If the Shannon measures are compelling,
especially in the communication domain, for compression purposes, many generalizations
proposed later on have also showed promising interpretations and applications (Panter–Dite
formula in quantification where the Rényi or Havrda–Charvát entropy emerges [23–25], en-
coding penalizing long codewords where the Rényi entropy appears [26,27], for instance).
The great majority of the extended entropies found in the literature belongs to a very general
class of entropic measures called (h, φ)-entropies [13,19,20,28–30]. Such a general class (or
more precisely the subclass of φ-entropies) can be traced back to the work of Burbea and
Rao [28]. They offer not only a general framework to study general properties shared by
special entropies, but they also offer many potential applications as described for instance
in [30]. Note that if a large amount of work deals with divergences, entropies occur as special
cases when one takes a uniform reference measure.

In the framework of these generalized entropies, the so-called maximum entropy
principle takes a special place. This principle, advocated by Jaynes, states that the sta-
tistical distribution that describes a system in equilibrium maximizes the entropy while
satisfying the system’s physical constraints (e.g., the center of mass and energy) [31–35].
In other words, it is the less informative law given the constraints of the system. In the
Bayesian approach, dealing with the stochastic modeling of a parameter, such a principle
(or a minimum divergence principle) is often used to choose a prior distribution for the
parameter [22,36–39]. It also finds its counterpart in communication, clustering, pattern
recognition, problems, among many others [32,33,40–43]. In statistics, some goodness-of-fit
tests are based on entropic criteria derived from the same idea of constrained maximal en-
tropic law [44–49]. The principle behind such entropic tests lies in the Bregman divergence,
measuring a kind of distance between probability distributions, i.e., the empirical distribu-
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tion given by data and the distribution we assume for the data (reference). It appears that
if the empirical distribution and the reference share the same moments, and if the latter
is of maximum entropy with these moments as constraints, the divergence reduces to a
difference of entropy. In a large number of works using the maximum entropy principle,
the entropy used is the Shannon entropy. However, if for some reason, a generalized
entropy is considered, the approach used in the Shannon case does not fundamentally
change [50–53].

One can consider the inverse problem which consists in finding the moment con-
straints leading to the observed distribution as a maximal entropy distribution [50]. Ke-
savan and Kapur also envisaged a second inverse problem, where both the distribution
and the moments are given. The question is thus to determine the entropy so that the
distribution is its maximizer. As a matter of fact, dealing with the Shannon entropy,
whatever the constraints considered, the maximum entropy distribution falls in the ex-
ponential family [33,34,52,54]. Remind that the exponential family is the set of paramet-
ric densities (with respect to a measure µ independent on the parameter) of the form
p(x) = C(θ)h(x) exp(R(θ)tS(x)) where S(x) is the sufficient statistics [39,55–60]. When
R(θ) = θ, the family is said to be natural and Z(θ) = 1/C(θ) is the partition function,
the log-partition function ϕ(θ) = log Z(θ) being the cumulants generating function. Now,
resolving the maximum entropy problem given later on by Equation (6) in the context of
the Shannon entropy, it appears indeed that the maximum entropy distribution falls in the
natural exponential family where the sufficient statistics is given by the moment constraints.
Considering more general entropies allows to escape from this limitation. Moreover, if the
Shannon entropy (or the Gibbs entropy in physics) is well adapted to the study of systems
in the equilibrium (or in the thermodynamic limit), extended entropies allow a finer de-
scription of systems out of equilibrium [17,61–65], exhibiting their importance. While the
problem was considered mainly in the discrete setting by Kesavan and Kapur in [50], we
will recall it in the general framework of the φ-entropies probability densities with respect
to any reference measure, and make a further step considering an extended class of these
entropies. Resolving the inverse problem can find applications in goodness-of-fit tests for
instance, allowing to design entropies adapted to such tests, in the same line as that of the
approaches mentioned above [44–49].

While the entropy is a widely used tool for quantifying information (or uncertainty)
attached to a random variable or to a probability distribution, other quantities are used as
well, such as the moments of the variable (giving information, for instance, on center of
mass, dispersion, skewness, or impulsive character), or the Fisher information. In particular,
the Fisher information appears in the context of estimation [66,67], in Bayesian inference
through the Jeffreys prior [39,68], but also for complex physical systems descriptions [67,69–
73].

Although coming from different worlds (information theory and communication,
estimation, statistics, and physics), these informational quantities are linked by well-known
relations such as the Cramér–Rao inequality, the de Bruijn identity, and the Stam inequal-
ity [34,74–76]. These relationships have been proved very useful in various areas, for in-
stance, in communications [34,74,75], in estimation [66], or in physics [77,78], among others.
When generalized entropies are considered, it is natural to question the other informational
measures’ generalization and the associated identities or inequalities. This question gave
birth to a large amount of work and is still an active field of research [28,79–90]. For instance,
the Cramér–Rao inequality is very important as it gives the ultimate precision in terms of
mean square error of an estimator of a parameter (i.e., the minimal error we can achieve).
However, there is no reason for choosing a quadratic error in general. This choice is often
made as it allows to simplify algebra or to derive estimators quite easily (e.g., of minimum
mean square error). One may wish to choose other error criteria (mean of another norm of
the error) and/or to stress parts of the distribution of the data in the mathematical average.
It is thus of high interest to be able to derive Cramér–Rao inequalities in a context as broad
as possible.
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In this paper, we show that it is possible to build a whole framework, which associates
a target maximum entropy distribution to generalized entropies, generalized moments,
and generalized Fisher information. In this setting, we derive generalized inequalities and
identities relating these quantities, which are all linked in some sense to the maximum
entropy distribution.

The paper is organized as follows. In Section 2, we recall the definition of the gener-
alized φ-entropy. Thus, we come back to the maximum entropy problem in this general
settings. Following the sketch of [50], we present a sufficient condition linking the entropic
functional and the maximizing distribution, allowing to both solve the direct and the
inverse problems. When the sufficient conditions linking the entropic function and the
distribution cannot be satisfied, the problem can be solved by introducing state-dependent
generalized entropies, which is the purpose of Section 3. In Section 4, we introduce in-
formational quantities associated to the generalized entropies of the previous sections,
such as a generalized escort distribution, generalized moments, and generalized Fisher
information. These generalized informational quantities allow to extend the usual infor-
mational relations such as the Cramér–Rao inequality, relations precisely saturated (or
valid) for the generalized maximum entropy distribution. Finally, in Section 5, we show
that the extended quantities allows to obtain an extended de Bruijn identity, provided
the distribution follows a nonlinear heat equation. Some examples of φ-entropies solv-
ing the inverse maximum entropy problem are provided in a short series of appendices,
showing, in particular, that the usual quantities are recovered as particular cases (Gaussian
distribution, Shannon entropy, Fisher information, and variance).

In the following, we will define a series of generalized information quantities rel-
ative to a probability density defined with respect to a given reference measure µ (e.g.,
the Lebesgue measure when dealing with continuous random variables, discrete measure
for discrete-state random variables, etc.). Therefore, rigorously, all these quantities depend
on the particular choice of this reference measure. However, for simplicity, we will omit to
mention this dependence in the notations along the paper.

2. φ-Entropies—Direct and Inverse Maximum Entropy Problems

The direct problem, i.e., finding the probability distribution of maximum entropy
given moments constraints, is a common problem and can find application, for instance,
in the Bayesian framework, searching for prior probability distribution as less informa-
tive as possible, given some moments [22,36–39]. It also finds many other applications,
as mentioned in the introduction.

Let us first recall the definition of the generalized φ-entropies introduced by Csiszàr
in terms of divergence, and by Burbea and Rao in terms of entropy:

Definition 1 (φ-entropy [28]). Let φ : Y ⊆ R+ 7→ R be a convex function defined on a convex
set Y . Then, if f is a probability distribution defined with respect to a general measure µ on a set
X ⊆ Rd such that f (X ) ⊆ Y , when this quantity exists,

Hφ[ f ] = −
∫
X

φ( f (x))dµ(x) (1)

is the φ-entropy of f .

The (h, φ)-entropy is defined by H(h,φ)[ f ] = h
(

Hφ[ f ]
)

where h is a nondecreasing
function. The definition is extended by allowing φ to be concave, together with h nonin-
creasing [13,19,20,29,30]. If, additionally, h is concave, then the entropy functional H(h,φ)[ f ]
is concave.

As we are interested in the maximum entropy problem, and because h is monotone,
we can restrict our study to the φ-entropies. Additionally, we will assume that φ is strictly
convex and differentiable.

A related quantity is the Bregman divergence associated with convex function φ:
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Definition 2 (Bregman divergence and functional Bregman divergence [22,91]). With the
same assumptions as in Definition 1, the Bregman divergence associated with φ defined on a convex
set Y is given by the function defined on Y × Y ,

Bφ(y1, y2) = φ(y1)− φ(y2)− φ′(y2)(y1 − y2). (2)

Applied to two functions fi : X 7→ Y , i = 1, 2, the functional Bregman divergence writes

Bφ( f1, f2) =
∫
X

φ( f1(x))dµ(x)−
∫
X

φ( f2(x))dµ(x)−
∫
X

φ′( f2(x))( f1(x)− f2(x))dµ(x). (3)

A direct consequence of the strict convexity of φ is the non-negativity of the (functional) Bregman
divergence: Bφ(y1, y2) ≥ 0 and Bφ( f1, f2) ≥ 0, with equality if and only if y1 = y2 and f1 = f2
almost everywhere respectively.

From its positivity and equality only when the distributions are (almost everywhere)
equal, this divergence defines a kind of distance (it is not, being non-symmetrical) where
f2 serves as a reference.

More generally, the Bregman divergence is defined for multivariate convex functions,
where the derivative is replaced by gradient operator [91]. Extensions for convex function
of functions also exist, where the derivative is in the sense of Gâteau [92]. Such general
extensions are not useful for our purposes; thus, we restrict ourselves to the above definition
where Y ⊆ R+.

2.1. Maximum Entropy Principle: The Direct Problem

Let us first recall the maximum entropy problem that consists in searching for the
distribution maximizing the φ-entropy (1) subject to constraints on some moments E[Ti(X)]
with Ti : Rd 7→ R, i = 1, . . . , n. This direct problem writes

f ? = argmax
f∈DT,t

(
−
∫
X

φ( f (x))dµ(x)
)

(4)

with
DT,t = { f ≥ 0 : E[Ti(X)] = ti, i = 0, . . . , n}, (5)

where T0(x) = 1 and t0 = 1 (normalization constraint), T = (T0, . . . , Tn), t = (t0, . . . , tn).
We are faced to a strictly concave optimization problem (the functional to maximize is
concave w.r.t. f and the constraints are linear w.r.t. f , so that the functional restricted to a
linear subspace is still concave). Therefore, the solution exists and is unique. A technique
to solve the problem can be to use the classical Lagrange multipliers technique and to solve
the Euler–Lagrange equation from the variational problem, but this approach requires mild
conditions [50,51,53,93–95]. In the following proposition, we recall a sufficient condition
relating f and φ so that f is the problem’s solution. This result is proven without the use of
the Lagrange technique.

Proposition 1 (Maximal φ-entropy solution [50]). Suppose that there exists a probability
distribution f ∈ DT,t satisfying

φ′
(

f (x)
)
=

n

∑
i=0

λi Ti(x), (6)

for some (λ0, . . . , λn) ∈ Rn+1. Then, f is the unique solution of the maximal entropy problem (4).
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Proof. Suppose that distribution f satisfies Equation (6) and consider any distribution
g ∈ DT,t. The functional Bregman divergence between f and g writes

Bφ(g, f ) =
∫
X

φ(g(x))dµ(x)−
∫
X

φ( f (x))dµ(x)−
∫
X

φ′( f (x))(g(x)− f (x))dµ(x)

= −Hφ[g] + Hφ[ f ]−
n

∑
i=0

λi

∫
X

Ti(x)(g(x)− f (x))dµ(x)

= Hφ[ f ]− Hφ[g]

where we used the fact that g and f are both probability distributions with the same
moments E[Ti(X)] = ti. By non-negativity of the Bregman functional divergence, we
finally get that

Hφ[ f ] ≥ Hφ[g]

for all distributions g with the same moments as f , with equality if and only if g = f
almost everywhere. In other words, this shows that if f satisfies Equation (6), then it is the
desired solution.

Therefore, given an entropic functional φ and moments constraints Ti, Equation (6)
leads the the maximum entropy distribution f ?. This distribution is parameterized by the
λis or, equivalently, by the moments tis.

Note that the reciprocal is not necessarily true, i.e., the maximum entropy distribution
does not necessarily satisfies Equation (6) (i.e., Equation (6) has not necessarily a solution),
as shown, for instance, in [53]. However, the reciprocal is true (i.e., Equation (6) has a solu-
tion) when X is a compact [95] or for any X provided that φ is locally bounded on X [96].

2.2. Maximum Entropy Principle: The Inverse Problems

As stated in the introduction, two inverse problems can be considered starting from a
given distribution f . These problems were considered by Kesavan and Kapur in [50] in the
discrete framework.

The first inverse problem consists in searching for the adequate moments so that a
desired distribution f is the maximum entropy distribution of a given φ-entropy. This
amounts to find functions Ti and coefficients λi satisfying Equation (6). This is not always
an easy task, and even not always possible. For instance, it is well known that given
moment constraints, the maximum Shannon entropy distribution falls in the exponen-
tial family [33,34,52,54]. Therefore, if f does not belong to this family, the problem has
no solution.

The second inverse problem consists in designing the entropy itself, given a target
distribution f and given the Tis. In other words, given a distribution f , Equation (6) may
allow to determine the entropic functional φ so that f is its maximizer. As mentioned in the
introduction, solving this inverse problem can find applications, for instance, in goodness-
of-fit tests. In such tests, we would like to determine if data fit a given distribution, say
f . A natural criterion of fit between an empirical distribution and distribution f can be a
Bregman divergence, where distribution f serves as a reference. As shown in the proof
of Proposition 1, when both distributions (empirical, reference) share the same moments
and when reference f is of maximum entropy subject to these moments, the divergence
turns to be a difference of entropy and approaches in the line of [44–49] can be applied.
Distribution f and some moments being given/fixed, the problem is thus to determine the
adequate entropy so that f is of maximum entropy. This is precisely the inverse problem
we deal with now.

As for the direct problem, in the second inverse problem, the solution is parameterized
by the λis. Here, required properties on φ will shape the domain the λis live in. In particular,
φ must satisfy:

• the domain of definition of φ′ must include f (X ); this will be satisfied by construction;
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• from the strict convexity property of φ, φ′ must be strictly increasing.

Therefore, because φ′ must be strictly increasing, it is clear that solving Equation (6)
requires the following two conditions:

(C1) f (x) and
n

∑
i=1

λi Ti(x) must have the same variations, i.e.,
n

∑
i=0

λi Ti(x) is increasing

(resp. decreasing, constant) where f is increasing (resp. decreasing, constant);

(C2) f (x) and
n

∑
i=1

λi Ti(x) must have the same level sets,

f (x1) = f (x2) ⇔
n

∑
i=0

λi Ti(x1) =
n

∑
i=0

λi Ti(x2).

For instance, in the univariate case, for one moment constraint,

• for X = R+, T1(x) = x, λ1 must be negative and f (x) must be decreasing,
• for X = R, T1(x) = x2 or T1(x) = |x|, λ1 must be negative and f (x) must be even

and unimodal.

Under conditions (C1) and (C2) , the solutions of Equation (6) are given by

φ′(y) =
n

∑
i=0

λi Ti

(
f−1(y)

)
(7)

where f−1 can be multivalued. However, even if f−1 is multivalued, because of
condition (C2), φ′ is defined univocally.

Equation (7) provides thus an effective way to solve the inverse problem. However,
there exist situations where there does not exist any set of λis such that conditions (C1)–(C2)
are satisfied (e.g., T1(x) = x2 with f not even). In such a case, we look for a solution for φ
in a larger class, i.e., by extending the definition of the φ-entropy. This will be the purpose
of Section 3. Before focusing on this, let us illustrate the previous result on some examples.

2.3. Second Inverse Maximum Entropy Problem: Some Examples

To illustrate the previous subsection, let us analyze briefly three examples: the fa-
mous Gaussian distribution (Example 1), the q-Gaussian distribution also intensively
studied (Example 2), and the arcsine distribution (Example 3). The Gaussian, q-Gaussian,
and arcsine distributions will serve as a guideline all along the paper. The details of the
calculus, together with a deeper study related to the sequel of the paper, are presented in
the appendix. Other examples are also given in this appendix. In both three examples,
except in the next section, we consider the second-order moment constraint T1(x) = x2.

Example 1. Let us consider the well-known Gaussian distribution fX(x) = 1√
2πσ

exp
(
− x2

2 σ2

)
,

defined over X = R, and let us search for the φ-entropy so that the Gaussian is its maximizer
subject to the constraint T1(x) = x2. To satisfy condition (C1) we must have λ1 < 0, whereas
condition (C2) is always satisfied. Rapid calculations, detailed in Appendix A.1, and a reparame-
terization of the λis, give the entropic functional

φ(y) = α y log(y) + β y + γ with α > 0.

This is nothing but the Shannon entropy, up to the scaling factor α, and a shift (to avoid the
divergence of the entropy when X is unbounded, one will take γ = 0). One thus recovers the long
outstanding fact that the Gaussian is the maximum Shannon entropy distribution with the second
order moment constraint.

Example 2. Let us consider the q-Gaussian distribution, also known as Tsallis distribution or

Student distribution [97,98], fX(x) = Aq

(
1− (q− 1) x2

σ2

) 1
1−q

+
, where q > 0, q 6= 1, x+ =
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max(x, 0) and Aq is the normalization coefficient, defined over X = R when q < 1 or over

X =

(
− σ√

q−1
; σ√

q−1

)
when q > 1, and let search for the φ-entropy so that the q-Gaussian is

its maximizer with the constraint T1(x) = x2. Here, again, condition (C1) is satisfied if and only if
λ1 < 0, whereas condition (C2) is always satisfied. Rapid calculations detailed in Appendix A.2
lead to the entropic functional, after a reparameterization of the λis, as,

φ(y) = α
yq − y
q− 1

+ β y + γ with α > 0,

where q is thus an additional parameter of the family. This entropy is nothing but the Havrda–
Charvát or Daróczy or Tsallis entropy [12,14,17,97], up to the scaling factor α, and a shift (here
also, to avoid the divergence of the entropy when X is unbounded, one will take γ = 0). This
entropy is also closely related to the Rényi entropy [10] via a one-to-one logarithmic mapping. One
recovers the also well known fact that the q-Gaussian is the maximum Havrda–Charvát–Rényi–
Tsallis entropy distribution with the second order moment constraint [97]. In the limit case q→ 1,
the distribution fX tends to the Gaussian, whereas the Havrda–Charvát–Rényi–Tsallis entropy
tends to the Shannon entropy.

Example 3. Consider the arcsine distribution, fX(x) = 1√
s2−π2x2 where s > 0, defined over

X =
(
− s

π ; s
π

)
and let us determine the entropic functionals φ so that fX is the maximum φ-

entropy distribution subject to the constraint T1(x) = x2. Condition (C2) is always satisfied and
now, to fulfill condition (C1) we must impose λ1 > 0. Some algebra detailed in Appendix A.4.1
leads to the entropic functional, after a reparameterization of the λis,

φ(y) =
α

y
+ β y + γ with α > 0

(again, to avoid the divergence of the entropy, one can adjust parameter γ). This entropy is unusual
and, due to its form, is potentially finite only for densities defined over a bounded support and that
are divergent in its boundary (integrable divergence).

3. State-Dependent Entropic Functionals and Minimization Revisited

In order to follow asymmetries of the distribution f and address the limitation raised
by conditions (C1) and (C2), we propose to allow the entropic functional to also depend
on the state variable x. Indeed, imagine, for instance, that, for two values x1 6= x2,
the probability distribution is such that f (x1) = f (x2), but, at the same time, ∑i λiTi(x1) 6=
∑i λiTi(x2) (for any set of λis). In such a situation, one cannot find a function φ so as to
satisfy condition (C2). Choosing a functional φ depending both on f (x) and x can allow
to have φ(x1, f (x1)) = φ(x2, f (x2)) so that we expect it could compensate for the fact that,
with a usual entropic functional, condition (C2) cannot be satisfied. In the same vein,
imposing a particular form for φ(x, f (x)), we also expect to be able to treat the case where
condition (C1) cannot be satisfied with a usual entropic functional. Let us first define the
hence extended state-dependent φ-entropy, before demonstrating that such a extension
allows indeed to reach our goal.

Definition 3 (State-dependent φ-entropy). Let φ : X ×Y 7→ R such that for any x ∈ X ⊆ Rd,
function φ(x, ·) is a convex function on the closed convex set Y ⊆ R+. Then, if f is a probability
distribution defined with respect to a general measure µ on set X and such that f (X ) ⊆ Y ,

Hφ[ f ] = −
∫
X

φ(x, f (x))dµ(x) (8)
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will be called state-dependent φ-entropy of f . As φ(x, ·) is convex, then the entropy functional
Hφ[ f ] is concave. A particular case arises when, for a given partition (X1, . . . ,Xk) of X , func-
tional φ writes

φ(x, y) =
k

∑
l=1

φl(y)1Xl (x) (9)

where 1A denotes the indicator of set A. This functional can be viewed as a “(X1, . . . ,Xk)-extension”
over X ×Y of a multiform function defined on Y , with k branches φl and the associated φ-entropy
will be called (X1, . . . ,Xk)-multiform φ-entropy.

As in the previous section, we restrict our study to functionals φ(x, y) strictly convex
and differentiable with respect to y.

Following the lines of Section 2, a generalized Bregman divergence can be associ-
ated to φ under the form Bφ(x, y1, y2) = φ(x, y1) − φ(x, y2) − ∂φ

∂y (x, y2)(y1 − y2), and a

generalized functional Bregman divergence Bφ( f1, f2) =
∫
X

Bφ(x, f1(x), f2(x))dµ(x).

With these extended quantities, the direct problem becomes

f ? = argmax
f∈DT,t

(
−
∫
X

φ(x, f (x))dµ(x)
)

(10)

Although the entropic functional is now state-dependent, the approach adopted
before can be applied here, leading to

Proposition 2 (Maximum state-dependent φ-entropy solution). Suppose that there exists a
probability distribution f satisfying

∂φ

∂y
(

x, f (x)
)
=

n

∑
i=0

λi Ti(x), (11)

for some (λ0, . . . , λn) ∈ Rn+1, then f is the unique solution of the extended maximum entropy
problem (10).

If φ is chosen in the (X1, . . . ,Xk)-multiform φ-entropy class, this sufficient condition writes

k

∑
l=1

φ′l
(

f (x)
)
1Xl (x) =

n

∑
i=0

λi Ti(x), (12)

Proof. The proof follows the steps of Proposition 1, using the generalized functional
Bregman divergence instead of the usual one.

Resolving Equation (11) is not possible in all generality. However, the sufficient
condition (12) can be rewritten as

k

∑
l=1

(
φ′l
(

f (x)
)
−

n

∑
i=0

λi Ti(x)

)
1Xl (x) = 0. (13)

Therefore, if there exists (at least) a set of λis such that condition (C1) is satisfied (but not
necessarily (C2)), one can always

• design a partition (X1, . . . ,Xk) so that (C2) is satisfied in each Xl (at least, such that f
is either strictly monotonic, or constant, on Xl) and

• determine φl as in Equation (7) in each Xl , that is

φ′l(y) =
n

∑
i=0

λi Ti

(
f−1
l (y)

)
(14)
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where f−1
l is the (possibly multivalued) inverse of f on Xl . By the way, when Xl is such

that fX is monotonic on it ensures that f−1
l is univalued.

In short, in the case where only condition (C1) is satisfied, one can obtain an extended
entropic functional of (X1, . . . ,Xk)-multiform class so that Equation (13) provides an effec-
tive way to solve the inverse problem in the state-dependent entropic functional context.
This is given by Equation (14).

Note, however, that it still may happen that there is no set of λis allowing to
satisfy (C1). In this harder context, the problem remains solvable when the moments
are defined as partial moments like E

[
Tl,i(X)1Xl (X)

]
= tl,i, l = 1, . . . , k and i = 1, . . . , nl

and when there exists on Xl a set of λl,is such that (C1) and (C2) hold. The solution still
writes as in Equation (14), but where now n, the λis and the Tis are replaced by nl , the λl,is
and Tl,is, respectively,

φ′l(y) =
nl

∑
i=0

λl,i Tl,i

(
f−1
l (y)

)
(15)

Let us now come back to the arcsine example fX(x) = 1
s2−π2x2 , defined over X =(

− s
π ; s

π

)
(Example 3) of the previous section, when now we constraint the first order

moment or partial first order moments.

Example 4. Let us now consider this arcsine distribution, constrained uniformly by T1(x) = x.
Clearly, neither condition (C1) nor condition (C2) can be satisfied. Note that the arcsine distri-
bution is a one-to-one function on each set X− =

(
− s

π ; 0
)

and X+ =
[
0 ; s

π

)
that partitions

X . Therefore, considering multiform entropic functionals with this partition allows to overcome
the issue on condition (C2), but that on condition (C1) remains. If we ignore this issue and
apply Equation (14), after a reparameterization of the λis, we obtain φ̃±(y) = φ̃±,u(sy) with
φ̃±,u(u) = ±α

(√
u2 − 1 + arctan

(
1√

u2−1

))
1(1 ;+∞)(u) + β u + γ± where s is thus an addi-

tional parameter of the family. It appears that whereas these functionals are defined for u > 1, one
can extend them continuously and with a continuous derivative for any u > 0 imposing β = 0,
which finally leads to the family

φ̃±(y) = φ̃±,u(sy) with

φ̃±,u(u) = ±α

(√
u2 − 1 + arctan

(
1√

u2 − 1

))
1(1 ;+∞)(u) + γ±

However, the functional are no more convex (see Appendix A.4.2 for more details).

Example 5. If now we impose the partial constraint T±,1(x) = x1X±(x), and search for the φ-
entropy so that fX is the maximizer subject to these constraints, condition (C1) can be now satisfied
on each X± by imposing the±λ±,1 given Equation (15) to be positive. We then obtain the associated
multiform entropic functional, after a reparameterization of the λis, as φ±(y) = φ±,u(sy) with
φ±,u(u) = α±

(√
u2 − 1 + arctan

(
1√

u2−1

))
1(1 ;+∞)(u) + β u + γ± with α± > 0 and where s

is thus an additional parameter of the family. In this case, the entropic functionals can be considered
for any u > 0 by imposing β = 0, and one can check that the obtained functions are of class C1.
This finally leads to the family

φ±(y) = φ̃±,u(sy) with

φ±,u(u) = α±

(√
u2 − 1 + arctan

(
1√

u2 − 1

))
1(1 ;+∞)(u) + γ±, α± > 0

In addition, remarkably, the entropic functional can be made univalued by choosing α+ = α−
and γ+ = γ−. In fact, such a choice is equivalent to considering the constraint T1(x) = |x|
which respects the symmetries of the distribution and allows to recover a classical φ-entropy (see
Appendix A.4.2 for more details).
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At a first glance, the solutions of Examples 4 and 5 seem to be identical. In fact, they
drastically differ. Indeed, let us emphasize that the problem has one constraint in the first
case, but two in the second case. The consequence is that four parameters parameterize
the first solution β, γ± and α, while five parameters β, γ± and α± parameterize the second
solution. This difference is not insignificant: the first case cannot be viewed as a special
case of the second one, because α± must be positive, which cannot be possible with only
parameter α as ±α rule the φ̃±. For the first example, the solution does not lead to a
convex function, because this would contradict the required condition (C1) on the parts X±.
Coming back to the direct problem, the “φ-like-entropy” defined with φ̃ is no more concave
(indeed, it is no more an entropy in the sense of Definition 1). As such, the maximum
φ-entropy problem is no more concave: one cannot guarantee the uniqueness and even
the existence of a maximum so that there is no guarantee that the arcsine distribution
would be a maximizer. Indeed, Equation (6) coming from the Euler-Lagrange equation
(see paragraph previous to Proposition 1), one can just conclude that the arcsine is a critical
point (either extremal, or inflection point) of the identified φ-like-entropy.

In Sections 2 and 3, we established general entropies with a given maximizer. In what
follows, we will complete the information theoretical setting by introducing generalized
escort distributions, generalized moments, and generalized Fisher information associated
to the same entropic functional. We will then explore some of their relationships. Indeed,
as mentioned in the introduction, the Cramér–Rao inequality is very important as it
gives the ultimate precision in terms of mean square error of an estimator of a parameter.
Aswe would like to escape from the usual quadratic loss (that has often mathematical
motivation but not physical one, and that even can not exist) and/or to stress parts of the
distribution of the data so has to penalize for instance large errors depending of the tails of
the distribution, it is thus of high interest to be able to derive Cramér–Rao inequalities in a
broader framework, which can find natural applications in the estimation domain.

4. φ-Escort Distribution, (φ, α)-Moments, (φ, β)-Fisher Information, Generalized
Cramér–Rao Inequalities

In this section, we begin by introducing the above-mentioned informational quantities.
We will then show that generalizations of the celebrated Cramér–Rao inequalities hold and
link the generalized moments and Fisher information. Furthermore, the lower bound of
the inequalities are saturated precisely by maximal φ-entropy distributions. To derive such
generalizations of this inequality, we thus need to precisely define the above mentioned
generalization of the moments and of the Fisher information that will lower bound the
moment (e.g., of any estimator of a parameter). The proposed generalizations are based
on the notion of escort distribution we first need to introduce.

Escort distributions have been introduced as an operational tool in the context of multi-
fractals [99,100], with interesting connections with the standard thermodynamics [101] and
with source coding [26,27]. In our context, we also define (generalized) escort distributions
associated with a particular convex function φ, and show how they pop up naturally. It is
then possible to define generalized moments with respect to these escort distributions. Such
distributions were previously introduced dealing with Rényi entropies and took the form
f q as we will see later on. When q > 1, the effect is to stress the head of the distribution,
i.e., to penalize more the errors where the data fall in the head of the distribution. At the
opposite, when q < 1, the tails of the distributions are stressed. As we will see later on in
the proof of the generalized Cramér–Rao inequality, any form as an escort distribution can
be chosen. However, as for the usual nonparametric Cramér–Rao inequality, one may wish
the inequality to be saturated for the maximum entropy distribution, which fixes the form
of the escort distribution as follows.

Definition 4 (φ-escort). Let φ : X × Y 7→ R such that for any x ∈ X ⊆ Rd function φ(x, ·)
is a strictly convex twice differentiable function defined on the closed convex set Y ⊆ R+. Then,
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if f is a probability distribution defined with respect to a general measure µ on a set X such that
f (X ) ⊆ Y , and such that

Cφ[ f ] =
∫
X

dµ(x)
∂2φ

∂y2 (x, f (x))
< +∞ (16)

we define by

Eφ, f (x) =
1

Cφ[ f ]
∂2φ

∂y2 (x, f (x))
(17)

the φ-escort density with respect to measure µ, associated to density f .

Note that from the strict convexity of φ with respect to its second argument, this
probability density is well defined and is strictly positive. We can note that, with the above
definition, the φ-escort distribution will tend to stress the parts of the distribution where
φ(x, f (x)) has a small “curvature.” Moreover, coming back to the previous examples, one
can see the following.

Example 1 (cont.). In the context of the Shannon entropy, entropy for which the Gaussian is
the maximal entropy law for the second order moment constraint, φ(x, y) = φ(y) = y log y,
the φ-escort density associated to f restricts to density f itself.

Example 2 (cont.). In the Rényi–Tsallis context, entropy for which the q-Gaussian is the maximal
entropy law for the second-order moment constraint φ(x, y) = φ(y) = yq−y

q−1 , and Eφ, f ∝

f 2−q which recovers the escort distributions used in the Rényi–Tsallis context up to a duality
transformation [101].

Example 3 (cont.). For the entropy that is maximal for the arcsine distribution under the second
order moment constraint, φ(x, y) = φ(y) = 1

y , and Eφ, f ∝ f 3 which is nothing more than an
escort distributions used in the Rényi–Tsallis context. Indeed, although the arcsine distribution
does not fall in the q-Gaussian family, its form is very similar to a q-Gaussian distribution (with
q = −1) where the “scaling” parameter would not be related to the exponent q. It is thus not
surprising to recover an escort distribution associated to this family.

Definition 5 ((α, φ)-moments). Under the assumptions of Definition 4, with X equipped with a
norm ‖ · ‖χ, we define the (α, φ)-moment of a random variable X associated to distribution f by

Mα,φ[ f ; X] =
∫
X
‖x‖ α

χ Eφ, f (x)dµ(x) (18)

if this quantity exists.

This definition goes further than the usual definition of variance as a measure of
dispersion, both by generalizing the exponent, the norm, and by taking the mean with
respect to an escort distribution. Thanks to the escort distribution, one can stress special
parts of the distribution (heads, tails, parts where φ has a small curvature that is with a
small informational content in a sense). Here, again, any escort distribution could have
been chosen, but, as pointed out previously, that of the definition allows to saturate the
Cramér–Rao inequality we will derive in a while for the maximum entropy distribution.
Note that, in the particular case of the Euclidean norm and α = 2, the second-order
moment statistics are indeed contained in the second-order moments matrix given by the
mathematical mean of XXt. In such a context, the definition above coincides with the trace
of this second order moment matrix and represents the total power of X.

This said, for our three examples, we have the following.
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Example 1 (cont.). In the context of the Shannon entropy, the (α, φ)-moments are the usual
moments of ‖X‖α

χ.

Example 2 (cont.). In the Rényi–Tsallis context the generalized moments introduced in [61,102]
are recovered.

Example 3 (cont.). For φ(x, y) = φ(y) = 1
y , one also naturally finds generalized moments with

the same form as those introduced in [61,102] (see the items related to the escort distributions).

The Fisher information’s importance is well known in estimation theory: the estima-
tion error of a parameter is bounded by the inverse of the Fisher information associated
with this distribution [34,66]. The Fisher information is also used as a method of inference
and understanding in statistical physics and biology, as promoted by Frieden [67] and has
been generalized in the Rényi–Tsallis context in a series of papers [81,84,86–89,103,104].
In the following, we generalize these definitions a step further in our φ-entropy context.

Definition 6 (Nonparametric (β, φ)-Fisher information). With the same assumption as in
Definition 4, denoting by ‖ · ‖χ∗ the dual norm (the norm induced in the dual space that gives here
‖z‖χ∗ = sup

‖x‖χ=1
ztx [105,106]), for any differentiable density f , we define the quantity

Iβ,φ[ f ] =
∫
X

∥∥∥∥∥∇x f (x)
Eφ, f (x)

∥∥∥∥∥
β

χ∗
Eφ, f (x)dµ(x) (19)

if this quantity exists, as the nonparametric (β, φ)-Fisher information of f .

Note that the Fisher information can be viewed as local, as it is sensitive to the variation
of a distribution, rather than to the distribution itself. As for the generalized moments,
through the power β other moments for the gradient of f than the second one can be
considered, so that more or less weight can be put in the variations of the distribution.
Moreover, as for the case of generalized moments, any escort distribution could have been
chosen, but, again this choice is dictated by our wish to saturate the Cramér–Rao inequality
for the maximum entropy distribution.

Note also that when φ is state-independent, φ(x, y) = φ(y), as for the usual Fisher
information, this quantity is shift-invariant, i.e., for g(x) = f (x − x0) one has Iβ,φ[g] =
Iβ,φ[ f ]. This property is unfortunately lost in the state-dependent context. Furthermore,
whereas the Fisher information have scaling properties I[a−d f (·/a)] = I[ f ]/a2, this is
lost for Iβ,φ, except when φ′′ is a power (which corresponds either to the Shannon or
Rényi–Tsallis entropy).

Definition 7 (Parametric (β, φ)-Fisher information). Let us consider the same assumptions as
in Definition 4, and a density f parameterized by θ ∈ Θ ⊆ Rm where set Θ is equipped with a
norm ‖ · ‖Θ and with the corresponding dual norm denoted ‖ · ‖Θ∗. Assume that f is differentiable
with respect to θ. We define by

Iβ,φ[ f ; θ] =
∫
X

∥∥∥∥∥∇θ f (x)
Eφ, f (x)

∥∥∥∥∥
β

Θ∗
Eφ, f (x)dµ(x) (20)

as the parametric (β, φ)-Fisher information of f .

Note that, as for the usual Fisher information, when the norms on X and on Θ are
the same, the nonparametric and parametric information coincide when θ is a location pa-
rameter.
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Note that in the classical setting, the information on X in the sense of Fisher is given by
the so-called Fisher information matrix, which is the mathematical mean of∇ f ∇t f . Taking
the trace of the Fisher information matrix, one obtains what is often called Fisher informa-
tion (without the term “matrix”), which is nothing but the expectation of ‖∇ f ‖2 [58,67,107].
This is in the line of the above definitions. Extending these definitions to obtain a matrix
would have been possible by averaging over the φ-escort distribution the element-wise
power β/2 of matrix (∇ f ∇t f )/E2

φ, f , but the trace of this matrix does not coincide anymore
with the above definition. Moreover, it is not obvious that it will allow a generalization of
the matrix form of the Cramér–Rao inequality we will see in the following. Such a matrix
extended Fisher information is left as a perspective.

For our three examples, we have the following.

Example 1 (cont.). In the Shannon entropy context, when the norm is the Euclidean norm and
β = 2, the nonparametric and parametric information (β, φ)-Fisher give the usual nonparametric
and parametric Fisher information, respectively.

Example 2 (cont.). Similarly, in the Rényi–Tsallis context, the generalizations proposed
in [87–89] are recovered.

Example 3 (cont.). For φ(x, y) = φ(y) = 1
y , one also naturally finds, the generalizations

proposed in [87–89] (see the items related to the escort distributions).

We have now the quantities that allow to generalize the Cramér–Rao inequalities
as follows.

Proposition 3 (Nonparametric (α, φ)-Cramér–Rao inequality). Assume that a differentiable
probability density function with respect to a measure µ, defined on a domain X , admits an (α, φ)-
moment and an (α∗, φ)-Fisher information with α ≥ 1 and α∗ its Hölder-conjugated, 1

α + 1
α∗ = 1,

and that x f (x) vanishes at the boundary of X . Thus, density f satisfies the (α, φ) extended
Cramér–Rao inequality

Mα,φ[ f ; X]
1
α Iα∗,φ[ f ]

1
α∗ ≥ d (21)

When φ is state-independent, φ(x, y) = φ(y), the equality occurs when f is the maximal φ entropy
distribution subject to the moment constraint T(x) = ‖x‖ α

χ .

Proof. The approach follows [89], starting from the differentiable probability density f
(derivative denoted ∇x f ), as x f (x) vanishes in the boundaries of X from the divergence
theorem one has

0 =
∫
X
∇t

x(x f (x))dµ(x) =
∫
X

(
∇t

x x
)

f (x)dµ(x) +
∫
X

xt(∇x f (x))dµ(x)

Now, for the first term, we use the facts that ∇t
xx = d and that f is a density to achieve

d = −
∫
X

xt∇x f (x)
g(x)

g(x)dµ(x)

for any function g non-zero on X . Now, noting that d > 0, we obtain from the work in [89]
(Lemma 2)

d =

∣∣∣∣∫X xt
(
∇x f (x)

g(x)

)
g(x)dµ(x)

∣∣∣∣
≤

(∫
X
‖x‖ α

χ g(x)dµ(x)
) 1

α

(∫
X

∥∥∥∥∇x f (x)
g(x)

∥∥∥∥α∗

χ∗
g(x)dµ(x)

) 1
α∗
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The proof ends by choosing g = Eφ, f the φ-escort density associated to density f . Note
now that, again from [89] (Lemma 2), the equality is obtained when

∇x f (x)
∂2φ

∂y2 (x, f (x)) = λ1∇x‖x‖ α
χ

where λ1 is a negative constant. Consider now the case where φ(x, y) = φ(y) is state-

independent. Thus, ∇x f (x) ∂2φ

∂y2 (x, f (x)) = ∇xφ′( f (x)), that gives

φ′( f (x)) = λ0 + λ1‖x‖ α
χ

This last equation has precisely the form Equation (6) of Proposition 1.

Analyzing minutely the proof, it is clear that both in the generalized moments and the
generalized Fisher information, any escort distribution g can be chosen (being identical
for both quantities), including the probability distribution itself. The saturation will be
achieved for the distribution f satisfying ∇x f (x) g(x) = λ1∇x‖x‖ α

χ , but the φ-escort
distribution Definition 4 is the only choice which allows to recover maximal φ-entropy
as the saturating distribution; of course with the same φ as in the escort distribution,
and with the moment constraint similar to that of the inequality but averaged over the
distribution itself.

An obvious consequence of the proposition is that the probability density that min-
imizes the (α∗, φ)-Fisher information subject to the moment constraint T(x) = ‖x‖α

X
coincides with the maximal φ-entropy distribution subject to the same moment constraint.

In the problem of estimation, the purpose is to determine a function θ̂(x) in order to
estimate an unknown parameter θ. In such a context, the Cramér–Rao inequality allows
to lower bound the variance of the estimator thanks to the parametric Fisher information.
The idea is thus to extend this to bound any α order mean error using our generalized
Fisher information.

Proposition 4 (Parametric (α, φ)-Cramér–Rao inequality). Let f be a probability density
function with respect to a general measure µ defined over a set X , where f is parameterized by a
parameter θ ∈ Θ ⊆ Rm, and satisfies the conditions of Definition 7. Assume that both µ and X do
not depend on θ, that f is a jointly measurable function of x and θ which is integrable with respect
to x and absolutely continuous with respect to θ, and that the derivatives of f with respect to each
component of θ are locally integrable. Thus, for any estimator θ̂(X) of θ that does not depend on θ,
we have

Mα,φ

[
f ; θ̂(X)− θ

] 1
α Iα∗,φ[ f ; θ]

1
α∗ ≥

∣∣m + ∇t
θ b(θ)

∣∣ (22)

where
b(θ) = E

[
θ̂(X)− θ

]
(23)

is the bias of the estimator and α and α∗ are Hölder conjugated. When φ is state-independent,
φ(x, y) = φ(y), the equality occurs when f is the maximal φ entropy distribution subject to the

moment constraint T(x) =
∥∥∥θ̂(x)− θ

∥∥∥ α

Θ
.

Proof. The proof follows again that of [89], and starts by evaluating the divergence of
the bias. The regularity conditions in the statement of the theorem enable to interchange
integration with respect to x and differentiation with respect to θ, so that

∇t
θ b(θ) =

∫
X

(
∇t

θ θ̂(x) − ∇t
θ θ
)

f (x)dµ(x) +
∫
X

(
θ̂(x)− θ

)t
∇θ f (x)dµ(x)
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Note then that ∇t
θ θ = m and that θ̂ being independent on θ, one has ∇t

θ θ̂(x) = 0. Thus,
f being a probability density, the equality becomes

m +∇t
θ b(θ) =

∫
X

(
θ̂(x)− θ

)t∇θ f (x)
g(x)

g(x)dµ(x)

for any density g non-zero onX . The proof ends with the very same steps that in Proposition 4
using [89] (Lemma 2).

In the classical setting, in the multivariate context (m > 1), the Cramér–Rao inequality
takes a matrix form, stating that the difference of the second order moment matrix of the
estimation error of an estimator with the inverse Fisher information matrix is positive
definite [34,58,66,67,108,109]. Several scalar forms can be derived, for instance by taking
the determinant, the trace, and/or by mean of trace [58,66,67,108] or determinant/trace
inequalities [110]. Typically, by mean of the trace, the scalar equivalent of the above results
are recovered. Conversely, extending our result in a matrix context is not immediate and
left as a perspective.

For our three examples, Propositions 3 and 4 lead to what follows.

Example 1 (cont.). The usual parametric and nonparametric Cramér–Rao inequality are recovered
in the usual Shannon context φ(x, y) = y log y, using the Euclidean norm and α = 2. The bound
in the nonparametric context is saturated for the maximal entropy law, namely, the Gaussian.

Example 2 (cont.). In the Rényi–Tsallis context, the generalizations proposed in [87–89] are
recovered and, again, when α = 2, the bound is saturated in the nonparametric context for the
q-Gaussian, maximal entropy law under the second order moment constraint.

Example 3 (cont.). For φ(x, y) = φ(y) = 1
y , again, one finds inequalities with the same form as

those of the generalizations proposed in [87–89] (see the items related to the escort distributions).

Beyond the mathematical aspect of these relations, they may have great interest to
assess an estimator when the usual variance/mean square error does not exist. Moreover,
the escort distribution is also a way to emphasize some part of a distribution. For instance,
in the Rényi–Tsallis context, one can see that in f q either the tails or the head of the
distribution are emphasized. Playing with q is a way to penalize either the tails, or the
head of the distribution in the estimation process.

5. φ-Heat Equation and Extended de Bruijn Identity

An important relation connecting the Shannon entropy H, coming from the “informa-
tion world”, with the Fisher information I, living in the “estimation world”, is given by
the de Bruijn identity and it is closely linked to the Gaussian distribution. Considering a
noisy random variable Yθ = X +

√
θN where N is a zero-mean d-dimensional standard

Gaussian random vector and X a d-dimensional random vector independent of N, and of
support independent on parameter θ, then

d
dθ

H[ fYθ
] =

1
2

I[ fYθ
]

where fYθ
stands for the probability distribution of Yθ . This identity is a critical ingredient

in proving the entropy power and Stam inequalities [34]. The de Bruijn identity has
applications in communication by characterizing a channel face to noise [34,76,111,112] or
in mismatch estimation [113]. It is involved in the Entropy Power Inequality, which itself is
involved in an informational proof of the central limit theorem [114–116]. Extending the de
Bruijn identity is thus of great interest as, for instance, it may allow to characterize more
general communication channels in the same line than that in [117] or for non-additive
noise or to give rise to generalized central limit theorem [115,116].
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The starting point to establish the de Bruijn identity is the heat equation satisfied by
the probability distribution fYθ

, ∂ f
∂θ = 1

2 ∆ f , where ∆ stands for the Laplacian operator [118].
Let us consider probability distributions f parameterized by a parameter θ ∈ Θ ⊆ Rm,

satisfying what we will call generalized φ-heat equation,

∇θ f = K div
(
‖∇xφ′( f )‖β−2

χ∗ ∇x f
)

(24)

for some K ∈ Rm, possibly dependent on θ but not on x, and where φ is a convex twice
differentiable function defined over a set X ∈ R+.

When θ is scalar, this equation is an instance of what are known as quasilinear
parabolic equations [119] (§ 8.8) and arises in various physical problems.

Proposition 5 (Extended de Bruijn identity). Let f be a probability distribution with respect
to a measure µ. Suppose that f is parameterized by a parameter θ ∈ Θ ⊆ Rm, and is defined
over a set X ⊂ Rd. Assume that both X and µ do not depend on θ, and that f satisfies the
nonlinear φ-heat equation Equation (24) for a twice differentiable convex function φ. Assume that
∇θφ( f ) is absolutely integrable and locally integrable with respect to θ, and that the function
‖∇xφ′( f )‖β−2

χ∗ ∇xφ( f ) vanishes at the boundary of X . Thus, distribution f satisfies the extended
de Bruijn identity, relating the φ-entropy of f and its nonparametric (β, φ)-Fisher information
as follows,

∇θ Hφ[ f ] = K C1−β
φ Iβ,φ[ f ] (25)

with Cφ is the normalization constant given Equation (16).

Proof. From the definition of the φ-entropy, the smoothness of the assumption enables to
use the Leibnitz’ rule and differentiate under the integral,

∇θ Hφ[ f ] = −
∫
X

φ′( f (x))∇θ f (x)dµ(x)

= −K
∫
X

φ′( f (x)) div
(
‖∇xφ′( f (x))‖β−2

χ∗ ∇x f (x)
)

dµ(x)

= −K
∫
X

div
(

φ′( f (x))‖∇xφ′( f (x))‖β−2
χ∗ ∇x f (x)

)
dµ(x)

+K
∫
X
∇t

xφ′( f (x))‖∇xφ′( f (x))‖β−2
χ∗ ∇x f (x)dµ(x)

= −K
∫
X

div
(
‖∇xφ′( f (x))‖β−2

χ∗ ∇xφ( f (x))
)

dµ(x)

+K
∫
X

(
φ′′( f (x))

)β−1 ‖∇x f (x)‖β
χ∗ dµ(x)

where the second line comes from the φ-heat equation and where the third line comes from
the product derivation rule.

Now, from the divergence theorem, the first term of the right hand side reduces to the
integral of ‖∇xφ′( f )‖β−2

χ∗ ∇xφ( f ) on the boundary ofX , that vanishes from the assumption
of the proposition, while the second term of the right hand side gives the right hand side
of (25) from Cφ and the (β, φ)-Fisher information given by Equations (16) and (17) and
Definition 6.

As for the Cramér–Rao inequality, in the classical settings there exist matrix variants
of the de Bruijn identity, the scalar form being a special one [115,117].

Coming back to the special examples we presented all along the paper:
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Example 1 (cont.). In the Shannon entropy context, for K = 1
2 and β = 2, the standard heat

equation is recovered and the usual de Bruijn identity is recovered.

Example 2 (cont.). The case where φ(y) = yq was intensively studied in [90] and the results
of the paper are naturally recovered. In particular, the generalized φ-heat equation appears in
anomalous diffusion in porous medium [90,119–122].

Example 3 (cont.). For φ(x, y) = φ(y) = 1
y , once again one finds the same form for the general-

ized heat equation than in [90,120,121], and therefore the same form of the generalized de Bruijn
identity of [90] (see the items related to the escort distributions).

6. Concluding Remarks

In this paper, we extended as far as possible the identities and inequalities which link
the classical informational quantities—Shannon entropy, Fisher information, moments,
etc., in the framework of the φ-entropies. Our first result concerns the inverse maximum
entropy problem, starting with a probability distribution and constraints and searching for
which entropy the distribution is the maximizer. If such a study was already tackled, it is
extended here in a much more general context. We used general reference measures—not
necessarily discrete or of Lebesgue. We also considered the case where the distribution and
constraints do not share the same symmetries, which leads to state-dependent entropic
functionals. Our second result is the generalization of the Cramér–Rao inequality in the
same setting: to this end, a generalized Fisher information and generalized moments are
introduced, both based on a convex function φ (and a so-called φ-escort distribution). The
Cramér–Rao inequality is saturated precisely for the maximum φ-entropy distribution
with the same moment constraints, linking all information quantities together. Finally, our
third result is the statement of a generalized de Bruijn identity, linking the φ-entropy rate
and the φ-Fisher information of a distribution satisfying an extended heat equation, called
φ-heat equation.

As a direct perspective, the extensions of the generalized moments and Fisher infor-
mation in terms of matrix, and matrix form of the generalized Cramér–Rao inequalities
and de Bruijn identities are still open problems. Several ways to define matrix moments
and Fisher information may be considered, such as in a term-wise manner as evoked in
this paper. However, deriving matrix forms of the inequalities and identities does not seem
trivial, and neither does obtaining the scalar form, for instance, through trace operator.
Moreover, as the de Bruijn identity can be closely related to the generalized Price’s theo-
rem [123–125], studying the connections between the extended de Bruijn and this theorem,
or generalizing following the work of [125] is also of great interest.

Furthermore, two important inequalities are still lacking: The first one is the entropy
power inequality (EPI), which states that the entropy power (exponential of twice the
entropy) of the sum of two continuous independent random variables is higher than
the sum of the individual entropy powers (In fact, there exist other equivalent versions
which can be found, e.g., in [34,75,107,126–128].). The second one is the Stam inequality
which lower bounds the product of the entropy power and the Fisher information. For the
former, despite many efforts, the literature on extended version only considers special
cases. For instance, some extensions in the classical settings exist for discrete variables but
are somewhat limited [129–131]. In the continuous framework, the EPI was also extended
to the class of the Rényi entropy (log of a φ-entropy with φ(u) = uα) [132]. Note that
variants of the EPI also exist in the context where one of the variables is Gaussian. This
is equivalent to the convexity property of θ 7→ N(X +

√
θY) with N the entropy power

and Y a Gaussian noise independent on X [133–137]; property also extended in the context
of the Rényi entropy [132,138–140]. An important property that plays a key role in the
inequality is the fact that the Rényi entropy is invariant to an affine transform of unit
determinant and monotonic under convolution, a property which seems lost in the very
general setting considered here. This fact leaves little room to extend the EPI in our general
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settings. Concerning the Stam inequality, at a first glance, the fact that the proof is based
on the EPI seems to close any hope to extend it to the φ-entropy framework. However,
it was remarkably extended to the Rényi entropy, based on the Gagliardo–Nirenberg
inequality [84,86,87,141]. Nevertheless, a key property is that both the entropy power and
the extended Fisher information have scaling properties that are lost in the general setting
of the φ-entropies. A possible way to overcome the (apparent) limits just evoked could be
to mimic alternative proofs such as those based on optimal transport [142]. This approach
precisely drops off any use of Young or Sobolev-like inequalities. As far as we see, there is
thus a little room for extensions in the settings of the paper. Both the extension of the EPI
and the Stam inequality are left as perspectives.

Another perspective lies in the estimation of the generalized moments from data (or
from estimates). Such a possibility would confer an operational role to our Cramér–Rao
inequality, i.e., by computing the estimator’s generalized moments and comparing them to
the bound. A difficulty resides in the presence of the φ-escort distribution which forbids
empirical or Monte Carlo approaches. The escort distribution needs to be estimated. This
problem seems not far from the estimation of entropies from data and plug-in approaches
used in such problems can thus be considered, like kernel approaches [143–145], nearest
neighbor approaches [145,146], or minimal spanning tree approaches [42]. Of course, this
perspective goes far beyond the scope of this paper.
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Appendix A. Inverse Maximum Entropy Problem and Associated Inequalities:
Some Examples

In this appendix, we will now derive in details several examples of the maximum en-
tropy inverse problem. In each case, we provide the quantities and inequalities associated
with the entropic functional φ, as derived in the text. In the sequel, for sake of simplicity,
we restrict our examples to the univariate context d = 1.

Appendix A.1. Normal Distribution and Second-Order Moment

For a normal distribution and second-order moment constraint

fX(x) =
1√

2π σ
exp

(
− x2

2 σ2

)
and T1(x) = x2 on X = R,

we begin by computing the inverse of y = fX(x), which yields T1(x) = x2 =

−σ2 ln
(
2πσ2y2). Note that f−1

X is multivalued, but T1

(
f−1
X (·)

)
is univalued. Injecting

the expression of T1

(
f−1
X (y)

)
into Equation (7) we obtain

φ′(y) =
(

λ0 − σ2 log(2πσ2) λ1

)
− 2σ2λ1 log y with λ1 < 0
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where the requirement λ1 < 0 is necessary to satisfy condition (C1), condition (C2) be-
ing already satisfied because fX and T1 share the same symmetries. This gives, after a
reparameterization of the λis,

φ(y) = α y log(y) + β y + γ with α > 0.

The judicious choice α = 1, β = γ = 0 leads to function

φ(y) = y log y

which gives nothing but the Shannon entropy, as expected,

Hφ[ f ] = −
∫
X

f (x) ln f (x)dµ(x)

where X is now the support of f (overall, the obtained family of entropy is the Shannon
one up to a scaling and a shift).

Now, φ′′(y) ∝ 1
y leads to the escort distribution Definition 4 as Eφ, f = f so

that, as expected, the (α, φ) moments Definition 5 are the usual moments of order α.
When β = 2 and the usual Euclidean norm is considered, the (β, φ)-Fisher information
Definitions 6 and 7 are the usual Fisher information and the usual Cramér–Rao inequalities
Propositions 3 and 4 are recovered for α = 2. Finally, for β = 2, the usual Euclidean norm,
the φ-heat equation Equation (24) turns to be the heat equation, satisfied by the Gaussian,
so that the usual de Bruijn identity is naturally recovered from Proposition 5.

Appendix A.2. q-Gaussian Distribution and Second-Order Moment

For q-Gaussian distribution, also known as Tsallis distribution, Student-t, and Student-
r [97,98], and a second-order moment constraint, we have

fX(x) = Aq

(
1− (q− 1)

x2

σ2

) 1
(q−1)

+
and T1(x) = x2,

where q > 0, q 6= 1, x+ = max(x, 0) and Aq is a normalization coefficient. The support of

fX is X = R when q < 1 and X =

(
− σ√

q− 1
;

σ√
q− 1

)
when q > 1.

The inverse of y = fX(x) gives T1(x) = x2 = σ2

q−1

(
1−

(
y

Aq

)q−1
)

. Note that, again,

f−1
X is multivalued, but T1

(
f−1
X (·)

)
is univalued. Injecting the expression of T1

(
f−1
X (y)

)
into Equation (7) we get

φ′(y) =
(

λ0 +
λ1σ2

q− 1

)
− λ1σ2

(q− 1) Aq−1
q

yq−1 with λ1 < 0

where the requirement λ1 < 0 is necessary to satisfy condition (C1), condition (C2) being
satisfied since fX and T1 share the same symmetries. This gives, after a reparameterization
of the λis,

φ(y) = α
yq − y
q− 1

+ βy + γ with α > 0.

Note that the inverse of fX is defined over
(
0 ; Aq

)
but, without contradiction, the domain

of definition of the entropic functional can be extended to R+.
Then, a judicious choice of parameters is α = 1, β = γ = 0 that yields

φ(y) =
yq − y
q− 1

.
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and an associated entropy is then

Hφ[ f ] =
1

1− q

(∫
X

f (x)q dµ(x)− 1
)

:

where X is now the support of f . This entropy is nothing but the Havrda–Charvát–Tsallis
entropy [12,14,17,97] (overall, we obtain this entropy up to a scaling and a shift).

Then, φ′′(y) = qyq−2, so that, from Definition 4, and then from Definitions 5–7,
respectively, we obtain Mφ,α[ f ] and Iφ,α[ f ] as, respectively, the q-moment of order α and
the (q, β)-Fisher information defined previously in [84–89] (with the symmetric q index
given here by 2− q). The extended Cramér–Rao inequality proved in [84,88,89] is then
recovered from Propositions 3 and 4, and the generalized de Bruijn identity of [90] is also
recovered from Equation (24) and Proposition 5.

Note that when q→ 1:, fX tends to the Gaussian distribution. It appears that Hφ tends
to the Shannon entropy, Iφ,2 to the usual Fisher information and Mφ,α to the usual moments
(both considering the Euclidean norm): all the settings related to the Gaussian distribution
are naturally recovered.

Appendix A.3. q-Exponential Distribution and First-Order Moment

The same entropy functional can readily be obtained for the so-called q-exponential
and a first-order moment constraint:

fX(x) = Bq(1− (q− 1)βx)
1

(q−1)
+ and T1(x) = x on X = R+,

where Bq is a normalization coefficient. It suffices to follow the very same steps as above,
leading again to the Havrda–Charvát–Tsallis entropy, the q-moments of order α and the
(q, β)-Fisher information defined previously in [84–89] (with the symmetric q index given
here by 2− q) as for the q-Gaussian distribution and to the extended Cramér–Rao inequality
proved in [88,89] as well.

Now when q→ 1:, fX tends to the exponential distribution, known to be of maximum
Shannon entropy on R+ under the first order moment constraint [34]. Again Hφ tends to the
Shannon entropy, Iφ,2 to the usual Fisher information and Mφ,α to the usual moments (both
considering the Euclidean norm): all the settings related to the exponential distribution are
naturally recovered.

Appendix A.4. The Arcsine Distribution

The arcsine distribution is a special case of the beta distribution with shaping parame-
ter α = β = 1

2 and appears in various application, e.g., see in [98]. We consider here the
centered and scaled version of this distribution which writes

fX(x) =
1√

s2 − π2x2
on X =

(
− s

π
;

s
π

)
where s > 0. The inverse distributions f−1

X,± on X− =
(
− s

π ; 0
)

and X+ =
(
0 ; s

π

)
are

f−1
X,±(y) = ±

√
s2y2 − 1

πy
, y ≥ 1

s
.

Let us now consider again either a second order moment as the constraint, or (partial)
first-order moment(s).
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Appendix A.4.1. Second-Order Moment

When the second-order moment T1(x) = x2 is constrained, condition (C2) is satisfied,
so that, injecting the expression of T1

(
f−1
X (y)

)
into Equation (7) one immediately obtains

φ′(y) = λ0 + λ1

(
s2

π2 −
1

π2y2

)
with λ1 > 0

where the requirement λ1 > 0 is necessary to satisfy condition (C1). After a reparameteri-
zation of the λis, the family of entropy functionals is then

φ(y) =
α

y
+ βy + γ with α > 0

Although the inverse of the arcsine distribution does no exist for y ≤ 1
s , the entropy

functional can be defined over R∗+.
Note that this entropy can be viewed as Havrda–Charvát–Tsallis entropy for q = −1,

so that all the generalizations (escort, moments, Cramér–Rao inequality, de Bruijn identity)
set out in Appendix A.2 are recovered in the limit q→ −1.

Appendix A.4.2. (Partial) First-Order Moment(s)

As the distribution has not the same variation as T1(x) = x, condition (C1) cannot
be satisfied. Therefore, either we turn out to consider the arcsine distribution as a critical
point (extremal, inflection point) of a non-concave “entropy”, or as a maximum entropy
when constraints are of the type

T±,1(x) = x 1X±(x).

Now, dealing, respectively, with the partial-moment constraints T±,1 and with the uniform
constraint T1, we obtain from Equations (14) and (15), respectively,

φ′±(y) = λ0 + λ±,1

√
s2y2 − 1

πy
and φ̃′±(y) = λ0 ± λ1

√
s2y2 − 1

πy

where the sign is absorbed in the factors λ±,1 in the first case. Dealing with the partial
moments, one must impose

λ±,1 > 0

to satisfy condition (C1). At the opposite, condition (C1) cannot be satisfied for the
second case (one would have to impose ±λ1 > 0 on X±). After a reparameterization
of the λis, one obtains the branches of the entropic functional under the form φ±(y) =

φ±,u(sy) with φ±,u(u) = α±
(√

u2 − 1 + arctan
(

1√
u2−1

))
1(1 ;+∞)(u) + β u + γ± and with

α± > 0, and the branches for the non-convex case φ̃±(y) = φ̃±,u(sy) with φ̃±,u(u) =

±α
(√

u2 − 1 + arctan
(

1√
u2−1

))
1(1 ;+∞)(u) + β u + γ±.

In this case, s appears as an additional parameter of this family of the φ-entropy.
In both cases, the entropic functionals are defined for u > 1 because of the domain

where fX is invertible. However, in the first case, one can extend the domain to R+,
ensuring both the continuity of the entropic functional and its derivative at u = 1 (and
thus everywhere), by vanishing the derivative of the entropic functional at u = 1, which
imposes β = 0. This is also possible for the functionals φ̃±,u setting condition β = 0. This
leads, respectively, to

φ±(y) = φ±,u(sy) with

φ±,u(u) = α±

(√
u2 − 1 + arctan

(
1√

u2 − 1

))
1(1 ;+∞)(u) + γ±, α± > 0
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and the branches for the non-convex case

φ̃±(y) = φ̃±,u(sy) with

φ̃±,u(u) = ±α

(√
u2 − 1 + arctan

(
1√

u2 − 1

))
1(1 ;+∞)(u) + γ±.

Remarkably, in the first case, an univalued entropic functional can be obtain imposing
both α+ = α−, γ+ = γ−. Looking more attentively to this choice, one observe that it
corresponds to the one obtained for the moment constraint T1(x) = |x|, which have the
same symmetries as fX .

The uniform function φu is represented Figure A1 for α± = 1, γ± = 0.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

u

φ
u

T±,1(x) = x1X±(x)

Figure A1. Univalued entropic functional φu derived from the arcsine distribution with partial
constraints T±,1(x) = x1X± (x).

Appendix A.5. The Logistic Distribution

In this case, one can write the distribution under the form

fX(x) =
1− tanh2( 2x

s
)

s
and T1(x) = x2 on X = R.

This distribution, which resembles the normal distribution but has heavier tails, has been
used in various applications, e.g., see in [98]. One can then check that over each interval

X± = R±

the inverse distribution writes

f−1
X,±(y) = ±

s
2

argtanh
√

1− sy, y ∈
(

0 ;
1
s

]
.

Let us now focus on a second-order constraint, that respects the symmetry of the
distribution, and on first-order constraint(s) that do(es) not respect the symmetry.

Appendix A.5.1. Second Order Moment Constraint

In this case, injecting the expression of T1

(
f−1
X (y)

)
into Equation (7), we immedi-

ately obtain

φ′(y) = λ0 +
λ1s2

4

(
argtanh

√
1− sy

)2
with λ1 < 0

where λ1 < 0 is required to satisfy condition (C1). After a reparameteri-
zation, we thus obtain the family of entropy functionals φ(y) = φu(sy) with
φu(u) = −α

[
u
(
argtanh

√
1− u

)2− 2
√

1− u argtanh
√

1− u− log u
]
1(0 ; 1](u) + βu + γ

with α > 0.
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Here, again, s is an additional parameter for this family of φ-entropies.
The entropy functional is defined for u ≤ 1 due to the domain fX is invertible.

To evaluate the φ-entropy for a given distribution f , one can play with parameter s so as to
restrict, if possible, s f to be on [0 ; 1]. However, one can also extend the functional to R+

while remaining of class C1 by vanishing the derivative at u = 1. This imposes β = 0 and
leads to the entropy functional

φ(y) = φu(sy) with

φu(u) = γ− α

[
u
(
argtanh

√
1− u

)2
− 2
√

1− u argtanh
√

1− u− log u
]
1(0 ; 1](u), α > 0

depicted Figure A2a for α = 1, γ = 0.

Appendix A.5.2. (Partial) First-Order Moment(s) Constraint(s)

As fX and T(x) = x do no share the same symmetries, one cannot interpret the
logistic distribution as a maximum entropy constraint by the first order moment. However,
constraining the partial means over X± = R± and using multiform entropies allow such an
interpretation, while the alternative is to relax the concavity property of the entropy—but
again, one would only be able to ensure that the distribution from which it comes is a
critical point. To be more precise, one chooses

T±,1(x) = x 1X±(x) or T1(x) = x

We thus obtain from Equations (14) and (15) respectively, over each set X±, the branches

φ′±(y) = λ0 +
λ±,1s

2
argtanh

√
1− sy & φ̃′±(y) = λ0 ±

λ1s
2

argtanh
√

1− sy

where the sign is absorbed on λ± for the first case. Dealing with the partial moments,
to satisfy condition (C1) one must impose

λ± < 0.

At the opposite, condition (C1) cannot be satisfied for the second case (one would
have to impose ±λ1 < 0 on X±). After a reparameterization of the λis, one
obtains the branches of the entropic functional under the form φ±(y) = φ±,u(sy)
with φ±,u(u) = −α±

(
u argtanh

√
1− u −

√
1− u

)
1(0 ; 1](u) + β u + γ± where α± >

0 and the branches for the non-convex case φ̃±(y) = φ̃±,u(sy) with φ̃±,u(u) =
±α
(
u argtanh

√
1− u −

√
1− u

)
1(0 ; 1](u) + β u + γ±.

Once again, s appears as an additional parameter for these families of entropies.
In both cases, even if the inverse of fX restricts u to be lower than 1, one can either

play with parameter s to allow to compute the φ-entropy of any distribution f , or to extend
the entropic functionals to R+ by vanishing the derivative at u = 1. This imposes β = 0
and thus the entropic functional,

φ±(y) = φ±,u(sy) with

φ±,u(u) = γ± − α±
(

u argtanh
√

1− u −
√

1− u
)
1(0 ; 1](u), α± > 0

and the branches for the non-convex case

φ̃±(y) = φ̃±,u(sy) with

φ̃±,u(u) = γ± ± α
(

u argtanh
√

1− u −
√

1− u
)
1(0 ; 1](u)
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Remarkably, in the first case, an univalued entropic functional can be obtained by
imposing both α+ = α−, γ+ = γ−. Here also, such a choice is equivalent to considering
the constraint T1(x) = |x|, which allows to respect the symmetries of the distribution and
to recover a classical φ-entropy.

The uniform function φu is represented Figure A2b for α± = 1, γ± = 0.
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T1(x) = x2
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T±,1(x) = x1X±(x)

(a) (b)

Figure A2. Entropy functional φu derived from the logistic distribution: (a) with T1(x) = x2 and
(b) with T±,1(x) = x1X± (x).

Appendix A.6. The Gamma Distribution and (Partial) P-Order Moment(s)

As a very special case, let us finally consider the gamma distribution expressed as

fX(x) =
(Γ(q)x)q−1 exp

(
− Γ(q)

r x
)

rq on X = R+.

Parameter q > 0 is known as the shape parameter of the law, while σ = r
Γ(q) > 0 is a scaling

parameter. This distribution appears in various applications, as described, for instance,
in [147].

Let us focus on the case q > 1 for which the distribution is non-monotonous, unimodal,

where the mode is located at x = r (q−1)
Γ(q) , and where fX(R+) =

[
0 ; (q−1)q−1 e1−q

r

]
.

Here, again, it cannot be a maximizer of a φ-entropy subject to a moment of order
p > 0 constraint as xp and fX do not share the same symmetries. Therefore, we shall again
consider partial moments as constraints,

Tk,1(x) = xp
1Xk (x), k ∈ {0,−1} where

X0 =

[
0 ;

r (q− 1)
Γ(q)

)
and X−1 =

[
r (q− 1)

Γ(q)
; +∞

)
,

or interpret fX as a critical point of a φ-like entropy with a constraint on the moment

T1(x) = xp over X = R+

Inverting y = fX(x) leads to the equation

− Γ(q) x
r (q− 1)

exp
(
− Γ(q) x

r (q− 1)

)
= − (ry)

1
q−1

q− 1
.
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As expected, this equation has two solutions. These solutions can be expressed thanks to
the multivalued Lambert-W function W defined by z = W(z) exp(W(z)), i.e., W is the
inverse function of u 7→ u exp(u) [148] (§ 1), leading to the inverse functions

f−1
X,k(y) = −

r (q− 1)
Γ(q)

Wk

− (ry)
1

q−1

q− 1

, ry ∈
[

0 ;
(

q− 1
e

)q−1
]

,

where k denotes the branch of the Lambert-W function. k = 0 gives the principal branch
and is related here to the entropy part on X0, while k = −1 gives the secondary branch,
related to X−1.

Applying (15) to obtain the branches of the functionals of the multiform entropy, one
has thus to integrate

φ′k(y) = λ0 + λk,1

− r (q− 1)
Γ(q)

Wk

− (ry)
1

q−1

q− 1

p

where, to ensure the convexity of the φk,

(−1)kλk,1 > 0.

The same approach allows to design φ̃k, with a unique λ1 instead of the λk,1s and
without restriction on λ1.

First, let us reparameterize the λis so as to absorb the factor r/Γ(q) into λk,1 so that
one can write formally

φk(y) = φk,u(ry) with

φk,u(u) = γk + β u + (−1)kαk

∫ (1− q)Wk

− u
1

q−1

q− 1

p

du, αk ≥ 0.

Obtaining a closed-form expression for the integral term is not an easy task. However,
relation z (1 + Wk(z)) W′k(z) = Wk(z) [148] (Equation (3.2)) suggests that a way to make
the integration is to search for it under the form of a series∫ (1− q)Wk

− u
1

q−1

q− 1

p

du = u ∑
l≥0

al

(1− q)Wk

− u
1

q−1

q− 1

l+p

Therefore, to obtain a recursion on the al , we proceed as follows: (i) we differentiate both

side, (ii) we use the relation z W′k(z) = Wk(z)
1+Wk(z)

given above applied to z = − u
1

q−1

q−1 , (iii)

we thus multiply both side of the obtained equality by 1 + Wk

(
− u

1
q−1

q−1

)
, and finally (iv)

we equal the coefficients of the terms in

[
(1− q)Wk

(
− u

1
q−1

q−1

)]p+l

. The al can thus be

evaluated explicitly, and we recognize in the series the confluent hypergeometric (or
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Kummer’s) function 1F1(1; p + q; ·) [149] (Equation (13.1.2)) or [150] (Equation (9.210-1))
(up to a factor and an additive constant), so that

φk,u(u) = γk + β u + (−1)k αk u

(1− q) Wk

− u
1

q−1

q− 1

p

×

1− p
p + q− 1 1F1

1 ; p + q ; (1− q)Wk

− u
1

q−1

q− 1

 1(
0 ;
(

q−1
e

)q−1
)(u), αk > 0

One can check that these functions are indeed the ones we search for. To this end, (i)
one derives the previous expression, (ii) one notes that from z W′k(z) = Wk(z)

1+Wk(z)
[148]

(Equation (3.2)) we have u

[
(1− q)Wk

(
− u

1
q−1

q−1

)]′
= −

Wk

− u
1

q−1
q−1


1+Wk

− u
1

q−1
q−1

 , (iii) one fi-

nally uses the relation (p + q − 1− z) 1F1(1 ; p + q ; z) + z 1F′1(1 ; p + q ; z) = (p + q −
1) 1F1(0 ; p + q ; z) [149] (13.4.11) together with 1F1(0 ; b ; z) = 1 [149] (13.1.2).

Again, p, q, r are additional parameters for this family of entropies.
Then, from the domain of definition of the inverse of fX, u is restricted to(

0 ;
(

q−1
e

)q−1
)

, which can be compensated for by playing with parameter r (remind

that φk(y) = φk,u(r y)). At the opposite, noting that Wk
(
−e−1) = −1, to extend the en-

tropic functionals to C1 functions on R+, one would have to impose β + (−1)kαk = 0 to
vanish the derivatives at u = e1−a. This is impossible because from αk > 0, one cannot
impose β = α−1 = −α0. Moreover, even a convex extension relaxing the C1 condition is
impossible since we would have to impose β + (−1)αk ≤ β to insure the increase of both
the φks on R+.

We can however choose the coefficients so as to impose special conditions at the
boundary(ies) of the domain of definition. As an example, we may wish to vanish the φk
at u = 0 (e.g., to ensure the convergence of the integral of φ−1( f ), X−1 unbounded). To this
end, one can evaluate the values of the φk in the boundaries of the domain.

From [148] (Equation (3.1)), we have W0(0) = 0 and from [149] (Equation (13.1.2))
1F1(1; p + q; 0) = 1, so that

φ0,u(0) = γ0 and φ′0,u(0) = β.

Then, lim
x→0−

W−1(x) = −∞ (see [148] (Figure 1 or Equation (4.18))) so that, (i) from the

asymptotic [149] (Equation (13.1.4)) of the confluent hypergeometric function for a large

argument, (ii) using W(z)eW(z) = z for z = − u
1

q−1

q−1 , we obtain

φ−1,u(0) = γ−1 + p Γ(p + q− 1) α−1 and lim
u→0−

φ′−1,u(u) = −∞.

Finally, from Wk(−e−1) = −1 we immediately have

φk,u

((
q− 1

e

)q−1
)

= γk +

(
q− 1

e

)q−1(
β + (−1)kαk (q− 1)p

[
1− p

p + q− 1 1F1(1; p + q; q− 1)
])
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and

φ′k,u

((
q− 1

e

)q−1
)

= β + (−1)k αk (q− 1)p

Interestingly, at q → 1+, the Gamma distribution reduces to the exponential law. It
is well known that it is a maximum Shannon entropy distribution [34] subject to the first
order moment constraint. From the results above, one can notice that when q→ 1+ one has

lim
q→1+

X0 = ∅, lim
q→1+

X−1 = R+ = X

Therefore, in accordance

• The constraints degenerate to a single uniform constraint T1(x) = xp;
• In this limit, conditions (C1) and (C2) are both satisfied.
• The entropic functional becomes state-independent (uniform), where only the branch

φ−1 remains.

One can determine the limit entropic functional using [151] (Th. 3.2) that states for any
t > 0, ∣∣∣W−1

(
−e−(t+1)

)
+ log(t + 1) + (t + 1)

∣∣∣ ≤ 1− log(e− 1) = a

We apply this theorem to the positive real t given by

e−(t+1) =
u

1
q−1

q− 1
i.e., t = − 1

q− 1
log u + log(q− 1)− 1

(see domain where u lives), which thus gives, from q > 1,∣∣∣∣∣∣(1− q)W−1

− u
1

q−1

q− 1

+ log u− (q− 1) log
(
(q− 1) log(q− 1)− log u

)∣∣∣∣∣∣ ≤ (q− 1)a.

As a consequence, the left hand side tends uniformly to 0 when q→ 1+ and one can see

that (q − 1) log
(
(q − 1) log(q − 1) − log u

)
goes also uniformly to 0 as q → 1+, which

allows to obtain

lim
q→1+

(1− q)Wk

− u
1

q−1

q− 1

 = − log u.

As a conclusion, from the continuity of 1F1 w.r.t. both its parameters and its variable,
we have

lim
q→1+

φ1,u(u) = γ−1 + βu− α−1 u (− log u)p
(

1− 1F1(1; p + 1;− log u)
)

u ∈ (0 ; 1) but the domain can be expanded to R+.
Finally, for p = 1, using [149] (13.6.14) which states that 1F1(1; 2; x) = ex−1

x , we obtain
after simple algebra

lim
q→1+ ,p=1

φ−1,u = α−1 u log u + (β− α−1) u + γ−1 + α−1

which is nothing but than the Shannon entropic functional, as expected.
In passing, because W0 is bounded on the considered domain, one has immediately

lim
q→1+

φ0,u(u) = γ0 + βu
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but remember that, at the limit, this entropic branch disappears from the multiform entropy
(i.e., the entropy becomes uniform).

The behavior of the multivalued function φu is represented Figure A3 for p = 1,
q = 1.02, 1.25, 1.5, 1.75, 2, 2.25, 2.5, respectively, and with the choices α0 = α−1 = β = 1,
γ0 = 0, γ−1 = −Γ(q). In (a), so as to emphasize the behavior of the nonlinear term, we
represent φ0,u − γ0 − βu. In (b) is depicted φ−1,u which, with the chosen parameters, tends
to u log u (Shannon entropic functional) when q→ 1+, together with this limit.
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Figure A3. Multiform entropy functional φu derived from the gamma distribution with the partial
moment constraints Tk,1(x) = x1Xk (x) (p = 1), k ∈ {0,−1} for q = 1.02, 1.25, 1.5, 1.75, 2, 2.25, 2.5.
(a): φ0,u − γ0 − βu (α0 = 1); (b): φ−1,u with α−1 = β = 1, γ−1 = −Γ(q), and Shannon entropic
functional u log u (thin line).
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119. Roubíček, T. Nonlinear Partial Differential Equations with Applications; Birkhaäuser: Basel, Switzerland, 2005.
120. Tsallis, C.; Lenzi, E.K. Anomalous diffusion: Nonlinear fractional Fokker-Planck equation. Chem. Phys. 2002, 284, 341–347.

[CrossRef]
121. Vázquez, J.L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations—Equation of Porous Medium Type; Oxford University

Press: New York, NY, USA, 2006.
122. Gilding, B.H.; Kersner, R. Travelling Waves in Nonlinear Diffusion-Convection Reaction; Springer: Basel, Switzerland, 2004. [CrossRef]
123. Price, R. A Useful Theorem for Nonlinear Devices Having Gaussian Inputs. IEEE Trans. Inf. Theory 1958, 4, 69–72. [CrossRef]
124. Pawula, R. A modified version of Price’s theorem. IEEE Trans. Inf. Theory 1967, 13, 285–288. [CrossRef]
125. Riba, J.; de Cabrera, F. A Proof of de Bruijn Identity based on Generalized Price’s Theorem. IEEE Int. Symp. Inf. Theory 2019,

2509–2513. [CrossRef]
126. Lieb, E.H. Proof of an Entropy Conjecture of Wehrl. Commun. Math. Phys. 1978, 62, 35–41. [CrossRef]
127. Costa, M.; Cover, T. On the Similarity of the Entropy Power Inequality and the Brunn-Minkowski Inequality. IEEE Trans. Inf.

Theory 1984, 30, 837–839. [CrossRef]
128. Carlen, E.A.; Soffer, A. Entropy Production by Block Variable Summation and Central Limit Theorems. Commun. Math. Phys.

1991, 140, 339–371. [CrossRef]
129. Harremoës, P.; Vignat, C. An Entropy Power Inequality for the Binomial Family. J. Inequalities Pure Appl. Math. 2003, 4, 93.
130. Johnson, O.; Yu, Y. Monotonicity, Thinning, and Discrete Versions of the Entropy Power Inequality. IEEE Trans. Inf. Theory 2010,

56, 5387–5395. [CrossRef]
131. Haghighatshoar, S.; Abbe, E.; Telatar, I.E. A New Entropy Power Inequality for Integer-Valued Random Variables. IEEE Trans. Inf.

Theory 2014, 60, 3787–3796. [CrossRef]
132. Bobkov, S.G.; Chistyakov, G.P. Entropy Power Inequality for the Rényi Entropy. IEEE Trans. Inf. Theory 2015, 61, 708–714.

[CrossRef]

http://dx.doi.org/10.1111/j.1467-9892.2007.00535.x
http://dx.doi.org/10.1103/PhysRevLett.62.1327
http://dx.doi.org/10.1017/CBO9780511524585
http://dx.doi.org/10.1007/978-0-85729-355-8
http://dx.doi.org/10.1016/S0378-4371(00)00359-9
http://dx.doi.org/10.1103/PhysRevE.62.7462
http://www.ncbi.nlm.nih.gov/pubmed/11102108
http://dx.doi.org/10.1016/S0960-0779(01)00027-3
http://dx.doi.org/10.1109/TIT.2010.2090193
http://dx.doi.org/10.1017/S0305004100023471
http://dx.doi.org/10.1109/ISIT.2005.1523430
http://dx.doi.org/10.1109/TIT.2005.860424
http://dx.doi.org/10.1109/TIT.2010.2050800
http://dx.doi.org/10.1214/aop/1176992632
http://dx.doi.org/10.1109/TIT.2007.899484
http://dx.doi.org/10.1109/TIT.2017.2771209
http://dx.doi.org/10.1016/S0301-0104(02)00557-8
http://dx.doi.org/10.1007/978-3-0348-7964-4
http://dx.doi.org/10.1109/TIT.1958.1057444
http://dx.doi.org/10.1109/TIT.1967.1054014
http://dx.doi.org/10.1109/isit.2019.8849368
http://dx.doi.org/10.1007/BF01940328
http://dx.doi.org/10.1109/TIT.1984.1056983
http://dx.doi.org/10.1007/BF02099503
http://dx.doi.org/10.1109/TIT.2010.2070570
http://dx.doi.org/10.1109/TIT.2014.2317181
http://dx.doi.org/10.1109/TIT.2014.2383379


Entropy 2021, 23, 911 32 of 32

133. Costa, M. A New Entropy Power Inequality. IEEE Trans. Inf. Theory 1985, 31, 751–760. [CrossRef]
134. Dembo, A. Simple Proof of the Concavity of the Entropy Power with Respect to Added Gaussian Noise. IEEE Trans. Inf. Theory

1989, 35, 887–888. [CrossRef]
135. Villani, C. A Short Proof of the “Concavity of Entropy Power”. IEEE Trans. Inf. Theory 2000, 46, 1695–1696. [CrossRef]
136. Toscani, G. Heat Equation and Convolution Inequalities. Milan J. Math. 2014, 82, 183–212. [CrossRef]
137. Toscani, G. A Strengthened Entropy Power Inequality for Log-Concave Densities. IEEE Trans. Inf. Theory 2015, 61, 6550–6559.

[CrossRef]
138. Ram, E.; Sason, I. On Rényi Entropy Power Inequalities. IEEE Trans. Inf. Theory 2016, 62, 6800–6815. [CrossRef]
139. Bobkov, S.G.; Marsiglietti, A. Variants of the Entropy Power Inequality. IEEE Trans. Inf. Theory 2017, 63, 7747–7752. [CrossRef]
140. Savaré, G.; Toscani, G. The Concavity of Rényi Entropy Power. IEEE Trans. Inf. Theory 2014, 60, 2687–2693. [CrossRef]
141. Zozor, S.; Puertas-Centeno, D.; Dehesa, J.S. On Generalized Stam Inequalities and Fisher–Rényi Complexity Measures. Entropy

2017, 19, 493. [CrossRef]
142. Rioul, O. Yet Another Proof of the Entropy Power Inequality. IEEE Trans. Inf. Theory 2017, 63, 3595–3599. [CrossRef]
143. Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [CrossRef]
144. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
145. Beirlant, J.; Dudewicz, E.J.; Györfi, L.; van der Meulen, E.C. Nonparametric Entropy Estimation: An Overview. Int. J. Math. Stat.

Sci. 1997, 6, 17–39.
146. Leonenko, N.; Pronzato, L.; Savani, V. A Class of Rényi Information Estimators for Multidimensional Densities. Ann. Stat. 2008,

36, 2153–2182. [CrossRef]
147. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley & Sons: New York, NY, USA,

1995; Volume 1.
148. Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W Function. Adv. Comput. Math. 1996,

5, 329–359. [CrossRef]
149. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover:

New York, NY, USA, 1970.
150. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: San Diego, CA, USA, 2015.
151. Alzahrani, F.; Salem, A. Sharp bounds for the Lambert W function. Integral Transform. Spec. Funct. 2018, 29, 971–978. [CrossRef]

http://dx.doi.org/10.1109/TIT.1985.1057105
http://dx.doi.org/10.1109/18.32166
http://dx.doi.org/10.1109/18.850718
http://dx.doi.org/10.1007/s00032-014-0219-5
http://dx.doi.org/10.1109/TIT.2015.2495302
http://dx.doi.org/10.1109/TIT.2016.2616135
http://dx.doi.org/10.1109/TIT.2017.2764487
http://dx.doi.org/10.1109/TIT.2014.2309341
http://dx.doi.org/10.3390/e19090493
http://dx.doi.org/10.1109/TIT.2017.2676093
http://dx.doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1214/07-AOS539
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1080/10652469.2018.1528247

	Introduction
	 -Entropies—Direct and Inverse Maximum Entropy Problems
	Maximum Entropy Principle: The Direct Problem
	Maximum Entropy Principle: The Inverse Problems
	Second Inverse Maximum Entropy Problem: Some Examples

	State-Dependent Entropic Functionals and Minimization Revisited
	 -Escort Distribution, (,)-Moments, ( , )-Fisher Information, Generalized Cramér–Rao Inequalities
	-Heat Equation and Extended de Bruijn Identity
	Concluding Remarks
	Inverse Maximum Entropy Problem and Associated Inequalities: Some Examples
	Normal Distribution and Second-Order Moment
	q-Gaussian Distribution and Second-Order Moment
	q-Exponential Distribution and First-Order Moment
	The Arcsine Distribution
	Second-Order Moment
	(Partial) First-Order Moment(s)

	The Logistic Distribution
	Second Order Moment Constraint
	(Partial) First-Order Moment(s) Constraint(s)

	The Gamma Distribution and (Partial) P-Order Moment(s)

	References

