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Abstract: This paper investigates the status updating policy for information freshness in Internet
of things (IoT) systems, where the channel quality is fed back to the sensor at the beginning of
each time slot. Based on the channel quality, we aim to strike a balance between the information
freshness and the update cost by minimizing the weighted sum of the age of information (AoI) and
the energy consumption. The optimal status updating problem is formulated as a Markov decision
process (MDP), and the structure of the optimal updating policy is investigated. We prove that, given
the channel quality, the optimal policy is of a threshold type with respect to the AoI. In particular,
the sensor remains idle when the AoI is smaller than the threshold, while the sensor transmits the
update packet when the AoI is greater than the threshold. Moreover, the threshold is proven to be
a non-increasing function of channel state. A numerical-based algorithm for efficiently computing
the optimal thresholds is proposed for a special case where the channel is quantized into two states.
Simulation results show that our proposed policy performs better than two baseline policies.

Keywords: age of information; status update; channel quality

1. Introduction

Recently, the Internet of things (IoT) has been widely used in the field of industrial
manufacturing, environment monitoring, and home automation. In these applications, the
sensors generate and transmit new status updates to the destination, where the freshness of
the status updates is crucial for the destination to track the state of the environment and to
make decisions. Thus, a new information freshness metric, namely age of information (AoI),
was proposed in [1] to measure the freshness of updates from the receiver’s perspective.
There are two widely used metrics, i.e., the average peak AoI [2] and the average AoI [3].
In general, the smaller the AoI is, the fresher the received updates are.

AoI was originally investigated in [1] for updating the status in vehicular networks.
Considering the impact of the queueing system, the authors in [4] investigated the system
performance under the M/M/1 and M/M/1/2 queueing systems with a first-come-first-
served (FCFS) policy. Furthermore, the work of [5] studied how to keep the updates fresh
by analyzing some general update policies, such as the zero-wait policy. The authors of [6]
considered the optimal schedule problem for a more general cost that is the weighted sum
of the transmission cost and the tracking inaccuracy for the information source. However,
these works assumed that the communication channel is not error-prone. In practice, status
updates are delivered through an erroneous wireless channel, which suffers from fading,
interference, and noises. Therefore, the received updates may not be decoded correctly,
which induces information aging and energy consumption.

There are several works that considered the erroneous channel [7,8]. The authors
in [9] considered multiple communication channels and investigated the optimal coding
and decoding schemes. The channel with an independent and identical packet error rate
over time was considered in [10,11]. The work of [12] considered the impact of fading
channels in packet transmission. A Markov channel was investigated in [13], where
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threshold policy was proven to be optimal, and a simulation-based approach was proposed
to compute the corresponding threshold. However, how the information of channel quality
should be exploited to improve system performance in information freshness remains to
be investigated.

Channel quality indicator (CQI) feedback is commonly used in wireless communica-
tion systems [14]. In block fading channels, the channel quality, generally reported by the
terminal, is highly relevant to the packet error rate (PER) [15] or, namely, the block error
rate (BLER). It is probable that a received packet fails to be decoded when the channel
suffers from a poor condition. However, a transmitter with the channel quality information
is able to keep idle when there is deep fading, thereby saving energy. The channel quan-
tization was also considered in [12,13], where the channel was quantized into multiple
states. However, the decision making was not dependent on the channel state in [12],
while [13] did not consider the freshness of information. These motivate us to introduce
the information of channel quality into the design of the updating policy.

In this paper, a status update system with channel quality feedback is considered. In
particular, the channel condition is quantized into multiple states, and the destination feeds
the channel quality back to the sensor before the sensor updates the status. Our problem is
to investigate the channel quality-based optimal status update policy, which minimizes
the weighted sum of the AoI and the energy consumption. Our key contributions are
summarized as follows:

• An average cost Markov decision process (MDP) is formulated to model this problem.
Due to the infinite countable states and unbounded cost of the MDP, which makes
analysis difficult, the discounted version of the original problem is first investigated,
and the existence of the stationary and deterministic policy to the original problem is
then proven. Furthermore, it is proven that the optimal policy is a threshold structure
policy with respect to the AoI for each channel state by showing the monotonic
property of the value function. We also prove that the threshold is a non-increasing
function of channel state.

• By utilizing the threshold structure, a structure-aware policy iteration algorithm is
proposed to efficiently obtain the optimal updating policy. Nevertheless, a numerical-
based algorithm which directly computes the thresholds by non-linear fractional
programming is also derived. Simulation results reveal the effects of system parame-
ters and show that our proposed policy performs better than the zero-wait policy and
periodic policy.

The rest of this paper is organized as follows. In Section 2, the system model is
presented and the optimal updating problem is formulated. In Section 3, the optimal
updating policy is proven to be of a threshold structure, and a threshold-based policy
iteration algorithm is proposed to find the optimal policy. Section 4 presents the simulation
results. Finally, we summarize our conclusions in Section 5.

2. System Model and Problem Formulation
2.1. System Description

In this paper, we consider a status update system that consists of a sensor and a
destination, as shown in Figure 1. Time is divided into slots. Without loss of generality,
we assume that each time slot has an equal length, which is normalized to unity. At
the beginning of each slot, the destination feeds the CQI back to the sensor. It is worth
noting that the PER is different for different CQIs. Based on the CQI, the sensor decides in
each time slot whether it should generate and transmit a new update to the destination
via a wireless channel or keep idle for saving energy. These updates are crucial for the
destination to estimate the states of the surrounding environment of the sensor and to
make in-time decisions. Let at, which takes value from the action set A = {0, 1}, denote
the action that the sensor performs in slot t, where at = 1 means that the sensor generates
and transmits a new update to the destination, and at = 0 represents that the sensor is
idle. If the sensor transmits an update packet in slot t, an acknowledgment will be fed
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back at the end of this time slot. In particular, an ACK is fed back when the destination
successfully receives the update packet, and a NACK otherwise.

Channel
Sensor

Channel Quality Indicator

Destination

ACK/NACK

�� = 0 

�� = 1 

ℎ�  

Figure 1. System model.

2.2. Channel Model

Suppose that the wireless channel is a block fading channel where the channel gain
remains constant in each slot and varies independently over different slots. Let zt denote
the channel gain in slot t which takes value from [0,+∞). We quantize the channel gain
into N + 1 levels which are denoted as (z0, z1, ..., zi, ..., zN). The quantization levels are
arranged in an increasing order where z0 = 0 and zN = ∞. Hence, the channel is said to be
in state i if the channel gain zt belongs to the interval [zi, zi+1). We denote by ht the state
of the channel in slot t, where ht ∈ H , {0, 1, 2..., N − 1}. With the aid of CQI fed back
from the destination, the sensor has knowledge of the channel state at the beginning of
each time slot.

Let pz(z) denote the distribution of the channel gain. Then, the probability of the
channel being in state i is

pi =
∫ zi+1

zi

pz(z)dz. (1)

We assume that the signal-to-noise ratio (SNR) per information bit during the trans-
mission remains constant. Then, the PER depends only on the channel gain. In particular,
the PER for channel state i is given by

gi =
∫ zi+1

zi

PPER(z)pz(z|i)dz, (2)

where PPER(z) is the PER of a packet with respect to the channel gain. The success proba-
bility qi of a packet transmitted over channel state i is qi = 1− gi. According to [15], the
success probability is a non-decreasing function of the channel state.

2.3. Age of Information

This paper uses the AoI as the freshness metric, which is defined as the time elapsed
since the generation time of the latest update packet that is successfully received by the
destination [1]. Let Gi be the generation time of the ith successfully received update packet.
Then, the AoI in time slot t, ∆t, is defined as

∆t = t−max{Gi : Gi ≤ t}. (3)

In particular, if an update packet is successfully received, the AoI decreases to one.
Otherwise, the AoI increases by one. Altogether, the evolution of the AoI is expressed by

∆t+1 =

{
1, if the transmission is successful,
∆t + 1, otherwise.

(4)

An example of the AoI evolution is shown in Figure 2, where the gray rectangle
represents a successful reception of an update packet, and the mesh rectangle represents a
transmission failure.
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Figure 2. An example of the AoI evolution with the channel state ht, the action at, and the acknowl-
edgment ACKt. The asterisk stands for no acknowledgment from destination when the sensor
keeps idle.

2.4. Problem Formulation

The objective of this paper is to find an optimal updating policy that minimizes the
long-term average of the weighted sum of AoI and energy consumption. A policy π can
be represented by the sequence of actions, i.e., π = (a0, a1, . . . , at, . . .). Let Π be a set of
stationary and deterministic policies. Then, the optimal updating problem is given by

min
π∈Π

lim sup
T→∞

1
T

T

∑
t=0

E[∆t + ωatCe], (5)

where Ce is the energy consumption, and ω is the weighting factor.

3. Optimal Updating Policy

This section aims to investigate the optimal updating policy for the problem formu-
lated in above section. In this section, our investigating problem is first formulated into
an infinite horizon average cost MDP, and the existence of a stationary and deterministic
policy that minimizes the average cost is proven. Then, the non-decreasing property of
the value function is derived. Based on this property, we prove that the optimal update
policy is of a threshold structure with respect to AoI, and the optimal threshold is a non-
increasing function of the channel state. Aiming to reduce the computational complexity, a
structure-aware policy iteration algorithm is proposed to find the optimal policy. Moreover,
non-linear fractional programming is employed to directly compute the optimal thresholds
in a special case where the channel is quantized into two states.

3.1. MDP Formulation

The Markov decision process (MDP) is typically applied to address the optimal
decision problem when the investigation problem can be characterized by the evolution
of the system state and the cost is per-stage. The optimization problem in (5) can be
formulated as an infinite horizon average cost MDP, which is elaborated in the following.

• States: The state of the MDP in slot t is defined as xt = (∆t, ht), which takes values in
Z+ ×H. Hence, the state space S is countable and infinite.

• Actions: The set of actions at chosen in slot t is A = {0, 1}.
• Transition Probability: Let Pr(xt+1|xt, at) be the transition probability that the state xt

in slot t transits to xt+1 in slot t + 1 after taking action at. According to the evolution
of AoI in (4), the transition probability is given by

Pr(xt+1 = (∆ + 1, j)|xt = (∆, i), at = 0) = pj,

Pr(xt+1 = (1, j)|xt = (∆, i), at = 1) = qi pj,

Pr(xt+1 = (∆ + 1, j)|xt = (∆, i), at = 1) = gi pj.

(6)
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• Cost: The instantaneous cost C(xt, at) at state xt given action at in slot t is

C(xt, at) = ∆t + ωatCe. (7)

For an MDP with infinite states and unbounded cost, it is not guaranteed to have
a stationary and deterministic policy that attains the minimum average cost in general.
Fortunately, we can prove the existence of stationary and deterministic policy in next
sub-section.

3.2. The Existence of Stationary and Deterministic Policy

For rigorous mathematical analysis, this section is purposed to prove the existence
of a stationary and deterministic optimal policy. According to [16], we first analyze the
associated discounted cost problem of the original MDP. The expectation of discount cost
with respect to discounted factor γ and initial state x̂ under a policy π is given by

Vπ,γ(x̂) = Eπ

[
∞

∑
t=0

γtC(xt, at)|x0 = x̂

]
, (8)

where at is the decision made in state x̂ under policy π, and γ ∈ (0, 1) is the discounted
factor. We first verify that Vπ,γ(x̂) is finite for any policy and all x̂ ∈ S .

Lemma 1. Given γ ∈ (0, 1), for any policy π and all x̂ = (x̂, ĥ) ∈ S , we have

Vπ,γ(x̂) = Eπ

[
∞

∑
t=0

γtC(xt, at)|x0 = x̂

]
< ∞. (9)

Proof. By definition, the instantaneous cost in state xt = (∆t, ht) given action at is

C(xt, at) =

{
∆t, if at = 0,

∆t + ωCe, if at = 1.
(10)

Therefore, C(xt, at) ≤ ∆t + ωCe holds. Combined with the fact that the AoI increases,
at most, linearly at each slot for any policy, we have

∞

∑
t=0

γtC(xt, at|x0 = (∆̂, ĥ))

≤
∞

∑
t=0

γt(∆̂ + t + ωCe)

=
1

1− γ

(
∆̂ +

γ

1− γ
+ ω

)
< ∞, (11)

which completes the proof.

Let Vγ(x̂) = minπ Vπ,γ(x̂) denote the minimum expected discounted cost. By Lemma 1,
Vγ(x̂) = minπ Vπ,γ(x̂) < ∞ holds for every x̂ and γ ∈ (0, 1).

According to [16] (Proposition 1), we have

Vγ(x̂) = min
a∈A

{
C(x̂, a) + γ ∑

x′∈S
Pr(x′|x̂, a)Vγ(x′)

}
, (12)

which implies that Vγ(x̂) satisfies the Bellman equation. Vγ(x̂) can be solved via a value
iteration algorithm. In particular, we define Vγ,0(x̂) = 0, and for all n ≥ 1, we have

Vγ,n(x̂) = min
a∈A

Qγ,n(x̂, a), (13)
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where

Qγ,n(x̂, a) = min
a∈A

{
C(x̂, a) + γ ∑

x′∈S
Pr(x′|x̂, a)Vγ,n−1(x′)

}
(14)

is related to the right-hand-side (RHS) of the discounted cost optimality equation. Then,
limn→∞ Vγ,n(x̂) = Vγ(x̂) for every x̂ and γ.

Now, we can use the value iteration algorithm to establish the monotonic properties
of Vγ(x̂)

Lemma 2. For all ∆ and i, we have

Vγ(∆, N − 1) ≤ Vγ(∆, i), (15)

and for all ∆1 ≤ ∆2 and i, we have

Vγ(∆1, i) ≤ Vγ(∆2, i). (16)

Proof. See Appendix A.

Based on Lemmas 1 and 2, we are ready to show that the MDP has a stationary and
deterministic optimal policy in the following theorem.

Theorem 1. For the MDP in (5), there exists a stationary and deterministic optimal policy
π∗ that minimizes the long-term average cost. Moreover, there exists a finite constant λ =
limγ→1(1 − γ)Vγ(x) for all states x, where λ is independent of the initial state, and a value
function V(x), such that

λ + V(x) = min
a∈A

{
C(x, a) + ∑

x′∈S
Pr(x′|x, a)V(x′)

}
(17)

holds for all x.

Proof. See Appendix B.

3.3. Structural Analysis

According to Theorem 1, the optimal policy for the average cost problem satisfies the
following equation

π∗(x) = arg min
a∈A

Q(x, a), (18)

where
Q(x, a) = C(x, a) + ∑

x′∈S
Pr(x′|x, a)V(x′). (19)

Similar to Lemma 2, the monotonic property of the value function V(x) is given in the
following lemma.

Lemma 3. Given the channel state i, for any ∆2 ≥ ∆1, we have

V(∆2, i) ≥ V(∆1, i). (20)

Proof. This proof follows the same procedure of Lemma 2, with one exception being that
the value iteration algorithm is based on Equation (17).

Moreover, based on Lemma 3, the property of the increment of the value function is
established in following lemma.
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Lemma 4. Given the channel state i, for any ∆2 ≥ ∆1, we have

V(∆2, i)−V(∆1, i) ≥ ∆2 − ∆1. (21)

Proof. We first examine the relation between the state-action value functions, i.e., Q(∆2, i, a)
and Q(∆1, i, a). Specifically, based on Lemma 3, we have

Q(∆2, i, 0)− (∆2 − ∆1) = ∆1 +
N−1

∑
j=0

pjV(∆2 + 1, j)

≥∆1 +
N−1

∑
j=0

pjV(∆1 + 1, j) = Q(∆1, i, 0), (22)

and

Q(∆2, i, 1)− (∆2 − ∆1)

=∆1 + ωCe + qi

N−1

∑
j=0

pjV(1, j) + gi

N−1

∑
j=0

pjV(∆2 + 1, j)

≥∆1 + ωCe + qi

N−1

∑
j=0

pjV(1, j) + gi

N−1

∑
j=0

pjV(∆1 + 1, j)

=Q(∆1, i, 1). (23)

Since V(x) = min
a∈A

Q(x, a), we complete the proof.

Our main result is presented in the following theorem.

Theorem 2. For any given channel state i, there exists a threshold βi, such that when ∆ ≥ βi,
the optimal action is to generate and transmit a new update, i.e., π∗(∆, i) = 1, and when ∆ < βi,
the optimal action is to remain idle, i.e., π∗(∆, i) = 0. Moreover, the optimal threshold βi is a
non-increasing function of channel state i, i.e., βi ≥ β j holds for all i, j ∈ H and i ≤ j.

Proof. See Appendix C.

According to Theorem 2, the sensor will not update the status until the AoI exceeds the
threshold. Moreover, if the channel condition is not good, i.e., channel state i is small, the
sensor will wait for a longer time before it samples and transmits the status update packet
so as to reduce the energy consumption because of a higher probability of transmission
failure.

Based on the threshold structure, we can reduce the computational complexity of
the policy iteration algorithm to find the optimal policy. The details of the algorithm are
presented in Algorithm 1.

3.4. Computing the Thresholds for a Special Case

In the above section, we have proven that the optimal policy has a threshold structure.
Given the thresholds (β0, β1, ..., βN−1), a Markov chain can be induced by the threshold
policy. A special Markov chain is depicted in Figure 3, where the channel has two states.
By leveraging the Markov chain, we first derive the average cost of the special case, which
is summarized in the following theorem.
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Algorithm 1 Policy iteration algorithm (PIA) based on the threshold structure.

1: Initialization: Set k = 0, iteration threshold ε, and initialize the value function V0(x) = 0
and policy π(x) = 0 for all state x ∈ S

2: repeat
3: k← k + 1.
4: Based on last iterative value function Vk−1(x), compute the current value function

Vk(x) by calculating the following equations.

5: Vk(x) = min
a∈A

{
C(x, a) + ∑

x′∈S
Pr(x′|x, a)Vk−1(x′)

}
6: until |Vk(x)−Vk−1(x)| ≤ ε for all x ∈ S
7: for x = (∆, i) ∈ S do
8: if x′ = (∆− 1, i) ∈ S and π(x′) = 1 then
9: π(x)← 1.

10: else

11: π(x)← arg min
a∈A

{
C(x, a) + Pr

x′∈S
(x′|x, a)V(x′)

}
12: end if
13: end for
14: π∗ ← π
15: return the optimal policy π∗

(�0, 0) (�0 + 1,0) (2,0) (1,0) (�1 − 1,0) (�1, 0) (�1 + 1,0) 

(�0, 1) (�0 + 1,1) (2,1) (1,1) (�1 − 1,1) (�1, 1) (�1 + 1,1) 

�0 

�0�0 

�0�0 

�1 

�1�0 

�0�0 �0�0 �0�0 

�0�0 �0�0 
�0�0 

�0�1 

�0 

�0 �0 
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�1 �1 �1 

�0 �0 

�1 �1 
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�1�0 �1�0 
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�0�1 

Figure 3. An illustration of established Markov chain with two channel states.

Theorem 3. Let ϕ(x) be the steady state probability of state x of the corresponding Markov chain
with two states and β0, β1 be the threshold with respect to the channel state, respectively. The steady
state probability is given by

ϕ(i, j) =


pj ϕ1, if 1 ≤ i ≤ β1,

pjs
i−β1
0 ϕ1, if β1 < i ≤ β0,

pjs
β0−β1
0 si−β1

1 ϕ1, if i > β0,

(24)

where ϕ1 = ϕ(1, 0) + ϕ(1, 1), s0 = 1− p1q1, s1 = 1− p0q0 − p1q1, and ϕ1 satisfies follow-
ing equation:
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ϕ1 =
1

β1 +
s0−s

β0−β1
0

1−s0
+ sβ0−β1

0
s1

1−s1

. (25)

The average cost then is given by

Cmc(β0, ..., βN−1)

=ϕ1(
β1(β1 + 1)

2
+ A + B + ωCeE), (26)

where

A =
s0((β1 + 1)− β0sβ0−β1

0 )

1− s0
+

s3
0 − sβ0−β1+1

0
(1− s0)2 , (27)

B =
(β0 + 1)s1

1− s1
+

s3
1

1− s1
, (28)

and

E =

(
sβ0−β1

0
1

1− s1
+ p1

1− sβ0−β1
0

1− s0

)
. (29)

Proof. See Appendix D.

Therefore, the closed form of the average cost is a function of thresholds. By linear
search or gradient descent algorithm, the numerical solution of optimal thresholds can be
obtained. However, computing its gradient directly requires a large amount of computation
till convergence. Here, a nonlinear fractional programming (NLP) [17] based algorithm
which can efficiently obtain the numerical solution is proposed.

Let x = (β0, β1). We can rewrite the cost function as a fractional form, where the
numerator is denoted as N(x) = −Cmc(x)/ϕ1, and the denominator term is N(x) = 1/ϕ1.
The solution to an NLP problem with the form in the following

max
{

N(x)
D(x)

|x ∈ A
}

(30)

is related to the optimization problem (31)

max{N(x)− qD(x)|(x ∈ A}, for q ∈ R, (31)

where the following assumption should also be satisfied:

D(x) > 0, for all x ∈ A. (32)

Define the function F(q) with variable q as

F(q) = max{N(x)− qD(x)|x ∈ A}, for q ∈ R. (33)

According to [17], F(q) is a strictly monotonic decreasing function and is convex over R.
Furthermore, we have q0 = N(x0)/D(x0) = max{N(x)− qD(x)|x ∈ A} if, and only if,

F(q0) = max{N(x)− q0D(x)|x ∈ A} = 0. (34)

Then, the algorithm can be described by two steps. The first step is to solve a convex
optimization problem with a one dimensional parameter by a bisection method. The second
step is to solve a high dimensional optimization problem by a gradient descent method.
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According to [17], a bisection method can be used to solve the optimal q0, under
the assumption that the value of function F(q) can be obtained exactly for given q. We
will actually use the gradient descent algorithm to obtain the numerical solution of F(q)
since the global search method may not perform in polynomial time. As a trick, we
alternate the optimization variables of thresholds (β0, β1) by the variables of the decrement
of thresholds, i.e., x = (β0 − β1, β1). To summarize, the numerical-based method for
computing the optimal thresholds is given by Algorithm 2.

Algorithm 2 Numerical computation of the optimal thresholds.

Input: Iteration time k, error threshold δ
Output: Numerical result x∗

1: Let N(x) = −Cmc(x)/ϕ1, and D(x) = 1/ϕ1. Define F(q) = max{N(x)− qD(x)|x ≥
0}

2: Let the iteration starts with i = 1, search range [a, b] of q.
3: while i ≤ k do
4: m = a+b

2 ;
5: if F(m) ∗ F(a) < 0 then
6: b = m;
7: else
8: a = m;
9: end if

10: if b−a
2 < δ then

11: x∗ = arg minx F(m)
12: break;
13: end if
14: i = i + 1;
15: end while

4. Simulation Results and Discussions

In this section, the simulation results are presented to investigate the impacts of the
system parameters. We also compare the optimal policy with the zero-wait policy and
periodic policy, where the zero-wait policy immediately generates an update at each time
slot and the periodic policy keeps a constant interval between two updates.

Figure 4 depicts the optimal policy for different AoI and channel states, where the
number of channel states is 5. It can be seen that, for each channel state, the optimal policy
has a threshold structure with respect to the AoI. In particular, when the AoI is small, it
is not beneficial for the sensor to generate and transmit a new update because the energy
consumption dominates the total cost. We can also see that the threshold is non-increasing
with the channel state. In other words, if the channel condition is better, the threshold is
smaller. This is because the success probability of packet transmission increases with the
channel state.

Figure 5 illustrates the thresholds for the MDP with two channel states with respect to
the weighting factor ω, in which the two dashed lines are obtained by PIA and the other
two solid lines are obtained by the proposed numerical algorithm. Both of the thresholds
grow with the increasing of ω. Since the energy consumption has more weight, it is not
efficient to update when the AoI is small. On the contrary, when ω decreases, the AoI
dominates and the thresholds decline. In particular, both of the thresholds equal 1 when
ω = 0. In this case, the optimal policy reduces to the zero-wait policy. We can also see
that the value of the threshold for channel state 1 of the numerical algorithm is close to
the optimal solution. In contrast, the value of the threshold for channel state 0 gradually
deviates from the optimal value.
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Figure 4. Optimal policy for different AoI and channel states (q0 = 0.1, q1 = 0.2, q2 = 0.3,
q3 = 0.4, q4 = 0.5, p0 = 0.1, p1 = 0.1, p2 = 0.3, p3 = 0.3, p4 = 0.2, ω = 10, Ce = 1).
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Figure 5. Optimal thresholds for two different channel states versus ω (p0 = 0.2, p1 = 0.8,
q0 = 0.2, q1 = 0.5, Ce = 1).

Figure 6 illustrates the performance comparison of four policies, i.e., the zero-wait
policy, the periodic policy, the numerical-based policy, and the optimal policy, with respect
to the weighting factor ω. It is easy to see that the optimal policy has the lowest average
cost. As we see in Figure 6, the zero-wait policy has the same performance with the optimal
policy when ω = 0. As ω increases, the average cost of all three policies increases. However,
the increment of the zero-wait policy is larger than the periodic policy and the optimal
policy due to the frequent transmission in the zero-wait policy. Although the thresholds
obtained by the PIA and the numerical algorithm are not exactly the same as shown in
Figure 5, the performance of the numerical-based algorithm also coincides with the optimal
policy. This is because the threshold for channel state 1 exists in the quadratic term of the
cost function, while the threshold for channel state 0 exists in the negative exponential
term of the cost function. As a result, the threshold for channel state 1 has a much more
significant effect on the system performance.
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Figure 6. Comparison of the zero-wait policy, the periodic policy with period being 5, the numerical-
based policy, and the optimal policy with respect to the weighting factor ω (p0 = 0.2, p1 = 0.8,
q0 = 0.2, q1 = 0.5, Ce = 1).

Figure 7 compares the three policies with respect to the probability p1 of the channel
being in state 1. Since there is a higher probability that the channel has a good quality as p1
increases, the average cost of all three policies decreases. We can see that, in the regime of
p1, the optimal policy has the lowest average cost, because it can achieve a good balance
between the AoI and the energy consumption. We can also see that the cost of the periodic
policy is greater than the zero-wait policy first, and smaller later. To further demonstrate
these curves, we separate the energy consumption term and AoI term into different figures,
i.e., Figures 8 and 9. We see that the update cost of the zero-wait policy is smaller than
that of the periodic policy, but the AoI of the zero-wait policy has a smaller decrease with
respect to p1 than the periodic policy.
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Figure 7. Comparison of the zero-wait policy, the periodic policy with period being 5, and the optimal
policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).
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Figure 8. AoI comparison of the zero-wait policy, the periodic policy with period being 5, and the
optimal policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).
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Figure 9. Energy consumption comparison of the zero-wait policy, the periodic policy with period
being 5, and the optimal policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).

5. Conclusions

In this paper, we have studied the optimal updating policy in an IoT system, where
the channel gain is quantized into multiple states and the channel state is fed back to the
sensor before the decision making. The status update problem has been formulated as an
MDP to minimize the long-term average of the weighted sum of the AoI and the energy
consumption. By investigating the properties of the value function, it is proven that the
optimal policy has a threshold structure with respect to AoI for any given channel state.
We have also proven that the threshold is a non-increasing function of the channel state.
Simulation results show the impacts of system parameters on the optimal thresholds and
the average cost. Through comparisons, we have also shown that our proposed policy
outperforms the zero-wait policy and the periodic policy. In our future research, the time-
varying channel model will be further involved for guiding the future design of realistic
IoT systems.
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Appendix A. Proof of Lemma 2

Based on the value iteration algorithm, the induction method can be employed in
following proof. Firstly, we initial that Vγ,0(x) = 0, where both Equations (15) and (16)
hold for all x ∈ S .

Appendix A.1. Proof of Equation (16)

When n = 1,

Qγ,1(∆1, i, 0)−Qγ,1(∆2, i, 0) = ∆1 − ∆2 ≤ 0, (A1)

and

Qγ,1(∆1, i, 1)−Qγ,1(∆2, i, 1) = ∆1 + ωCe − (∆2 + ωCe) ≤ 0, (A2)

hold due to ∆1 ≤ ∆2, and we have Vγ,1(∆1, i) ≤ Vγ,1(∆2, i).
Suppose that Vγ,K(∆1, i) ≤ Vγ,K(∆2, i) holds for k ≤ K. Considering the case of

k = K + 1,

Qγ,K+1(∆1, i, 0)−Qγ,K+1(∆2, i, 0) = ∆1 − ∆2 ≤ 0, (A3)

and

Qγ,K+1(∆1, i, 1)−Qγ,K+1(∆2, i, 1)

=(∆1 − ∆2) + γ ∑
j∈H

pjgi
(
Vγ,K(∆1 + 1, j)−Vγ,K(∆2 + 1, j)

)
≤0, (A4)

hold for all i according to ∆1 ≤ ∆2. Therefore, we have Vγ,K+1(∆1, i) ≤ Vγ,K+1(∆2, i). Since
limn→∞ Vγ,n = Vγ, we have Vγ(∆1, i) ≤ Vγ(∆2, i).

Appendix A.2. Proof of Equation (15)

By the definition of function Qγ(x, a), we have

Qγ(∆, i, 0) = ∆ + γ ∑
j∈H

pjVγ(∆ + 1, j), (A5)

and

Qγ(∆, i, 1) = ∆ + ωCe + γ

(
∑
j∈H

pj(giVγ(∆ + 1, j) + qiVγ(1, j))

)
. (A6)
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Therefore,

Qγ(∆, N − 1, 0)−Qγ(∆, i, 0) ≤ 0, (A7)

and

Qγ(∆, N − 1, 1)−Qγ(∆, i, 1)
(a)
=γ ∑

j∈H
pj(qN−1 − qi)(Vγ(1, j)−Vγ(∆ + 1, j)) ≤ 0, (A8)

hold for all i, where step (a) is due to Equation (16). Hence, we have Vγ(∆, N − 1) ≤
Vγ(∆, i). This completes the whole proof.

Appendix B. Proof of Theorem 1

Theorem 1 can be proven by verifying the conditions given in [16]. The conditions are
listed as follows:

• (1): For every state x and discount factor γ, the discount value function Vγ(x) is finite.
• (2): There exists a non-negative value L such that −L ≤ hγ(x) for all x and γ, where

hγ(x) = Vγ(x)−Vγ(x̂), and x̂ is a reference state.
• (3): There exists a non-negative value Mx, such that hγ(x) ≤ Mx for every x and γ.

For every x, there exists an action ax such that ∑x′ Pr(x′|x, ax)Mx′ < ∞.
• (4): The inequality ∑x′ Pr(x′|x, a)Mx′ < ∞ holds for all x and a.

By Lemma 1, Vγ(x̂) = minπ Vπ,γ(x̂) < ∞ holds for every x̂ and γ. Hence, condition
(1) holds. According to Lemma 2, by letting x̂ = (1, N − 1) and L = 0, we have hγ(x) ≥ 0,
which verifies condition (2).

Before verifying condition (3), a lemma is given as follows:

Lemma A1. Let us denote x̂ = (1, N − 1) as the reference state and define the first time that an
initial state x transits to x̂ as K = min{k : k ≤ 1, xk = x̂}. Then, the expectation cost under the
always-transmitting policy πa, i.e., the sensor generates and transmits a new update in each slot, is

Cx,x̂(πa) =Eπa

[
K−1

∑
t=0

γtC(xt, at)|x
]

, (A9)

where Cx,x̂(πa) < ∞ holds for all x.

Proof. Since at = 1 for all t, the probability that the state returns to x̂ from x after exactly K
slot is given by

Pr(K = k|x = (∆, j)) =

{
pN−1qj, if k = 1,
pN−1gj(1−∑i∈H piqi)

k−2(∑i∈H piqi), otherwise.
(A10)
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Then, the expectation return cost from x to x̂ is expressed as

Cx,x̂(πa)

=E
[

K−1

∑
t=0

γtC(xt, at)|x
]

(a)
≤

∞

∑
k=1

Pr(K = k|x = (∆, j))

[
k−1

∑
m=0

(∆ + m + ωCe)

]
<∞, (A11)

where step (a) is due to the fact that C(xt, at) ≤ ∆t + ωCe.

Considering a mixture policy π, in which it performs the always-transmitting policy
πa from initial state x until it enters the reference state x̂, it later performs the optimal policy
πγ that minimizes the discounted cost. Therefore, we have

Vγ(x)

≤Eπa

[
K−1

∑
t=0

γtC(xt, at)|x
]
+Eπb

[
∞

∑
t=K

γtC(xt, at)|x̂
]

≤Cx,x̂(πa) +Eπ

[
γKVγ(x̂)

]
≤Cx,x̂(πa) + Vγ(x̂), (A12)

which implies that hγ(x) ≤ Cx,x̂(πa). Hence, let x̂ = (1, N − 1) and Mx = Cx,x̂(πa);
condition (3) is verified.

On the other hand, Mx < ∞ holds for all x. The states that transit from x are finite.
Thus, the weighted sum of finite Mx is also finite, i.e., ∑x′ P(x′|x, a)Mx′ < ∞ holds for all x
and a, which verifies condition (4). This completes the whole verification.

Appendix C. Proof of Theorem 2

Based on the definition of Q(∆, i, a), we can obtain the difference between the state-
action value function as follows:

Q(∆, i, 0)−Q(∆, i, 1)

=
N−1

∑
j=0

pjV(∆ + 1, j)− qi

N−1

∑
j=0

pjV(1, j)− gi

N−1

∑
j=0

pjV(∆ + 1, j)−ωCe

=qi

N−1

∑
j=0

pj(V(∆ + 1, j)−V(1, j))−ωCe

(a)
≥qi∆−ωCe. (A13)

where (a) is due to the property of the value function given in Lemma 4. We then discuss
the difference between the state-action value function in two cases.

Case 1: ω = 0.
In this case, Q(∆, i, 0)− Q(∆, i, 1) ≥ 0 holds for any ∆ and i. Therefore, the optimal

policy is to update at each slot in spite of the channel state. In other words, the optimal
thresholds are all equal to 1.

Case 2: ω > 0.
We note that, given i, qi∆−ωCe increases linearly with ∆. Hence, there exists a positive

integer β̂i, such that β̂i is the minimum value that satisfies qi β̂i − ωCe ≥ 0. Therefore, if
∆ ≥ β̂i, Q(∆, i, 0)−Q(∆, i, 1) ≥ qi β̂i −ωCe ≥ 0 holds. This implies that there must exist a
threshold βi satisfying 1 ≤ βi ≤ β̂i. If ∆ ≥ βi, we have Q(∆, i, 0)−Q(∆, i, 1) ≥ 0.
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Altogether, the optimal policy has a threshold structure for ω ≥ 0. Then, we examine
the non-increasing property of the thresholds. Firstly, we show that the difference between
the state-action value function is monotonic with respect to the channel state by fixing the
AoI. Assuming that i, j ∈ H and i ≤ j, it is easy to obtain that

Q(∆, j, 0)−Q(∆, j, 1)− (Q(∆, i, 0)−Q(∆, i, 1))

=(qj − qi)
N−1

∑
l=0

pl(V(∆ + 1, l)−V(1, l)) ≥ 0. (A14)

Since Q(∆, i, 0) − Q(∆, i, 1) ≥ 0 when ∆ ≥ βi, we have Q(∆, j, 0) − Q(∆, j, 1) ≥ 0
according to (A14). This implies that the optimal threshold β j corresponding to channel
state j is no greater than βi, i.e., β j ≤ βi. This completes the whole proof.

Appendix D. Proof of Theorem 3

Assume that ϕ(x) is the steady probability of state x in a Markov chain. The steady
state probability ϕ(x) satisfies the following global balance equation [18], i.e.,

ϕ(x) = ∑
x′∈S

ϕ(x′)Pr(x|x′). (A15)

Let ϕ1 = ϕ(1, 0) + ϕ(1, 1). We prove Equation (A23) by discussing three cases via
mathematical induction.

Case 1: 1 < i ≤ β1
Based on Equation (A15), we have

ϕ(2, j) =ϕ(1, 0)pj + ϕ(1, 1)pj

=pj ϕ1. (A16)

Assuming that ϕ(i, j) = pj ϕ1 holds for all i ≤ k < β1, we examine ϕ(k+ 1, j). We have

ϕ(k + 1, j) =ϕ(k, 0)pj + ϕ(k, 1)pj

=pj p0 ϕ1 + pj p1 ϕ1

=pj ϕ1, (A17)

which completes this segment of the proof.
Case 2: β1 < i ≤ β0
Similarly, we have

ϕ(β1 + 1, j) =pj(1− q1)ϕ(β1, 1) + pj ϕ(β1, 0)

=pj ϕ1((1− q1)p1 + p0)

=pj ϕ1s0, (A18)

where s0 = 1− p1q1. Assuming that ϕ(i, j) = pj ϕ1si−β1
0 holds for all β1 < i ≤ k < β0, we

examine ϕ(k + 1, j). We have

ϕ(k + 1, j) =pj(1− q1)ϕ(k, 1) + pj ϕ(k, 0)

=pj ϕ1((1− q1)p1 + p0)s
k−β1
0

=pj ϕ1sk+1−β1
0 , (A19)

which completes this segment of the proof.
Case 3: i > β0
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Follow above discussion, we have

ϕ(β0 + 1, j) =pj(1− q1)ϕ(β0, 1) + pj(1− q0)ϕ(β0, 0)

=pj ϕ1sβ0−β1
0 ((1− q1)p1 + (1− q0)p0)

=pj ϕ1sβ0−β1
0 s1, (A20)

where s1 = 1− p0q0− p1q1. Assuming that ϕ(i, j) = pj ϕ1sβ0−β1
0 si−β0

1 holds for all β0 < i ≤
k, we examine ϕ(k + 1, j). We have

ϕ(k + 1, j)

=pj(1− q1)ϕ(k, 1) + pj(1− q0)ϕ(k, 0)

=pj ϕ1sβ0−β1
0 ((1− q1)p1 + (1− q0)p0)s

k−β0
1

=pj ϕ1sβ0−β1
0 sk+1−β0

1 . (A21)

Altogether, we obtain the steady state probability with respect to an unknown param-
eter ϕ1. According to the fact that ∑∞

i=1 ∑N−1
j=0 ϕ(i, j) = 1, we formulate an equation:

∞

∑
i=1

N−1

∑
j=0

ϕ(i, j)

=ϕ1

{
β1 +

β0

∑
i=β1+1

si−β1
0 +

∞

∑
i=β0+1

sβ0−β1
0 si−β0

1

}

=ϕ1

{
β1 +

s0 − sβ1−β0
0

1− s0
+ sβ1−β0

0
s1

1− s1

}
=1, (A22)

where the expression of ϕ1 is obtained.
The average cost of a Markov chain is given by

Cmc = ∑
x∈S

ϕ(x)C(x, π∗(x)). (A23)

Substituting (24) into (A23), we have

Cmc(β0, β1)

=
∞

∑
i=1

i
1

∑
j=0

ϕ(i, j) +
∞

∑
i=β0

ωCe ϕ(i, 0) +
∞

∑
i=β1

ωCe ϕ(i, 1).

Furthermore, the first term is given by

∞

∑
i=1

i
1

∑
j=0

ϕ(i, j)

=
β1

∑
i=1

iϕi +
β0

∑
i=β1+1

isi−β1
0 + sβ0−β1

0

∞

∑
i=β0+1

isi−β0
1

=
ϕ1β1(β1 + 1)

2
+ ϕ1 A + ϕ1B, (A24)

where

A =
s0((β1 + 1)− β0sβ0−β1

0 )

1− s0
+

s3
0 − sβ0−β1+1

0
(1− s0)2 , (A25)
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and

B =
(β0 + 1)s1

1− s1
+

s3
1

1− s1
. (A26)

Furthermore, the sum of last two terms is given by

∞

∑
i=β0

ωCe ϕ(i, 0) +
∞

∑
i=β1

ωCe ϕ(i, 1)

=ϕ1ωCe

(
sβ0−β1

0

∞

∑
i=β0

si−β0
1 + p1

β0−1

∑
i=β1

si−β1
0

)

=ϕ1ωCe

(
sβ0−β1

0
1

1− s1
+ p1

1− sβ0−β1
0

1− s0

)
. (A27)

This completes the proof.
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