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Abstract: Short-packet transmission has attracted considerable attention due to its potential to
achieve ultralow latency in automated driving, telesurgery, the Industrial Internet of Things (IIoT),
and other applications emerging in the coming era of the Six-Generation (6G) wireless networks.
In 6G systems, a paradigm-shifting infrastructure is anticipated to provide seamless coverage by
integrating low-Earth orbit (LEO) satellite networks, which enable long-distance wireless relaying.
However, how to efficiently transmit short packets over a sizeable spatial scale remains open. In this
paper, we are interested in low-latency short-packet transmissions between two distant nodes, in
which neither propagation delay, nor propagation loss can be ignored. Decode-and-forward (DF)
relays can be deployed to regenerate packets reliably during their delivery over a long distance,
thereby reducing the signal-to-noise ratio (SNR) loss. However, they also cause decoding delay in
each hop, the sum of which may become large and cannot be ignored given the stringent latency
constraints. This paper presents an optimal relay deployment to minimize the error probability while
meeting both the latency and transmission power constraints. Based on an asymptotic analysis, a
theoretical performance bound for distant short-packet transmission is also characterized by the
optimal distance–latency–reliability tradeoff, which is expected to provide insights into designing
integrated LEO satellite communications in 6G.

Keywords: 6G; short-packet transmission; URLLC; finite-blocklength coding; large spatial scale;
relaying; propagation delay; end-to-end delay; decoding delay; asymptotic analysis

1. Introduction

5G wireless communication systems and a series of perspectives on conceptualized
6G systems have emerged as powerful platforms for multiple use cases such as aug-
mented/virtual reality (AR/VR), teleoperated surgery, and automatic driving [1,2]. An
enhanced ultrareliable and low-latency communication (URLLC) has been proposed to
support more stringent requirements on reliability and latency to meet the demands of
those services. Specifically, the envisioned 6G wireless network may require URLLC based
on a 10−10 packet loss probability and an over-the-air latency on the order of 0.1 ms [3,4].

With latency at a submillisecond level, short-packet transmissions are necessary [5].
Therefore, we should consider finite-blocklength channel coding to ensure reliability in
URLLC. For the finite-blocklength (FBL) regime, the authors of [6] formulated the maximal
coding rate of FBC over additive white Gaussian noise (AWGN) channels. The coding
rate analysis has been extended to other practical scenarios, e.g., multiple-antenna fading
channels [7], multiple-antenna Rayleigh-fading channels [8], block-fading channels [9], and
hybrid automatic repeat request (HARQ) [10]. Latency is not only due to the physical layer
transmission discussed in the literature above, but is also caused by the queuing of data
packets in the network layer [11]. With a cross-layer design of variable-length coding for
a single link, we have also achieved extremely low-latency communications in [12]. The
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cross-layer design for URLLC was also discussed in [13,14]. The author of [13] minimized
the power consumption with a reliability constraint by adopting a packet-dropping policy.
In [14], the violation probabilities of the maximal delay and peak-age of information were
given for URLLC.

Nonterrestrial communications are also at the forefront of 6G technology research [15],
in order to provide three-dimensional (3D) coverage by complementing on-the-ground
infrastructures with aerial platforms, including satellites. For large-scale communication
systems, the signal-to-noise ratio, which decays rapidly with distance, is a crucial factor
that affects system performance. For this reason, relaying is essential to gain higher
reliability. Relay communication began to attract researchers’ attention from the classical
work of [16]. Various relaying schemes, including fixed relaying, selection relaying, and
incremental relaying, were first discussed by Laneman, Tse, and Wornell in [17]. Different
cooperative schemes between the direct link and the relay link were discussed under both
amplify-and-forward (AF) or decode-and-forward (DF) modes in [18]. In [19], we extended
the decode-and-cancel protocol proposed in our previous work [20] to cancel inter-relay
interference (IRI) in the scheme CAO-SIR. In CAO-SIR, we achieved an equivalent parallel
relay model for DF-based successive relaying since the interference is entirely canceled by
delicately adjusting the transmission order of relay nodes.

Recently, researchers have also investigated relaying under the finite-blocklength
regime (FBL). The authors in [21] derived closed-form expressions for the coding rates
of relay communications under the Nakagami-m fading channel in the finite-blocklength
regime. In [22], the researchers studied the relaying throughput performance of the qua-
sistatic Rayleigh channels under the finite-blocklength regime, optimized the optimal
distance and blocklength for URLLC, and compared that to the infinite-blocklength regime
(IBL). However, relaying communications over a long distance suffer from technical diffi-
culties such as the deterioration of the signal-to-noise ratio caused by the long distance,
the increased latency caused by the increased number of relays, and the unclear theoret-
ical upper limit of the optimal delay caused by the speed of light. In [21,22], large-scale
communication was not taken into consideration, and the authors’ model was based on a
fixed resource allocation and relay deployment scheme. Though [23] considered resource
allocation for blocklength and power, this did not include a latency constraint because it
was based on infinite-blocklength coding and a Poisson field of interferers. Thus, achieving
low-latency short-packet communications over a large spatial scale is still an open problem.

In this paper, we focus on long-distance and short-packet communication. We aim to
minimize the overall error probability while limiting the power cost under a time constraint.
We prove the convexity of the overall error probability with respect to the blocklength
and power under a particular condition when the relays are placed equidistantly. We
also find a blocklength power allocating scheme to minimize the error probability, where
more power should be allocated to the relays that have fewer encoded symbols. By scaling
the problem conditions, we simplify the problem and obtain an analytical expression
of the optimal error probability. Thereby, we find that the optimal relaying strategy
is to allocate the blocklength and power equally to each relay. Then, we analyze the
theoretical limits of the optimal solution. The discussion includes two cases, where the
number of relays is fixed and the number of relays is variable. When there is a fixed
number of relays in the communication system, we find that the error probability decreases
superexponentially with the blocklength and the logarithm of the signal-to-noise ratio.
When the number of relays is not fixed, we find there is an optimal number of relays in
the relaying communication system. Therefore, the performance of relay communication
has a theoretical upper limit. Under certain circumstances, no matter how many relays are
added, the performance of the communication system cannot be improved. Based on a
numerical simulation, we solve the optimization problem and compare it to our theoretical
result.

The rest of this paper is organized as follows. Section 2 presents the system model. In
Section 3, we form an optimization problem for the overall error probability in terms of
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the distance, blocklength, and signal-to-noise ratio. Then, we give a theoretical solution
for the optimal bit-error rate. In Section 4, we analyze the theoretical asymptotic limit and
approximate results of the optimal solution. In Section 5, we verify the correctness of our
conclusions by a numerical simulation. Finally, conclusions and future suggestions are
provided in Section 6.

2. System Model

We focus on an orbital wireless system with the requirement of extremely low la-
tency, which is demonstrated in Figure 1. The satellites communicate with another planet,
e.g., Mars, via the space station. Each of the satellites is considered as a DF relay. For
simplicity, we only consider the transmission of one packet from the source to destination,
as shown in Figure 2, where a source node R0 transmits a k-bit packet in each transmission
to its destination node RL with the help of L− 1 decode-and-forward (DF) relays, called
R1, R2, . . . , RL−1. The distance between node Rι−1 and Rι is dι. The k-bit packet is encoded
into symbols to be transmitted from R0 to RL. The modulated waveforms of those symbols
are reliably sent by node Rι−1. Node Rι receives and detects it without distortion. We
denote by τ the average time consumed in sending one symbol. As a result, 1

τ is the symbol
rate. Let nι be the number of symbols transferred between node Rι−1 and Rι, nι ∈ N+.

We assume node Rι−1 encodes the k-bit packet into nι symbols. Rι−1 sends a symbol
vector xι to Rι. In particular, xι = (xι1, xι2, · · · , xιnι) and |xι|22 = 1. xιj is the jth symbol. Let
hι denote the channel coefficient between node Rι−1 and Rι. Let gι denote the channel gain,
namely gι = |hι|2. We denote by yι the received symbol vector at node Rι. Specifically,
yι = (yι1, yι2, · · · , yιnι). For 1 ≤ j ≤ nι, yιj can be presented by:

yιj = hιxιj + zι, (1)

where zι is the additive Gaussian white noise. Let dι denote the distance between node
Rι−1 and Rι. The path loss of the transmission from Rι−1 to Rι is normalized as d−α

ι , where
α is the loss exponent. Due to the large scale of our model, the shadow-fading component
can be ignored, and the channel gain is presented as gι = d−α

ι [24]. We assume the signal-
to-noise ratio (SNR) of the signal emitted by Rι−1 is γι. Thus, node Rι receives the signal
with the SNR equal to γιd−α and sends it to the next node Rι+1 with the SNR equal to γι+1
if Rι detects no error.

We then present the overall reliability from the source to the destination. To achieve
extremely low latency and ultrareliability, a finite-blocklength coding scheme is adopted.
For the real AWGN channel, a tight bound on the coding rate was given by [6]. Let ει

denote the error probability from node Rι−1 to Rι. Since Rι−1 transmits k bits on nι symbols,
the coding rate is k

nι
. Using the normal approximation in this paper, we have the formula

for the channel coding rate in the transmission from Rι−1 and Rι, i.e.,

k
nι

= Cι −

√
Vι

nι
Q−1(ει), (2)

in which Q(x) =
∫ ∞

x
1√
2π

exp(− t2

2 )dt is the Gaussian Q-function. Q−1 is the inverse
function of Q(x). We denote by Cι and Vι the channel capacity and the channel diversity,
respectively. Under our configuration, the channel capacity is represented by:

Cι = log(1 + γιd−α
ι ). (3)

The channel dispersion is represented by:

Vι =
(γιd−α

ι + 1)2

γιd−α
ι (γιd−α

ι + 2)
log2 e. (4)
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Figure 1. An orbital relaying system.
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Figure 2. System model: a communication system with L− 1 relays.

Substituting Equation (3) into Equation (2), we present the error probability ει:

ει = Q

((
ln(1 + γιd−α

ι )− k ln 2
nι

)
nι

Vι

)
. (5)
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We assume all relay nodes and the destination node can decode the data packets and
detect the error reliably. The relay nodes will forward the messages if and only if no error
occurs. As a result, the overall error probability is given by:

ε = 1−
L

∏
ι=1

(1− ει)

≈
L

∑
ι=1

ει, .

(6)

The first-order approximation in Equation (6) gives us a reliable result when ει ≈ 0.
Then, we focus on the overall latency from the source to the destination. Since the

data packet is transmitted serially, the overall latency T is the sum of the latency from Rι−1
to Rι, named tι.

T =
L

∑
ι=1

tι. (7)

In the URLLC communication without retransmission, the physical layer latency can
be divided into the following components [11]:

tι = tc
ι + tp

ι + td
ι , (8)

where tc
ι is the time consumed by channel coding, tp

ι is the time consumed by electronic
wave propagation, and td

ι is the time consumed by decoding messages. Thus, we have:

td
ι = nιτ. (9)

The propagation delay tp
ι is caused by the signal travel time with the speed of light c,

which is presented by:

tp
ι =

dι

c
. (10)

We assume that each relay is equipped with a strong calculation force so that the time
consumed by encoding messages is negligible for td

ι and tp
ι . Thus, the time to transfer for

the data packet from Rι−1 to Rι is:

tι = nιτ +
dι

c
. (11)

To meet the latency constraint, the overall delay ∑L
i=1 tι is no greater than a constant

Tth, which gives:
L

∑
ι=1

nιτ +
L

∑
ι=1

dι

c
≤ Tth. (12)

Tth represents the maximal tolerable latency from the source to the destination. Since
d1, d2, · · · , dL are constants when the positions of the relays are fixed, Equation (12) can be
simplified as:

L

∑
ι=1

nι ≤ Nth(Tth), (13)

where Nth(Tth) is a linear function of Tth, i.e., Nth(Tth) =
Tth−∑L

ι=1 dι

τ . By this means,
we rewrite the latency constraint in Equation (12) as Equation (13), which is given as a
constraint on the overall blocklength.



Entropy 2021, 23, 916 6 of 21

We consider an overall energy constraint assumption. The energy to transmit the
packet from Rι−1 to Rι equals nιτγιN0, for 1 ≤ ι ≤ L. N0 denotes the single-side noise
density. Since τ and N0 are constants, we have the normalized energy constraint:

L

∑
ι=1

nιγι ≤ Eth, (14)

where Eth is the overall normalized energy of all source nodes and relay nodes.
The error probability ει is a function of blocklength nι and signal-to-noise ratio γι, as

shown in Equation (5).
We next minimize the error probability ε subject to the energy and latency constraints.

3. Optimal Relay Deployment and Resource Allocation

In this section, we formulate the optimal tradeoff among the latency, normalized
energy, and error probability. For this purpose, we first present the overall error probability
in terms of the blocklength nι and signal-to-noise ratio γι of each node Rι. Then, the
optimization problem is formulated to minimize the error probability with constraints on
the overall blocklength and normalized energy.

3.1. Problem Formulation

We let Q(Y(γι, dι, nι)) be the error probability of the link from Rι−1 to Rι. Y is given by:

Y(γ, d, n) =
(

ln
(
1 + γd−α

)
− k ln 2

n

)√
n(γd−α + 1)2

γd−α(γd−α + 2)
. (15)

We denote by D the summation of dι. Then, ∑L
ι=1 dι = D. In Section 2, we have the

latency (blocklength) constraint in Equation (13) and the energy constraint in Equation (14).
From the previous discussion, we establish the optimization problem (16) to minimize the
error probability by allocating blocklength and power to each relay:

min
γι ,dι ,nι

ε =
L

∑
ι=1

Q(Y(γι, dι, nι)) (16a)

s.t.
L

∑
ι=1

nιγι ≤ Eth, (16b)

L

∑
ι=1

dι = D, (16c)

L

∑
ι=1

nι ≤ Nth, (16d)

γι ≥ 0, (16e)

nι ∈ N+. (16f)

The optimization problem (16) is subject to the relay placement in Equation (16c) and
the finite-blocklength coding in Equations (16b) and (16d). We consider a case where the
blocklength of a finite-blocklength code tends to infinity, i.e., Nth → ∞. As the overall
blocklength Nth increases, the effect of finite-blocklength coding is no longer apparent.
There is no loss of generality in assuming the same coding process for each relay. Therefore,
in this case, a uniform distribution of relays minimizes the error probability. Thus, when
we consider the general FBC case, unless otherwise stated, we assume that the relays are
deployed equidistantly. We then only consider resource allocation in the finite-blocklength
coding. Furthermore, this deployment strategy can also be verified as the optimal one in
the simulation results in Section 6.
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Then, we simplify Problem (16) under the assumption that relays are placed equidis-
tantly. The error probability ε given by (16a) is a decreasing function of nι and γι. Thus, we
can certainly rewrite the inequations in Equations (16b) and (16d) as equations. Moreover,
we expand the domain of nι to real numbers in the interval [1, ∞) to avoid the complex
integer programming.

In the case where relays are placed equidistantly, we denote by Q(G(γ, n)) the error
probability to transfer k bits from Rι−1 to Rι, where:

G(γ, n) =
(

ln(1 + γ)− k ln 2
n

)√
n(γ + 1)2

γ(γ + 2)
. (17)

With the discussion above, we have the optimization problem (18).

min
γι ,nι

ε =
L

∑
ι=1

Q(G(γι, nι)) (18a)

s.t.
L

∑
ι=1

nιγι ≤ Eth, (18b)

L

∑
ι=1

nι ≤ Nth, (18c)

γι ≥ 0, (18d)

nι ≥ 1, (18e)

The γι in Problem (18) denotes the received SNR with a path loss of d−α from γι in
Problem (16). This is the same situation for the constant Eth.

3.2. Properties of the Optimal Resource Allocation

Problem (18) is challenging due to its nonlinear constraint Equation (18b). Therefore,
we relax the problem’s constraints. In particular, we present the following theorem.

Theorem 1. If ln(1 + γι)− k ln 2
nι

> max
{

1
k ln 2 , 1

nι

}
, the ε in Problem (18) achieves its minimum

when all the γι are greater than a constant γ0 and the sequence nι and γι is in reverse order, i.e., for
any ni ≥ nj, we have γi ≤ γj.

Proof of Theorem 1. We use the notation ϕ(γ, n) to denote Q(G(γ, n)). For any n and any
γ1, γ2 satisfying the constraints of Problem (18) and γ1 > γ2, let χ(n) = ϕ(n, γ2)− ϕ(n, γ1).
We first prove that χ(n) is a decreasing function in its domain. We present the derivative of
the function χ(n) as:

χ
′
(n) =

1√
2π

(
− exp

(
−
G2

2
2

)
∂G2

∂n
+ exp

(
−
G2

1
2

)
∂G1

∂n

)
. (19)

We next show χ
′
(n) < 0, which is equivalent to the following inequation by substitut-

ing G ′n and G ′γ in Appendix A.

exp

(
G2

2 − G2
1

2

)
<

ln(1 + γ2) +
k ln 2

n

ln(1 + γ1) +
k ln 2

n

γ2 + 1
γ1 + 1

√
γ1

γ2

γ1 + 2
γ2 + 2

. (20)

Because γ1 > γ2, we derive Equation (21) and Equation (22).

ln(1 + γ2)

ln(1 + γ1)
<

ln(1 + γ2) +
k ln 2

n

ln(1 + γ1) +
k ln 2

n
, (21)
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γ2 + 1
γ1 + 1

√
γ1

γ2

γ1 + 2
γ2 + 2

> 1. (22)

To prove Equation (20), we let ζ(γ) = exp
(
− G

2(γ,n)
2

)
ln(1 + γ). By calculating its

derivative, we obtain:

ζ
′
(γ) = exp

(
−G

2

2

)( 1
1 + γ

− GG ′γ ln(1 + γ)
)

. (23)

Because ln(1 + γ)− k ln 2
n > 1

n , we have:

GG ′γ ln(1 + γ) >

(
ln(1 + γ)− k ln 2

n

)
n
(
(γ + 1)2

γ(γ + 2)

) 1
2 ln(1 + γ)√

γ(γ + 2)

>
γ + 1

γ(γ + 2)
ln(1 + γ)

>
1

γ + 1
.

(24)

The last step holds when γ > γ0, where γ0 is the solution of the function ln(1 + γ) =
γ(γ+2)
(γ+1)2 and γ0 ≈ 1.22.

Now, we proved that ζ(γ) decreases when γ > γ0. Thus, ζ(γ1) < ζ(γ2), which leads
to:

exp

(
G2

2 − G2
1

2

)
<

ln(1 + γ2)

ln(1 + γ1)
. (25)

Combining Equations (21), (22), and (25), we can assert that Equation (20) holds, which
gives us χ

′
(n) < 0. Now, let n1 > n2. We have χ(n1) < χ(n2), i.e.,

ϕ(n1, γ2) + ϕ(n2, γ1) < ϕ(n1, γ1) + ϕ(n1, γ1), (26)

in which γ1 > γ2. According to Equation (26), it is sufficient to show that when nι and γι

are in reverse order, the error probability is smaller, which completes the proof.

We consider the condition ln(1 + γι)− k ln 2
nι

> max
{

1
k ln 2 , 1

nι

}
in Theorem 1 to ensure

the error probability is within a reasonable range. Noticing Equation (6) holds when ει ≈ 0,
we force channel capacity Cι to be relatively larger than the coding rate k

nι
. If Cι − k

nι
≈ 0,

we obtain ει ≈ 0.5 from Equation (5). For those ει being rather large, we can simply
remove relay Rι, which does not affect the overall error probability. (Thus, we consider the
condition ln(1 + γι)− k ln 2

nι
> max

{
1

k ln 2 , 1
nι

}
in the rest of the paper.)

By this means, we further shed some light on allocating the blocklength and power to
the relays in Theorem 1. When the overall error probability is minimized, the blocklength
allocated to a relay should be a decreasing function of its transmission power. According
to Theorem 1, we present the following corollary.
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Corollary 1. Problem (18) is equivalent to the following optimization problem:

min
γι ,nι

ε =
L

∑
ι=1

Q(G(γι, nι)) (27a)

s.t.
L

∑
ι=1

nιγι = Eth, (27b)

L

∑
ι=1

nι = Nth, (27c)

n1 ≥ n2 ≥ · · · ≥ nL ≥ 1, (27d)

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γL. (27e)

Proof of Corollary 1. We start the proof by observing that each pair (nι, γι) is independent
in Problem (18) of the others. If we exchange the subscript of (ni, γi) and (nj, γj) for
i 6= j, the objective ε does not change. Thus, we can assume n1 ≥ n2 ≥ · · · ≥ nL.
Then, from Theorem 1, we know that Problem (18) achieves the minimum value when
γ1 ≤ γ2 ≤ · · · ≤ γL.

We denote by ε∗1 and ε∗2 the optimal value of Problem (18) and Problem (27), re-
spectively. Because the domain of Problem (27) is a part of the domain of Problem (18),
ε∗1 ≤ ε∗2 . Moreover, ε∗1 is achieved when γ1 ≤ γ2 ≤ · · · ≤ γL from Theorem 1, which
satisfies (27d) and (27e). Therefore, the optimal solution of Problem (18) falls into the
domain of Problem (27). This gives ε∗2 ≤ ε∗1 . Thus, ε∗1 = ε∗2 , which completes the proof.

3.3. An Approximate, but Analytical Solution

Finally, we formulate an optimization problem with the overall SNR and blocklength
constraints. To obtain an analytical solution to the optimal error probability, we first
handle the nonlinear constraint in Equation (27b) by approximation. Then, we add a few
conditions to simplify the proof.

We present the following lemma to approximate the overall power in Equation (29).

Lemma 1 (Rearrangement inequality [25]). For L ∈ N+ and two sequences satisfying a1 ≥
a2 ≥ · · · aL and b1 ≥ b2 ≥ · · · bL,

L

∑
ι=1

aιbL+1−ι ≤
1
L

(
L

∑
ι=1

aι

)(
L

∑
ι=1

bι

)
≤

L

∑
ι=1

aιbι. (28)

Equations (27b) and (27c) suggest that the sum of γι can not exceed a certain value.
Applying Lemma 1, we present the approximation for the overall SNR (Actually, the
SNR is proportional to the transmission power in our model. Therefore, we also consider
Equation (28) as the power constraint in the following text.) in Equation (29).

L

∑
ι=1

γι ≈
LEth

Nth . (29)

Thus, we estimate the overall power by Equation (29). Finally, we obtain the optimiza-
tion problem (30).
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min
γι ,nι

ε =
L

∑
ι=1

Q(G(γι, nι)) (30a)

s.t.
L

∑
ι=1

γι =
LEth

Nth , (30b)

L

∑
ι=1

nι = Nth, (30c)

max
{

1
k ln 2

,
1
nι

}
< ln(1 + γι)−

k ln 2
nι

, (30d)

n1 ≥ n2 ≥ · · · ≥ nL ≥ 0, (30e)

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γL. (30f)

In order to solve Problem (30), we have Theorem 2 for the convexity of Q(G(γ, n)).

Theorem 2. The function Q(G(γ, n)) is a binary convex function for the pair (γ, n) in the domain
of Problem (30).

Proof of Theorem 2. For a function f (x, y), we use the abbreviations f
′
x = ∂ f

∂x , f
′
y = ∂ f

∂y ,

f
′′
xy = ∂2 f

∂x∂y , f
′′
x = ∂2 f

∂x2 , and f
′′
y = ∂2 f

∂y2 .
We focus on the Hessian matrix of the function H = Q(G(γ, n)), which is given by

∇2H =

[
H′′γ H′′γn
H′′nγ H′′n

]
. The main idea of the proof is to show that the Hessian matrix is

positive definite. Actually, we calculate the partial derivatives ofH as follows:

H′′n = (G(G ′n)2 − G ′′n) exp
(
−G

2

2

)
. (31)

Similarly, we obtain:

H′′γ = (G(G ′γ)2 − G ′′γ) exp
(
−G

2

2

)
, (32)

and:

H′′nγ = H′′γn = (GG ′nG
′
γ − G

′′
nγ) exp

(
−G

2

2

)
. (33)

From Appendix A, we have G ′′n < 0 and G ′′γ < 0. Substituting the negative condition
property into Equation (32), we have:

H′′γ =
(
(G ′γ)2G − G ′′γ

)
exp

(
−G

2

2

)
> (G ′γ)2G exp

(
−G

2

2

)
> 0.

(34)

Similarly,H′′n > 0.
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To deal with the cross partial derivativeH′′nγ, we calculate the factor in the first round
brackets in Equation (33) as:

GG ′nG
′
γ − G

′′
nγ =n−

1
2 [γ(γ + 2)]−

3
2

{[
γ(γ + 2)−

(
ln(1 + γ)− k ln 2

n
)

2

]
×

[
n
(

ln(1 + γ)− k ln 2
n

)(
ln(1 + γ) +

k ln 2
n

)
− 1
]
− k ln 2

n

}
.

(35)

Since ln(1 + γ) > k ln 2
n , we have:(

n
(

ln(1 + γ)− k ln 2
n
)(

ln(1 + γ) +
k ln 2

n
)
− 1
)
>
(

2n
(

ln(1 + γ)− k ln 2
n
) k ln 2

n
− 1
)

= 2k ln 2
(

ln(1 + γ)− k ln 2
n
)
− 1

> 1,
(36)

which applies the condition of (30d). Thus,

GG ′nG
′
γ − G

′′
nγ >n−

1
2
[
γ(γ + 2)

]− 3
2

[
γ(γ + 2)− ln(1 + γ)− k ln 2

n
2

]

>n−
1
2
(
γ(γ + 2)

)− 3
2

[
γ(γ + 2)− 2 ln(1 + γ)

2

]
>0.

(37)

Since GG ′nG
′
γ − G

′′
nγ > 0 and G ′′nγ < 0, from Appendix A, we obtain:

H′′nγH
′′
γn = (GG ′nG

′
γ − G

′′
nγ)

2 exp
(
−G2

)
< (GG ′nG

′
γ)

2 exp
(
−G2

)
< H′′nH

′′
γ.

(38)

This yields that ∇2H is positive definite. The proof is complete.

Theorem 2 proves the convexity of the objective function mathematically. Furthermore,
we have the optimal solution of Problem (30) as follows.

Theorem 3. The optimal solution of Problem (30) is LQ
(
G
(

Eth

Nth , Nth

L

))
, when we set nι =

Nth

L

and γι =
Eth

Nth for each ι = 1, . . . , L.

Proof of Theorem 3. From Theorem 2, we have that Q(G(γ, n)) is a convex function. Ap-
plying Jensen’s inequality, we have:

ε ≥ LQ

(
G
(

∑L
ι=1 γι

L
, ∑L

ι=1 nι

L

))
= LQ

(
G
(

Eth

Nth ,
Nth

L

))
. (39)

The proof is complete.

Theorem 3 states that the system achieves the highest reliability when the transmission
power and blocklength of the relays are the same. Furthermore, we obtain an analytical
expression of the optimal error probability. This relay resource allocation strategy is
intuitively reasonable, corresponding to the equal distance between each successive relay
pair. Finally, from the discussion above, we generate a suboptimal result of the initial
problem.
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4. Asymptotic Performance Analysis for Long-Distance Short-Packet Transmission

In this section, we focus on the solution given by Theorem 3, i.e., ε = LQ
(
G
(

Eth

Nth , Nth

L

))
.

Let γ̄ and n̄ denote Eth

Nth and Nth

L , respectively. To give more insight, we develop an asymp-
totic analysis of the error probability for large n̄ or γ̄.

To start with, we present Theorem 4 to approximate the overall error probability ε

when G
(

Eth

Nth , Nth

L

)
→ ∞.

Theorem 4. If Eth or Nth is large enough, the overall error probability is approximated by:

ε ≈

L
3
2

√
Eth

Nth (
Eth

Nth + 2) exp

−Nth
(

ln
(

1+ Eth

Nth

)
− Lk ln 2

Nth

)2(
1+ Eth

Nth

)2

2L Eth

Nth

(
Eth

Nth +2
)


√

2πNth
(

ln
(

1 + Eth

Nth

)
− Lk ln 2

Nth

)(
1 + Eth

Nth

) . (40)

Proof. We notice that for any x > 0, the following inequation holds:

x
1 + x2 exp

(
− x2

2

)
<
∫ +∞

x
exp

(
−u2

2

)
du <

1
x

exp
(
− x2

2

)
. (41)

Substitute x = G
(

Eth

Nth , Nth

L

)
into Equation (41), and the proof is completed.

From Theorem 4, we also express ε with γ̄ and n̄ as:

ε ≈
L
√

γ̄(γ̄ + 2) exp
(
− n̄(ln(1+γ̄)− k ln 2

n̄ )
2
(1+γ̄)2

2γ̄(γ̄+2)

)
√

2πn̄
(

ln(1 + γ̄)− k ln 2
n̄

)
(1 + γ̄)

, (42)

in which we recall that n̄ = Nth

L and γ̄ = Eth

Nth .

4.1. Asymptotic Analysis with a Fixed Number of Relays

In this part, we assume that the number of relays is fixed as a constant L. When n̄ or γ̄

is large, we have (ln(1 + γ̄)− k ln 2
n ) ≈ (ln(1 + γ̄) and (1+γ̄)2

γ̄(γ̄+1) ≈ 1. Thus, we approximate ε

in Equation (43) by applying Theorem 4.

ε ≈
L exp

(
− n̄ ln2(1+γ̄)

2

)
√

2πn̄ ln(1 + γ̄)
. (43)

For a large n̄, we present ε as a function of n̄, i.e.,

ε ≈ µ1 exp(−θ1n)√
n

, (44)

where µ1 = L√
2π ln(1+γ̄)

and θ1 = − ln2(1+γ̄)
2 . In this case, as:

n̄ =
Nth

L

=
T − D

c
Lτ

→ ∞,

(45)
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the whole problem degenerates into an infinite-blocklength problem. The well-known
Shannon formula can be applied to assure ε → 0 with a given data rate. Moreover,
from (44), we can see that ε decreases nearly exponentially with n.

For a large γ̄, we present ε as a function of γ̄, i.e.,

ε ≈ µ2γ̄−θ2 ln(γ̄)

ln(γ̄)
, (46)

where µ2 = L√
2πn̄

and θ2 = − n̄
2 . From Equation (46), we can see that ε decreases nearly

exponentially with log(γ̄), which is an infinitesimal of higher order compared to any
fractional polynomials, but a low-order infinitesimal compared to exp(−γ̄).

4.2. Analysis of Relay Gains

In this part, we express error probability ε as a function of the number of relays L.
In this case, the maximal normalized energy Eth and the overall blocklength Nth are a
function of L. For instance, in practice, a longer distance means a more severe path loss,
and in those cases, we should allocate more energy. We denote by Eth(L) the maximal
normalized energy and by Nth(L) the overall blocklength, respectively. Certain types of
Eth(L) and Nth(L) are now discussed. Define E = Eth(1) and N = Nth(1). We still use the
same assumption in the last part to approximate ε.

First, we let Nth(L) = N and Eth(L) = E. The constraints do not change regardless
of the number of relays. From Equation (40), we express ε in terms of the number of
relays L, i.e.,

ε ≈ µ3L
3
2 exp

(
− θ3

L

)
, (47)

where µ3 = 1√
2πN ln(1+ E

N )
and θ3 =

N ln(1+ E
N )

2 .

From Equation (47), the error probability increases with L. This is because both
communication resources, i.e., the blocklength and transmission power, are fixed. The
resources allocated to each relay decreases with L. Thus, the error probability of each hop
increases with L.

Next, we let Eth(L) increase linearly with L, i.e., Eth(L) = LE. Moreover, we let
Nth(L) = N be a fixed value. Under this assumption, we have:

ε ≈
L

3
2 exp

(
−N

ln2(1+ LE
N )

2L

)
√

2πN ln(1 + LE
N )

. (48)

We denote by ε = F (L) the function of ε and L in Equation (48). By solving F ′(L) = 0,
there is a local minimum point L0. (Actually, L0 may not be an integer. However, we do
not use this fact in any essential way.) F (L) ≥ F (L0) holds for all L. Thus, there are an
optimal number of relays L = L0 to minimize the error probability ε. When the number
of relays L increases substantially, the error probability goes to infinity because there is a
limited blocklength to be allocated. The discussion enlightens us that there is an optimal
number of relays to choose in practice.

Then, we let Eth(L) = LE and Nth(L) = LN. In this case, we assume that the maximal
tolerable latency is proportional to L. It is a practical scenario when the total distance
increases linearly with L. Under this consumption, we have Equation (49), i.e.,

ε ≈
L exp

(
−N

ln2(1+ E
N )

2

)
√

2πN ln(1 + E
N )

, (49)

In this case, ε increases linearly with L.
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Last but not least, we let Eth(L) = LαE and Nth(L) = N. In this case, we increase the
number of relays in a fixed total distance D from the source to the destination. The distance
between each node is given by D

L . Thus, the received SNR of each relay is proportional to
Lα, i.e., Eth(L) = LαE. The error probability is given by:

ε ≈
L

3
2 exp

(
−N ln2(1+ LαE

N )
2L

)
√

2πN ln(1 + LαE
N )

. (50)

In Equation (50), there is also an optimal L to minimize ε.
To summarize, we investigate four cases in this part as L changes in Equations (47)–(50).

More generally, we let Eth(L), Nth(L) be any function of L. We have Equation (51) for the
general case.

ε ≈

L
3
2

√
Eth(L)
Nth(L)

(
Eth(L)
Nth(L) + 2

)
exp

−Nth(L)
(

ln
(

1+ Eth(L)
Nth(L)

)
− Lk ln 2

Nth(L)

)2(
1+ Eth(L)

Nth(L)

)2

2L Eth(L)
Nth(L)

(
Eth(L)
Nth(L)

+2
)


√

2πNth(L)
(

ln
(

1 + Eth(L)
Nth(L)

)
− Lk ln 2

Nth(L)

)(
1 + Eth(L)

Nth(L)

) . (51)

4.3. The Blocklength–Power Tradeoff

In this part, we determine the blocklength and power tradeoff with a given maximal
error probability εmax.

Applying Theorem 3 and (γ̄+1)2

γ̄(γ̄+2) ≈ 1, we have:

Q−1
(

εmax

L

)
≈
√

n̄
(

ln(1 + γ̄)− k ln 2
n̄

)
. (52)

When the number of relays L is fixed, we can see that the average blocklength n̄ should
decrease with the average transmission power γ̄. This result corresponds to the resource
allocation property in Theorem 1.

When the number of relays L is not fixed, we can substitute the functions Eth(L) and
Nth(L) into Equation (52). For example, since:

γ̄ =
Eth(L)
Nth(L)

=
Eth(L)

Ln̄
,

(53)

we have:

Q−1
(

εmax

L

)
≈
√

n̄

(
ln

(
1 +

Eth(L)
Ln̄

)
− k ln 2

n̄

)
. (54)

Similarly, we have:

Q−1
(

εmax

L

)
≈

√
Eth(L)

Lγ̄

(
ln(1 + γ̄)− Lkγ̄ ln 2

Eth(L)

)
. (55)

Equations (54) and (55) indicate a tradeoff between n̄ and γ̄. Other types of Eth(L) and
Nth(L) are also applicable. However, this topic exceeds the scope of this paper.

More importantly, it is worth pointing out that Equation (52) reveals whether a
transmission is possible by increasing the number of relays with the given error probability,
overall energy, and latency requirements.
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5. Simulation Results

In this section, numerical and simulation results are presented to validate the theoreti-
cal analysis and demonstrate the advantages of our work.

First, Figures 3 and 4 present the error probability with respect to the overall block-
length and the overall energy, respectively. The two curves are drawn for the loss exponent
α = 2 and α = 2.2. We consider the transmission of a one-hundred-bit data packet with
the help of two relays, i.e., L = 3. The distance from the source to the destination is D = 6.
The normalized unit distance is d0 = 1. In Figure 3, the overall normalized energy Eth is
set as 4200 and the overall blocklength Nth ranges from 200 to 500. In Figure 4, the overall
blocklength Nth is set as 450 and the overall normalized energy Eth ranges from 2400 to
4800. In the subfigure of Figure 3, the relative error is less than 10−5, which is mainly caused
by the rounding function of n̄ = [Nth

L ]. In Figure 4, the relative error is less than 10−4,
which is mainly caused by the approximation of ε in Equation (6). It is easy to see that the
theoretical results obtained via Theorem 3 match well with their corresponding simulation
results. Furthermore, we can see that a larger α leads to a higher error probability.

Next, we present the numerical result of the optimal solution in Figures 5 and 6. The
number of relays was set as L = 5. Figure 5 presents the overall blocklength versus the
error probability curves for three average transmission powers, namely γ̄ = 1.5, γ̄ = 2, and
γ̄ = 2.5. Figure 6 presents the overall normalized energy versus error probability curves
for three average blocklengths, namely n̄ = 60, n̄ = 80, and n̄ = 100.

In Figure 7, we present the optimal ε curves with respect to the number of relays L
when different kinds of Eth(L) and Nth(L) are given. In most cases, the error probability
increases with the number of relays L. However, under the circumstance where Eth(L) =
L2E, Nth(L) = N, we have an optimal L = 2.

Finally, Figure 8 presents the optimal distance–latency–reliability tradeoff. The pa-
rameters were set as follows: the number of relays L = 3, the overall normalized energy
Eth = 4150, and the symbol duration τ = 2× 10−4.

We chose the total distance D ∈ [300 km,600 km]. The normalized distance was uni-
tized by a factor cτ, where c is the speed of light. Figure 8a shows the reliability with respect
to the distance and latency. Figure 8b–d presents the projection of the surface when the
distance, latency, or reliability is fixed. Specifically, Figure 8b shows the reliability–latency
tradeoff when the total distance is fixed as 360 km. Figure 8c presents the reliability–
distance tradeoff when the latency is set as a constant of 10.14 ms. Figure 8d shows the
latency–distance tradeoff when the error probability is 1× 10−12.
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Figure 3. The numerical result of the optimal error probability–blocklength curve.
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Figure 4. The numerical result of the optimal error probability–energy curve.

From the simulation results, we can draw some conclusions about the advantages of
our model as follows. First, we consider both propagation delay and decoding delay. Our
model was established to assess the performance of large-scale low-latency communication
systems, which has not been included in any other previous works. We obtained a low-
complexity solution for the error probability by giving an analytical solution of the relaxed
problem. Furthermore, we attained the best resource allocation policy. Last but not least,
we determined the theoretical limit of our model, under the condition of whether the
number of relays is fixed or not. In particular, our result determines the minimum error
probability of relaying communication given the latency, power allocation scheme, and the
relay nodes’ positions.

400 450 500 550 600 650 700
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 5. The overall blocklength versus error probability curves.
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Figure 6. The overall normalized energy versus error probability curves.
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Figure 7. The optimal ε curves w.r.t the number of relays L.
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Figure 8. The optimal distance–latency–reliability tradeoff.

6. Conclusions

In this paper, we studied the optimal policies and performance bounds for low-latency
short-packet transmission over a large spatial scale, in which both the propagation loss of
the SNR and the propagation delay should be taken into consideration. Although DF relays
can be deployed to regenerate packets reliably and mitigate their SNR loss due to propaga-
tion, they induce a severe decoding delay. To address these issues, we optimized the relay
deployment, power allocation, and blocklength for each relay. Moreover, we investigated
the performance limits of the distant transmission of short packets via asymptotic analysis.
Given the overall transmission power, we found the optimal distance–latency–reliability
tradeoff. Our results may provide some engineering insights into the design of integrated
LEO satellite communications in 6G. Important future work includes the study of amplify-
and-forward short-packet relaying, multi-user short-packet transmission, and two-way
short-packet relaying over a large spatial scale. Furthermore, we will consider the situation
where the relay nodes are not at fixed positions. We will investigate whether it is possible
to allocate the resources in real time based on the positions of the nodes.
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Appendix A. Derivatives of Function G
The partial derivatives of G(n, γ) are listed in this Appendix. Furthermore, we prove

whether each of them is positive or negative.
The partial derivative of G w.r.t. n is:

G ′n =

√
(γ + 1)2

γ(γ + 2)

(
k ln 2

2n
3
2

+
ln(1 + γ)

2n
1
2

)
> 0,

(A1)

and the partial derivative of G w.r.t. γ is:

G ′γ =
√

n
[
γ(γ + 2)

]− 3
2

[
γ(γ + 2)−

(
ln(1 + γ)− k ln 2

n

)]
> 0.

(A2)

This is because γ(γ + 2)−
(

ln(1 + γ)− k ln 2
n

)
> γ− ln(1 + γ) > 0.

The second-order partial derivative of G w.r.t. n is given by:

G ′′n = −

√
(γ + 1)2

γ(γ + 2)

(
3k ln 2

4n
5
2

+
ln(1 + γ)

4n
3
2

)
< 0.

(A3)

The second-order partial derivative of G w.r.t. γ is given by:

G ′′γ =−
√

n
[
γ(γ + 2)

]− 3
2

[
γ + 1 +

1
γ + 1

−
3
(

ln(1 + γ)− k ln 2
n
)
(γ + 1)

γ(γ + 2)

]

<−
√

n
[
γ(γ + 2)

]− 3
2

[
γ + 1− 3γ(γ + 1)

γ(γ + 2)

]
<0.

(A4)

The first inequation holds because:

γ + 1 +
1

γ + 1
−

3
(

ln(1 + γ)− k ln 2
n

)
(γ + 1)

γ(γ + 2)

> γ + 1 +
1

γ + 1
− 3 ln(1 + γ)(γ + 1)

γ(γ + 2)

> γ + 1 +
1

γ + 1
− 3γ + 1

γ + 2

> γ + 2 +
4

γ + 2
− 4

> 0,

(A5)

which applies the inequality of the arithmetic and geometric means (AM-GM inequality)
in the last step.
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Last but not least, we have:

G ′′nγ = [nγ(γ + 2)]−
3
2

[
nγ(γ + 2)

2
+ k− n ln(1 + γ)− k ln 2

2

]
> [nγ(γ + 2)]−

3
2

[
nγ(γ + 2)

2
− n ln(1 + γ)

2

]
> [nγ(γ + 2)]−

3
2

[
nγ(γ + 2)

2
− nγ

2

]
> 0.

(A6)

In conclusion, we have the expressions of the derivatives of G and proved whether
each of the derivatives is positive or negative.
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