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Abstract: When exposed to a thermal gradient, reaction networks can convert thermal energy
into the chemical selection of states that would be unfavourable at equilibrium. The kinetics of
reaction paths, and thus how fast they dissipate available energy, might be dominant in dictating
the stationary populations of all chemical states out of equilibrium. This phenomenology has been
theoretically explored mainly in the infinite diffusion limit. Here, we show that the regime in
which the diffusion rate is finite, and also slower than some chemical reactions, might bring about
interesting features, such as the maximisation of selection or the switch of the selected state at
stationarity. We introduce a framework, rooted in a time-scale separation analysis, which is able
to capture leading non-equilibrium features using only equilibrium arguments under well-defined
conditions. In particular, it is possible to identify fast-dissipation sub-networks of reactions whose
Boltzmann equilibrium dominates the steady-state of the entire system as a whole. Finally, we
also show that the dissipated heat (and so the entropy production) can be estimated, under some
approximations, through the heat capacity of fast-dissipation sub-networks. This work provides a
tool to develop an intuitive equilibrium-based grasp on complex non-isothermal reaction networks,
which are important paradigms to understand the emergence of complex structures from basic
building blocks.

Keywords: reaction networks; non-equilibrium systems; diffusion

1. Introduction

Any chemical system in non-equilibrium conditions with time-independent transition
rates will eventually reach a non-equilibrium stationary state [1]. This is maintained at
the expenses of a constant energy consumption and manifests into the presence of steady
currents. Predictions stemming from equilibrium arguments about the abundance of
chemical species often dramatically fail when there are external sources of energy [2,3].
Indeed, it has been recently shown that non-equilibrium conditions can trigger stabilisation
effects in molecular and chemical systems [4–7]. Additionally, the fact that in out-of-
equilibrium regimes kinetic aspects are usually as relevant as non-dissipative diffusive
properties has been investigated in recent years [8–10].

Recent works [11,12] have studied the consequences of applying a thermal gradient to
a diffusive chemical system. In particular, they elucidated that non-equilibrium conditions
couple with an underlying kinetic asymmetry in the transition rates, favouring, at station-
arity, a subset of chemical states that are unfavourable at equilibrium [13]. Inspired by the
idea that complex, high-energy states could have been populated at the dawn of life in non-
equilibrium conditions, they refer to this asymmetry in the steady occupation probability of
chemical states as selection. Its strength between any two pair of states can be quantified by
the unbalance of their steady probabilities. Moreover, this emergent phenomenon is associ-
ated with specific features of the stationary energy dissipation into the environment [14].
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In a nutshell, non-isothermal conditions allow states that dissipate energy faster, i.e., those
participating to the faster reaction pathways and named fast-dissipation states, to be more
populated than states with a slower rate of dissipation, at stationarity.

All the presented results about the non-equilibrium selection of states are valid in
regimes where the Arrhenius law is applicable [1,15]. Here, we consider again this setting,
and the modifications to chemical rates arising from kinetic theory and time-scales analyses
lie beyond the subject of this work [16,17]. However, the major limitation of previous
findings on this topic resides in the ideal assumption of a spatial diffusion much faster than
all other processes in play, even if they are qualitatively valid even outside this limit.

Here, we explore more realistic cases in which the diffusion coefficient between two
thermal reservoirs at different temperatures is finite, and the diffusive time scale is com-
parable to the chemical transition rates [18]. Interestingly, as a function of the diffusion
coefficient, the system may experience sharp transitions between phases with different
selection strengths. We also find that it is possible to achieve higher selection than in the
fast diffusion limit, as well as an inversion in the state that will be selected at stationarity.
This complex picture can be captured by a time-scale separation analysis under some ap-
proximations, and, as a consequence, we find that appropriate local equilibrium predictions
can give precious hints to rephrase and understand these non-equilibrium behaviours.

2. Phase-Transition for Selection in Two-State Systems

In order to fix the ideas, we first consider the simplest case of two chemical species
diffusing between two boxes at different temperatures [11]. P(Xi) is the time-dependent
probability to be in the state X (X = A, B), within the box i (i = 1, 2), where i = 1 indicates
the cold box, while i = 2 refers to the hot box. Hence, P(Xi) satisfies the following
reaction–diffusion equations [1]:

∂tP(Ai) = −kBi Ai P(Ai) + kAi Bi P(Bi) + dA(P(Aj)− P(Ai))

∂tP(Bi) = +kBi Ai P(Ai)− kAi Bi P(Bi) + dB(P(Bj)− P(Bi))
(1)

where i = 1, j = 2 or vice versa; thus, the set {Ai, Bi}i=1,2 identifies all the possible
chemical states of the system in both boxes. Here, dA, dB are the diffusion coefficients
of species A, B, respectively, and kXY indicates the transition rate from state Y to state X.
When representing a thermally activated transition, as in this case, kXY has the following
Arrhenius form [19–22]:

kAi Bi = k0 exp
(
−∆E + ε

Ti

)
kBi Ai = k0 exp

(
− ε

Ti

)
(2)

where Ti is the temperature of box i, ∆E the energy difference between the two chemical
states, ε the energetic barrier, and k0 a constant pre-factor.

It has been observed [23] that when dA 6= dB, thermophoresis [24,25] can occur, and
particles accumulate on one side of the gradient. However, this effect is not detrimental
to the selection of chemical states, and we consider dA = dB = d throughout the whole
manuscript unless stated otherwise. Moreover, here, we consider T1 ≡ Tc < T2 = Tc +
∆T ≡ Tw. The temperature gradient injects energy into the system and triggers the onset
of a non-equilibrium stationary state. Thermal energy is converted into chemical energy, in
the form of an unbalance in state occupancies [11].

In this case, we cannot define a chemical selection, since we have only one low-
energy state, B; hence, no kinetic symmetry breaking is possible under non-equilibrium
conditions [11], since there could not be any kinetic asymmetry [13]. Indeed, to trigger
a selection, the minimal ingredient is the presence of two possible reactions from the
high-energy state, one fast and one slow, towards two different low-energy states. Which
one of these two will be selected at stationarity is dictated by their kinetics, along with
their energies, in out-of-equilibrium conditions [11]. However, in the present case, we
consider as a relevant observable the ratio between the total population of the species B,
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PB = P(B1) + P(B2), and A, PA = P(A1) + P(A2), that is, RBA = PB/PA. From now on,
we use the symbol · to indicate the sum of · in both boxes.

As shown in Figure 1a, when the transport coefficient d is finite, we observe a sharp
transition in the behaviour of RBA around a critical barrier, εd. As d increases, for any given
value of the energetic barrier, RBA decreases. In the limit of fast diffusion, the transition
disappears, hinting at the non-trivial role of finite diffusion in chemical diffusive systems.
In order to have an intuitive estimation of εd, we consider the time scales of the processes
in play. The diffusion is determined by the rate d, while chemical reactions have their own
rates, with the cold box supporting slower reactions. The sharp transition has to occur
when these time scales become comparable. Hence, εd is defined as the barrier satisfying
the following equation:

k0 exp(−εd/Tc) = d → εd = −TC ln
d
k0

(3)

Increase

Average of two Boltzmann
distributions in two boxes

(a)

(b) (c)

Figure 1. (a)RBA = PB/PA as a function of the energetic barrier ε for both finite and infinite diffusion
cases. Small insets are sketches of the reaction network in different conditions, where the thickness
of the arrows reflects the speed of the corresponding reaction. The solutions in these settings are
also reported next to the insets. (b) Sketch of a two-state, two-box reaction network in a temperature
gradient, where the inner circular arrow represents the direction of non-equilibrium stationary flux
J. (c) The theoretical critical point εd scales linearly with d/k0, showing a clear agreement with
numerical estimations, with small deviations only for large values of d.

Naively speaking, the slowest downhill transition, i.e., the one in the cold box that
populates B, is equal to the diffusion of B between boxes, when ε = εd. We will later
generalise this argument on a more firm ground, based on a time-scale separation proce-
dure. Nevertheless, despite handwaving, the estimate of εd is compatible with numerical
simulations (see Figure 1c).

As a function of the energetic barrier, we can identify three different behaviours (see
Figure 1a: (i) When ε < εd, the system is in the fast-dissipation regime. The system will
relax within each box before diffusing so that the steady state, in this limiting case, is given
by the average of two Boltzmann distributions—one at temperature Tc, and the other at
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temperature Tw [1]. This is also the maximum possible value for RBA (see Appendix A);
(ii) the transition regime, in which ε ≈ εd; (iii) the slow-dissipation regime, when ε >
εd. In this case, all reactions in the cold box are much slower than diffusion and do
not contribute to determining the stationary state. This coincides with the Boltzmann
distribution at temperature Tw. It is evident, even in this simple setting, that equilibrium
distributions, along with considerations about the interplay among time scales, might
provide useful information about the system’s behaviours in different genuinely out-of-
equilibrium conditions. We also remark that non-equilibrium effects still remain visible in
the microscopic fluxes circulating in the system [11,12]. As shown in Figure 1b, particles
store energy in the hot box, populating A, then diffuse to the cold side, release heat in the
cold box, populating B, and finally diffuse back to restart the thermal cycle.

We stress that for two-state systems, the infinite diffusion case gives lower values of
PB/PA as follows:

kA→B

kB→A
=

kA1→B1 + kA2→B2

kB1→A1 + kB2→A2

(4)

as already derived in [11].

3. Simplest Case for Selection: A Three-State System

Bearing in mind the complex picture described so far, here we investigate a three-state
system, which is the simplest case in which it is possible to introduce a kinetic asymmetry
and hence define a selection. Again, we consider the presence of one high-energy state, A,
that can convert into two low-energy states, B and C, with the same energy (for the sake of
simplicity). The energy barrier between A and B, εB, is lower than the one between A and
C, εC. ∆ε = εC − εB quantifies the kinetic asymmetry (see Figure 2a). At equilibrium, B
and C end up being equally populated, since they have the same energy. When exposed to
a temperature gradient, the system exhibits a selection: the fast-dissipation state, C, has a
higher population than the slow-dissipation state B, in the infinite diffusion limit [11,12].
The selection parameter is RCB = PC/PB.

Figure 2. (a) Three-state, two-box reaction network. The same color corresponds to the same value of
the energy. The energy difference between A and B (or C) is ∆E; (b) ∆E = 1, Tc = 0.1, εC = 1, εB = 2.
We report the logarithm of the selection parameter, RCB = PC/PB, as a function of d for different
values of the thermal gradient. RCB is maximised at infinite diffusion. (c) In this case, ∆E = 0.1,
while all other parameters and the color code are the same as in panel (b). Here, we show a peak in
the selection strength for finite diffusion.
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Without delving deeper into this model, which are extensively reported in [11], we
explore what happens when the diffusive rate d is finite. As reported in Figure 2b,c, the
infinite diffusion case does not always lead to the optimal selection. In the numerical
example reported in Figure 2b, after reducing the value of d, the selection reaches a
maximum value which is sensibly higher than the one obtained for d → +∞. However,
Figure 2c reports a situation in which finite d leads to RCB lower than the one obtained in
the infinite diffusion limit.

We follow the same reasoning of the previous section to understand this outcome. Con-
sider the case of Figure 2b. Here, the energy landscape is nearly flat, i.e.,
∆E � εC, εB; hence, the limiting chemical rates (in the cold box) are dominated by the
energetic barrier. When d→ 0, all reactions are much faster than diffusion and the system
returns to equilibrium in each box, RCB = 0. Increasing d, the reaction between A and
B in the cold box starts becoming slower than diffusion, while the one between A and C
stays faster, because of the kinetic asymmetry. Naively speaking, C equilibrates between
both boxes, and the transformation between A and B can be ignored for the steady state,
resulting in a positive stationary RCB. Increasing d, in this case, also the reaction between
A and C in the cold box becomes slower than diffusion, and the system falls back into the
infinite diffusion limit [11,18,23]. When the energy landscape is not flat, i.e., ∆E ≈ εC, εB,
chemical reactions are not governed solely by energetic barriers, and the system is more
complicated to analyse on intuitive basis.

Again, we remark that, at least in the case of a nearly flat energy landscape, consider-
ations about time scales and properly derived equilibrium solutions might improve our
understanding of this (slightly more complete) chemical non-equilibrium system.

4. Time-Scale Separation and Equilibrium Hints
4.1. Fast-Dissipation Chemical Sub-Networks in Two-Box Models

The time scale associated with a chemical reaction is the inverse of its corresponding
transition rate. This quantity also dictates the dissipation speed along a specific reaction
pathway. Analogously, the time scale associated with diffusion is 1/d, which is also the
average occupation time of each box. Intuitively, as discussed above, fast transitions tend
to equilibrate the system in their sub-space, providing a reliable approximation of the
non-equilibrium steady state, employing only equilibrium solutions in fast-dissipation
sub-spaces.

To make these observations quantitative and elucidate their limits, we here build a
time-scale separation analysis for a generic chemical network [18,26]. First, we consider
the simple case of a nearly flat energy landscape, ∆E� εB, εC. In this case, we define two
classes of transitions—slow and fast. Slow transitions are associated with the characteristic
time τS, while fast reactions act on the time scale τF. Consider, for example, a slow transition
from the state i to j happening at temperature T as follows:

kS
ji = kS

0 e−
∆E+εS

ij
T ≈ kS

0 e−
εS
ij
T = kS

ij = κijτ
−1
S (5)

where κij are reaction-specific deviations from a given slow average transition rate 1/τS.
The condition of nearly flat energy landscape is manifestly crucial to ensure that

each transition is slow or fast independently of the direction, i.e., ∆E does not play a
determinant role. As a consequence, we can split the transition matrix determining the
evolution of the system, K̂, in two parts, K̂S and K̂F, respectively, containing only slow
and fast transitions. Indeed, the (ij)-th element of K̂S is kS

ji, for i 6= j, while the diagonal

elements are kS
ii = −∑j 6=i kS

ji in order to have a normalised probability. Further, kS
ij can be

written as in Equation (5). All these observations hold analogously for K̂F.
In a two-box model, such as the one described above, we have the following dynamics:
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∂τ P(X1) = ∑
Y1 6=X1

(
κS

X1Y1
P(Y1)− κS

Y1X1
P(X1)

)
(6)

+
τS
τF

∑
Z1 6=X1

(
κF

X1Z1
P(Z1)− κF

Z1X1
P(X1)

)
+ dτS(P(X2)− P(X1))

where X, Y, Z = A, B, C, . . . indicate the chemical state, while the subscripts 1 and 2
represents the box. A similar equation holds for P(X2). In the model here considered, K̂F

includes the totality of reactions in the hot box and only a fraction of them in the cold box.
Here, τ = t/τS is a slowly evolving a-dimensional time.

First, when τ−1
F > τ−1

S � d, the system follows a Boltzmann equilibrium distribution
in both the hot and cold box, with temperature T2 ≡ Tw and T1 ≡ Tc, respectively, as for
the d → 0 case [11,18]. Indeed, the fast-dissipation sub-spaces are the chemical reaction
networks in each box.

Conversely, the other limiting case already studied in [11,18] is d � τ−1
F > τ−1

S .
The system falls back into the fast-diffusion limit, and the stationary state for the total
probability is

lim
d→+∞

P(Xi) =
1
2

Πst(X) (7)

where Πst(X) is the stationary distribution of a chemical network with effective rates
k̃XY = kXY, living in one single box. Here, Πst(X) differs in general from an equilibrium
solution, since the effective rates have no longer the Arrhenius form. In this case, the
fast-dissipation sub-network is composed only of diffusive links. Hence, the system
first equilibrates in this sub-space, reaching a spatial equilibrium distribution, which is
uniform in space. Indeed, the numerical factor in Equation (7) derives from the fact
that the probabilities within each box are normalised to 1/2 in this regime. Therefore,
the population is distributed among chemical states according to an effective (a-spatial)
equilibrium.

Finally, when τ−1
F � d � τ−1

S , we are in the richer situation of a finite diffusion
regime, with three different time scales in play. We propose a solution to Equation (15) of
the following form:

P(Xi) = P(0)(Xi) +
τF
τS

P(1)(Xi) (8)

Before proceeding further, we remark that fast-dissipative sub-networks are, in general,
disconnected sets of chemical reactions, S1, . . . , SN , in the cold box. On the contrary, since
Tw is associated with faster reactions, the whole chemical system in the hot box is a fast-
dissipative sub-network. Hence, at the zeroth order in τF/τS, we have a set of disconnected
master equations, one for each Si, and also a master equation governing the dynamics in
the hot box:

0 = ∑
Y(i)

1

(
κF

X(i)
1 Y(i)

1
P(0)(Y(i)

1 )− κF
Y(i)

1 X(i)
1

P(0)(X(i)
1 )

)
∀i = 1, . . . N subnetworks cold box

0 = ∑
Y2

(
κF

X2Y2
P(0)(Y2)− κF

Y2X2
P(0)(X2)

)
whole network hot box. (9)

In the first line, the superscript (i) indicates states belonging to the i-th sub-network
in the cold box.

Equation (9) is solved by the generic form P(0)(Xi) = p(i)ΠF(Xi). Here, ΠF(Xi) is the
solution for the state Xi, satisfying the chemical master equation to which Xi belongs. The
pre-factor p(i) depends only on the box considered, and it cannot be determined from the
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zeroth order. Indeed, inserting the expression for P(0) back, summing over all chemical
states, and solving the system up to the first order in dτF � τF/τS, we determine p(i) by

0 = p(2)− p(1) p(1) = p(2) = 1/2 (10)

This ensures that the probability of finding a particle in box 1 or 2 is equally distributed
due to diffusion.

Note that P(0) satisfies only equilibrium equations at the leading order since the
diffusion enters only in Equation (10). Hence, equilibrium solutions of fast-dissipative
sub-networks are sufficient to provide an accurate approximation of the complete solution
in the presence of a net separation of time scales.

Here, the role of the hot box is to excite the chemical reaction network moving par-
ticles towards the high energy state. This excitation can also be achieved through other
mechanisms, such as photon absorption. One can extract the characteristic time scales of
these excitations, compare them with chemical reaction rates, and build a similar analysis
based on fast-dissipative sub-spaces. Again, reaction networks might be decomposed into
fast-dissipative sub-nets, with the steady-state distribution resulting as a composition of
equilibrium distributions of sub-spaces.

4.2. Fast-Dissipation Ensemble Distribution in Two-Box Models

Fast-dissipative sub-networks, however, exhibit interesting ensemble properties that
have to be taken into account in order to provide a complete solution to the system in terms
of equilibrium distributions.

In fact, considering the first-order solution to the full dynamics, and summing over
all chemical states constituting each sub-network, (ij) ∈ Sz, and using Equation (10),
we obtain the following:

P(Si|Tc) = P(Si|Tw) =
1

2Zw
∑

z∈Si

e−
Ez

kBTw (11)

where Ez is the energy of the state z, Zw is the partition function of the hot box, so that
P(Si|Tw) is the probability to be in the fast-dissipating set Si in the hot box at the leading
order. Analogously, P(Si|Tc) is the probability of occupation of Si in the cold box at the
leading order. Note that Si is a fast-dissipative sub-network only in the cold box (see
Equation (9)). Here, Zh is a normalisation factor. The last equality derives from the fact that
high temperature is associated with faster reactions, and then the hot box supports reactions
always faster than diffusion in this context. Hence, the ensemble of fast-dissipative sub-
networks in the cold box follows an equilibrium-like distribution. Moreover,

P(X ∈ Si|Tc) = P(Si|Tc)
1

Zc(Si)
e−

EX
kBTc (12)

where Zc(Si) is the partition function relative to the sub-network Si in the cold box.
There also exist situations in which the diffusion rate from the cold to the hot box,

dc→w is not equal to the reverse one, dw→c, for example for geometrical reasons. In this case:

P(Si|Tc) =
dc→w

dw→c + dc→w

1
Zw

∑
z∈Si

e−
Ez

kBTw (13)

The interest in these equilibrium-like solutions is twofold: they can provide an intu-
itive understanding of the interplay between non-equilibrium conditions and selection, and
they also can be verified experimentally, without complete knowledge of the whole system.

4.3. Numerical Results and Energy Landscapes

In Figure 3a, we report a two-box model for a complex system with a nearly flat
energy landscape. Solid lines identify fast-dissipation reactions, whose transition rates



Entropy 2021, 23, 1068 8 of 14

are greater than diffusion. Conversely, dashed lines are transitions slower than diffusion,
which can be ignored to find the stationary solution at a first order, as shown above. We also
highlight with circles the fast-dissipative sub-networks in the cold box, whose equilibrium
solutions (considering only fast reactions) provide valuable information about the complete
steady-state distribution. It is evident that all reactions in the hot box are marked with solid
lines so that the entire chemical network at temperature Tw constitutes a fast-dissipative
sub-network. The transition between different regimes is controlled by the value of the
diffusion coefficient.

S2

S1
S3

① ② ③

① 

②

③
(a)

(b)

(c)

Figure 3. (a) Two-box model for a complex reaction network. Solid lines represent fast-dissipation
reactions, while slow-dissipation reactions are indicated by dashed lines. Gray dashed circles indicate
the fast-dissipative sub-networks in the cold box. The distribution inside each sub-network follows
the Boltzmann equilibrium. Overall, the probability is redistributed by diffusion so that half of
the total particles populate each box; (b) Kullback–Leibler divergence between exact solutions and
theoretical predictions for the stationary probability distribution of different reaction networks
composed of 40 states each. Networks are generated by randomly assigning fast-dissipation (ε = 1)
and slow-dissipation (ε = 5) reactions between states that uniformly populate a given energy range,
RE. The Kullback–Leibler divergence is shown for 103 reaction networks with the same energy
range (identified by the same color), and for an increasing energy range (here estimated through
the variance of the energies). As the roughness of the landscape increases, the proposed framework
starts failing; (c) theoretical and exact probabilities in comparison for RE = 1, 2, and 2.5 from left to
right (here different colors represent different networks).

Figure 3b,c presents the agreement between the exact stationary probabilities, obtained
numerically integrating the master equation describing the system and the theoretical
predictions stemming from the proposed method, Equation (12). In particular, in Figure 3b,
we show the Kullback–Leibler divergence (K) between exact and theoretical solutions,
which acts as a global estimator of their similarity, as a function of the variance of all
state energies, an indicator of the roughness of the landscape. Indicating, for the sake of
simplicity, with Pexact(X) and Ptheory(X), respectively, the exact and theoretical steady-state
probability to be in the state X, we have

K = ∑
X

Pexact(X) log
Pexact(X)

Ptheory(X)
(14)

where the sum runs over all states. Moreover, in Figure 3c, we present three specific
cases of increasing roughness of the energy landscape, from left to right. For flat or not
extremely complex energy landscapes (left and central panels), we stress that the agreement
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is remarkable, even beyond the strict limits of our theoretical derivation, while deviations
appear for rough landscapes (right panel). Here, we set only two values for the energetic
barriers—one for fast and the other for slow reactions—in order to have a net separation of
time scales, and then we modified the energy landscape. Another possibility, which gives
analogous results, is to draw transition rates from a given distribution. Clearly, when there
is no net separation of time scales, our method cannot be straightforwardly applied.

4.4. Fast-Dissipation Chemical Sub-Networks for Continuous Systems

In order to complete the discussion, we here consider the presence of a continuous
thermal gradient T(x) and describe the system through the probability to be in a given
state i, at a given time t and position x, Pi(x, t). In this case, diffusive reactions are replaced
by the diffusion Laplacian operator. Clearly, this setting generalises the two-box model,
and the evolution reads as follows:

∂τ Pi(x, t) = ∑
j 6=i

(
κS

ijPj(x, t)− κS
jiPi(x, t)

)
(15)

+
τS
τF

∑
n 6=i

(
κF

inPn(x, t)− κF
niPi(x, t)

)
+ DτS∂2

xPi(x, t)

where D has the dimension of a diffusion coefficient.
When τ−1

F � d� τ−1
S , we are in the finite diffusion regime. The main difference with

respect to the two-box model is that here we cannot distinguish time scales of reactions
according to the temperature T(x) at which they occur. In fact, since the temperature varies
continuously over the entire domain, sub-networks could be different for each point in
space. On the flip side, if some energetic barriers are high enough so that independently
of T(x) the reactions associated with them will be slower than all the others in play,
we can distinguish two different time scales as before, and consequently identify some
fast-dissipation sub-networks. Hence, we propose the following solution to Equation (15):

Pi(x, t) = P(0)
i (x, t) +

τF
τS

P(1)
i (x, t) (16)

The resulting zeroth-order equations have the following form:

0 = ∑
j∈Sz

(
κF

ij(x)P(0)
j (x, t)− κF

ji(x)P(0)
i (x, t)

)
∀z = 1, . . . N, (17)

where N is the number of disconnected sub-networks, as before. The general solution
is P(0)

i (x, t) = p(x)ΠF
i (x), where ΠF

i (x) is the equilibrium solution of the fast chemical
sub-network to which i belongs. Here, p(x) encodes spatial variations, and it cannot be
determined from the zeroth-order equations. Solving the system up to the first order in dτF,
by summing over all chemical states, we determine p(x) as the solution of the following
diffusive equation:

0 = ∂2
xP(x) (18)

Again, due to diffusion, the solution is homogeneously distributed in space, strength-
ening the parallel between two-box models and continuous-space systems in this presented
framework.

5. Diffusion-Controlled Switch of Selection

Chemical systems, in general, are composed of a set of low-energy states with different
energies. Hence, at equilibrium, states are selected according to those, following the
Boltzmann distribution. There are situations [12] in which this energetic selection is in
competition with the kinetic non-equilibrium selection [13], when fast reactions do not
drive the system towards the lowest energy state.
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Since the value of the diffusion coefficient, d, controls the strength of kinetic (dissipation-
driven) selection, the existence of these two competing mechanisms can cause a switch
of the selected state at stationarity as a function of d. In Figure 4, we show this effect for
a paradigmatic three-state, two-box model. For small d, i.e., d < kA→B(Tc), the reactions
in both boxes are in local equilibrium so that the state B is more populated than C in the
steady state,

PB =
e−EB/kBTc

2Z(Tc)
+

e−EB/kBTw

2Z(Tw)
>

e−EC/kBTc

2Z(Tc)
+

e−EC/kBTw

2Z(Tw)
= PC. (19)

Figure 4. Total probability of states B, PB = P(B1) + P(B2), and C, PC = P(C1) + P(C2), as a function
of d. The diffusion coefficient can trigger a switch of the selected state at stationarity, which is due
to the competition between dissipation-driven and energetic selection. The diffusion coefficients at
which each transition occurs can be estimated by comparison with the chemical reaction rate in the
cold box. The upper inset sketch the chemical network here investigated. Parameters are Tc = 0.1,
Tw = 0.2, εC = 1, and εB = 2.

When the diffusion coefficient takes intermediate finite values, kA→B(Tc) = e−εB/kBTc <
d < kA→C(Tc) = e−εC/kBTc , the transition A � C constitutes a fast-dissipation reaction,
while A � B supports slower dissipation. Hence, A and C form a fast-dissipative sub-
network reaching local equilibrium in both boxes. However, state B can not be reached
from state A in the cold box and thus stays in equilibrium with its high-temperature coun-
terpart to which it is connected by diffusion. Here, combining Equations (9)–(11), P(B),
and P(C) are determined by the following equilibrium system:

Equilibrium in the Hot Box (20)

Ṗ(A2) = −kC2 A2 P(A2) + kA2C2 P(C2)− kB2 A2 P(A2) + kA2B2 P(B2) = 0

Ṗ(B2) = −kA2B2 P(B2) + kB2 A2 P(A2) = 0

A � C equilibrium in the Cold Box (21)

Ṗ(A1) = −kC1 A1 P(A1) + kA1C1 P(C1) = 0

Constrains by diffusion (22)

P(B1) = P(B2)

0.5 = P(A1) + P(C1) + P(B1)

0.5 = P(A2) + P(B2) + P(C2)
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In the example reported, a strong dissipation-driven selection dominates in this regime
(see Figure 4).

Further increasing d, all reactions become slower than diffusion, and the whole system
is effectively dominated by energetic selection in the following infinite-diffusion limit:

RBC =
PB

PC
=

kC→A kA→B

kA→C kB→A
> 1 (23)

The exploration of regimes of finite diffusion, along with the theoretical framework
here developed, which is based on equilibrium solutions, might lead to novel phenom-
ena markedly different from those observed in the small- and large-diffusion limit. The
existence of a dissipation-controlled switch of selection elucidates this possibility, and this
work takes a step towards an a priori understanding of the role of d with the minimum
knowledge of the equilibrium distributions of fast-dissipative sub-networks. Indeed, ther-
modynamic equilibrium does not depend on energetic barriers, which, in the presented
framework, only determine the range of validity of the theoretical predictions.

6. Equilibrium Hints for Entropy Production

Energy dissipation in discrete-state systems can be quantified using Schnakenberg
entropy production, Ṡtot [14,22]. This can be divided into two terms—one accounting for
the entropy change of the system, Ṡsys, and the other associated with the heat dissipated
into the environment, Ṡenv. Since, by definition, Ṡsys = (d/dt)(∑i Pi ln Pi), it vanishes in
the steady state. Hence, Ṡtot = Ṡenv, and it also quantifies the heat absorbed by the hot box
or expelled into the cold box. Employing the energy conservation principle, we have

Ṡtot = ∑
(ij)

(
kijPj − k jiPi

)
ln

kij

k ji
= d ∑

X
EX(P(X2)− P(X1))

(
1
T1
− 1

T2

)
(24)

where the first sum ∑(ij) runs over all the possible pairs of nodes, while the second sum ∑X
runs over all states in each box. Substituting in Equation (24) the solutions of the master
equation, Pexact(X) for the state X, we obtain the exact entropy production (red solid line
in Figure 5a). However, it is possible to estimate energy dissipation in the framework
developed so far, by imposing the fast equilibration of fast-dissipative sub-networks.
Substituting the steady-state solutions obtained from Equation (12) in Equation (24),
indicated above as Ptheory(X) for simplicity, we derive a theoretically approximated version
of the entropy production which is valid when the diffusion coefficient is in a desired
intermediate range (see also Figure 4). For a simple three-state system, shown in Figure 5a,
we indicate that the theoretical Ṡtot (blue dashed line) exhibits an excellent agreement with
the exact entropy production.

Moreover, the proposed approach allows us to identify fast-dissipative sub-networks
in the cold box, satisfying Boltzmann equilibrium in their sub-spaces. Hence, it is possible
to define, for each of them, the heat capacity, Cfast

v (Si) = ∂T〈E〉fast
Si

, where the average is
taken over all the states belonging to Si. Again, the fast-dissipative sub-network in the hot
box coincides with the entire chemical network. When ∆T is small, the entropy production,
non-zero only out of equilibrium, can be expressed in terms of Cfast

v (Si), equilibrium
quantities, as follows:

Ṡtot ≈ d∆T
(

1
T1
− 1

T2

)
∑

i
P(Si|Tc)Cfast

v (Si) (25)

In the expression above, P(Si|Tw) does not appear because of the relation in Equation (11).
In Figure 5a, we compare Equation (25) (yellow dot-dashed line) with the exact entropy
production, reporting an excellent agreement for small ∆T.

Additionally, we split the entropy production in the contributions from slow- and
fast-dissipation reactions, without using any equilibrium mapping, and we find that the



Entropy 2021, 23, 1068 12 of 14

dominant role is played by the reaction path A � C, in accordance with previous results
(see Figure 5b).

(a) (b)

Figure 5. (a) For a simple three-state system, we compare the exact entropy production (solid red line)
with the theoretical approximated one obtained using our framework (blue dashed line), and the
formula obtained by a small gradient expansion, Equation (25) (yellow dot-dashed line). In the exact
Ṡtot the probabilities stem from direct solution of the master equation, while in the theoretical Ṡtot,
and in Equation (25), the probabilities are obtained employing the equilibration of fast-dissipative
sub-networks. To consistently apply our approach, we choose an intermediate value of the diffusion
with respect to the chemical rates (see also Figure 4), showing an excellent agreement among the
curves presented. (b) It is evident that the main contribution to the entropy production comes
from the reaction A � C, ṠA↔C, which supports a much faster dissipation with respect to the
slow-dissipation branch A � B. Indeed, we also see that ṠA↔B � ṠA↔C. Parameters are reported in
panel (a).

7. Discussion and Conclusions

Another experimentally feasible way to introduce a temperature gradient is to put the
chemical system in contact with a heat bath whose temperature is periodically changed
over time. In several conditions, this turns out to be easier than applying a steady ther-
mal gradient [27,28]. A recent work [11] shows that the time-integrated selection in the
time-periodic steady state can be exactly mapped to the stationary selection for a two-
box system. The same equivalence is shown in Figure 6 in the case of finite diffusion,
strengthening the intimate connection between these two frameworks to set the system in
out-of-equilibrium conditions.

Figure 6. The logarithm of the selection strength as a function of the critical barrier εd for a three-state,
two-box model (solid line), as sketched in the inset, and for a time-periodic driven three-state system
(dashed line). These two paradigms are qualitatively and quantitatively equivalent to determine
non-isothermal selection of states.

To summarise, here, we presented a method to deal with complex reaction networks
in non-equilibrium conditions triggered by temperature differences. This method is rooted
in a time-scale separation analysis, which allows going beyond the infinite diffusion limit
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and the quasi-equilibrium approximation, capturing behaviours in finite diffusion regime.
The power of the proposed approach is that, under some approximations, the genuine non-
equilibrium steady state can be understood from equilibrium solutions of fast-dissipative
sub-networks, which are also accountable for the vast majority of the entropy production
in the system.

With this method, we also showed that the finite diffusion regime hides numerous
intricacies and peculiarities, as a switch of the selected state, or a boost in the selection
strength. It would be interesting to push forward the parallel between theoretical idealised
systems and experimentally feasible procedures, in order to verify these theoretical pre-
dictions. Moreover, observing features of non-isothermal chemistry might also ignite the
study of the origins of life problems from the point of view of non-equilibrium statistical
mechanics and thermodynamics [29–34].
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Appendix A. The Maximum Possible Ratio of Two-State System

Let us denote the diffusive flux of a single species in the system as J. Since there
are only two chemical states, the two diffusive fluxes form a cycle with the fluxes due to
chemical reactions in both boxes. Since the low energy state is more abundant in the cold
box, as discussed in the main text, J is defined as follows:

J = d(P(B1)− P(B2)) = −d(P(A2)− P(A1)) > 0. (A1)

Employing the expression of J, we can write the steady-state solution of Equation (1) as
follows:

P(A1) =
kA1B1

2K1
+

J
K1

P(B1) =
kB1 A1

2K1
− J

K1

P(A2) =
kA2B2

2K2
− J

K2
P(B2) =

kB2 A2

2K2
+

J
K2

.
(A2)

where Ki = kAi Bi + kBi Ai is the sum of the uphill and downhill rates in the corresponding
box, i. Hence, the ratio between the total probability of finding B and the total probability
of finding A is:

RBA =
PB

PA
=

Peq(B1) + Peq(B2)− J
(

K−1
1 − K−1

2

)
Peq(A1) + Peq(A2) + J

(
K−1

1 − K−1
2

)
≤ Peq(B1) + Peq(B2)

Peq(A1) + Peq(A2)
.

(A3)

Note that box 2 has a higher temperature than box 1; thus, K1 < K2, and consequently
the maximum possible ratio RBA is obtained in the fast-reaction limit (d � kXY, ∀X, Y),
since limd�kXY J

(
K−1

2 − K−1
1

)
→ 0.
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