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Abstract: Pattern analysis is a widely researched topic in team sports performance analysis, using
information theory as a conceptual framework. Bayesian methods are also used in this research field,
but the association between these two is being developed. The aim of this paper is to present new
mathematical concepts that are based on information and probability theory and can be applied to
network analysis in Team Sports. These results are based on the transition matrices of the Markov
chain, associated with the adjacency matrices of a network with n nodes and allowing for a more
robust analysis of the variability of interactions in team sports. The proposed models refer to
individual and collective rates and indexes of total variability between players and teams as well
as the overall passing capacity of a network, all of which are demonstrated in the UEFA 2020/2021
Champions League Final.

Keywords: entropy; football; social network analysis; Markov chain; performance analysis;
dynamical systems

1. Introduction

Pattern analysis is a well-established research topic in team sports performance analy-
sis, with dyadic interactions between players of the same team being represented in the
form of passes [1–4]. A common goal in the many metrics used to describe the individual
and group behavior in team sports is the identification of the most influential players or a
depiction of the team’s behavior in terms of passing interactions, allowing for a characteri-
zation of the team’s organization along with the identification of the roles each player has
in the network [1,2,5,6].

Metrics such as degree centrality, closeness, betweenness and the eigenvector are often
used to analyse social interactions in a wide variety of activities ranging from the analysis
of social media networks [7,8] to team sports match performance analysis in sports such as
volleyball [9,10], handball [11], rugby [12] or football [2,5,6,13–15], among others.

Broadly, these metrics attempt to identify the central elements in a group, the elements
with more connections within it or the most influential ones [5,7]. In team sports such
as football, knowing the most influential player or the player who is the element with
more connections with the remaining elements of the team is crucial, as the opposing team
may create strategies to prevent the ball from reaching said players, therefore creating
difficulties for the opposing team [1–3,5,6].

The application of the concept of entropy to model the interactions of players pass-
ing the ball in football has also been used [16–18], pointing to higher entropy values
leading to greater chances of creating goal-scoring opportunities [17]. The importance
of entropy in football lies in the recognition that variability in the behavioral patterns of

Entropy 2021, 23, 1072. https://doi.org/10.3390/e23081072 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1812-2300
https://orcid.org/0000-0003-2310-1560
https://orcid.org/0000-0002-5577-1094
https://orcid.org/0000-0002-0611-6157
https://orcid.org/0000-0002-2433-5193
https://doi.org/10.3390/e23081072
https://doi.org/10.3390/e23081072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081072
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081072?type=check_update&version=2


Entropy 2021, 23, 1072 2 of 11

interaction between players is beneficial for the team, as the system is more unpredictable.
Here, unpredictability leads to greater difficulties for the opposing team to interrupt the
passing sequences.

An alternative approach to the analysis of these passing sequences in football has
also been used, where the predictability of the passes being made is determined using
Markov chains [19,20] and, associated to these, node and network entropy mathematical
models [21]. These have attempted to explain the degree of variability associated with
conditional probabilities, adding a non-linear perspective to a Bayesian approach to match
performance analysis and providing a prediction of the variability of occurrence of passes.
However, the individual and collective capacity of variability is not given, nor it is possible
to assess the level of variability in a comparable ratio and index. Knowing how much
variability of a node (player) or a system (team) is situational and specific to each condition
(game), neither allows for a clear view of the level of performance that may be attainable,
nor of the comparison between different conditions within or between games.

Based in a mixed Bayesian and non-linear approach to team sports analysis, this work
aims to introduce new individual and collective rates and indexes of variability within the
team, providing new insights about the passing and receiving capacity of a certain team.
These new mathematical models allow for a bounded analysis of the passing and receiving
capacity of variability, allowing for the comparison between different players, between
games or even between different tactical formations during the game, providing valuable
information about the individual and team performance in various contexts of the game.

2. Variability of Nodes and Networks

Based on information theory and probability theory, this section presents mathemat-
ical concepts that can be applied to networks that are considered weighted digraphs or
weighted directed networks. The elementary concepts of nodes and networks used in this
paper are presented in [5,22,23]. So, we assume that Aw

D. is the weighted adjacency matrix
of a weighted digraph with n nodes, Gw

D. Therefore, we consider the concepts transition
matrix of the Markov chain, MT , associated with Aw

D of a Gw
D, the k-step node transition

and the probability of all nodes in the network after k times steps presented in [21].
Considering the mathematical concept of the entropy of a random variable, defined

on the sample space of a random experiment and taking on a finite number [24] (p. 51), [25]
and [26] (p. 19), and a weighted digraph with n nodes, we define the concept of rate of
passing of a node, and it is the rate of possible variability in passing from this node to all
other nodes of a network.

Definition 1. Given a weighted digraph, Gw
D, with n nodes. The Rout

i (ni) is called rate of passing
of a node ni and it is the rate of possible variability of a node, in passing from node ni to all other
nodes nj. It is determined by:

Rout
i (ni) = −

n

∑
j=1

(
∑n

j=1 wij

Lw
D

× mijlog2mij

)
(1)

where mij are the elements of MT associated with Aw
D of Gw

D, i, j = 1, . . . , n.

Remark 1. In Definition 1, if we replace wij by wji and mij by mji, we obtain the concept rate of
reception, Rin

i (ni), i.e., the capacity of the variability of a node, when a reception by ni from all other
nodes nj can occur.

Based on the mathematical concept of the rate transmission [25] and a weighted
digraph with n nodes, we can propose the concept of the index rate of passing of a node.
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Proposition 1. Given a weighted digraph, Gw
D, with n nodes, the IndRout

i (ni), index of rate of
passing of a node ni, is determined by:

IndRout
i (ni) =

Rout
i (ni)

log2n
. (2)

Proof. Consider that the index of rate of passing of a node ni is the ratio between Rout
i (ni)

and the maximum that Rout
i (ni) can assume. Thus,

IndRout
i (ni) =

Rout
i (ni)

max
(
−∑n

j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

)) . (3)

By Shannon [25] (p. 394), the maximum value occurs when mij = 1
n . Then,

max

(
−

n
∑

j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

))
= log2n.

Therefore,

Rout
i (ni)

max
(
−∑n

j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

)) =
Rout

i (ni)

log2n
. (4)

�

Remark 2. In Proposition 1, if we consider Rin
i (ni) , we obtain the concept of the index of rate of

reception of a node ni, IndRin
i (ni).

Considering the mathematical concept of the rate of passing of a node and the rate of
variability when a pass can occur from this node to all other nodes of a network, we define
the concept of the rate of passing of a network.

Definition 2. Given a weighted digraph, Gw
D, with n nodes, the Rout

N is called rate of passing of a
network, and it is the rate of variability of a network, when a pass from node ni to all other nodes nj
can occur. It is determined by:

Rout
N =

n

∑
i=1

Rout
i (ni), (5)

where mij are the elements of MT associated with the Aw
D of Gw

D, i, j = 1, . . . , n.

Remark 3. In Definition 2, if we replace wij with wji and mij with mji, we obtain the concept of the
rate of reception, Rin

N , i.e., the capacity of the variability of a network, when a reception can occur by
ni from all other nodes nj.

Based on the mathematical concept of the rate reception [25] and a weighted digraph
with n nodes, we can propose the concept of the index rate of passing of a network.

Proposition 2. Given a weighted digraph, Gw
D, with n nodes, the IndRout

N , index of rate of passing
of a network, is determined by:

IndRout
N =

Rout
N

log2n
. (6)
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Proof. Consider that the index of rate of passing of a node ni is the ratio between Rout
i (ni)

and the maximum that Rout
i (ni) can assume. Thus,

IndRout
N =

Rout
N

max
(
−∑n

i=1 ∑n
j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

)) . (7)

By Shannon [25] (p. 394), the maximum value occurs when all probabilities are

equiprobable. Then, max

(
−

n
∑

i=1

n
∑

j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

))
= log2n.

Therefore,

Rout
N

max
(
−∑n

i=1 ∑n
j=1

(
∑n

j=1 wij
Lw

D
× mijlog2mij

)) =
Rout

N
log2n

. (8)

�

Remark 4. In Proposition 2, if we consider Rin
N , we obtain the concept of the index of rate of

reception of a network, IndRin
N .

Based on the mathematical concept of the entropy of a random variable X with
marginal distribution of joint distribution (X,Y) of the Markov Chain associated with the
weighted adjacency matrix of a weighted digraph with n nodes [25] (p. 395), we can define
the concept of the rate of total variability between nodes that performed the passing in a network.

Proposition 3. Given a weighted digraph, Gw
D, with n nodes and two random variables X and Y

such that the pair of transmitter and receiver (X,Y) is the joint distribution of the Markov Chain
associated with Aw

D of Gw
D, the Eout

N is called the rate of total out-entropy of a network. It is the rate
of total variability between nodes that performed the passing in a network, determined by:

Eout
N = −

n

∑
i=1

n

∑
j=1

(wij

Lw
D

)
log2

(
n

∑
j=1

wij

Lw
D

)
, (9)

where wij are the elements of Aw
D and Lw

D =
n
∑

i=1

n
∑

j=1
wji, i, j = 1, . . . , n.

Proof. By the notion of marginal distribution in X of a joint distribution [25] (p. 395), we
obtain

Eout
N = −∑n

i=1 p(X = xi)log2 p(X = xi)

= −∑n
i=1 ∑n

j=1 p
(
X = xi, Y = yj

)
log2

(
∑n

j=1 p
(
X = xi, Y = yj

))
= −∑n

i=1 ∑n
j=1

(wij
Lw

D

)
log2

(
∑n

j=1
wij
Lw

D

)
.

(10)

�

Remark 5. In Proposition 3, if we consider the mathematical concept of the entropy of a random
variable Y with marginal distribution of joint distribution (X,Y) of the Markov Chain associated
with the weighted adjacency matrix of a weighted digraph with n nodes [25] (p. 395), we can obtain
the concept of the rate of total in-entropy of a network, Ein

N .

Based on the mathematical concept of rate of mutual information between two random
variables X and Y such that the pair of transmitter and receiver (X,Y) is the joint distribution
of the Markov Chain associated with the weighted adjacency matrix of a weighted digraph
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with n nodes [26] (p. 31), [27] (p. 246), we can propose the concept of the capacity of passing
of network when we know information about the receivers.

Proposition 4. Given a weighted digraph, Gw
D, with n nodes and two random variables X and Y

such that the pair of transmitter and receiver (X,Y) is the joint distribution of the Markov Chain
associated with Aw

D of Gw
D, the Cout

N is the capacity of passing of a network and is determined by:

Cout
N = Eout

N − Rin
N (11)

where i, j = 1, . . . , n.

Proof. Consider two random variables X and Y such that the pair of transmitter and
receiver (X,Y) is the joint distribution of the Markov Chain associated with Aw

D of Gw
D,

i, j = 1, . . . , n.
By concept of rate transmission presented in Shannon [25] (p. 407), we obtain

Cout
N = −∑n

i=1 ∑n
j=1 p

(
X = xi, Y = yj

)
log2(∑n

j=1 p
(
X = xi, Y = yj

)
)

+∑n
i=1 ∑n

j=1 p
(
X = xi, Y = yj

)
log2

(
p
(
X = xi

∣∣ Y = yj
))

=

−∑n
i=1 ∑n

j=1

(wij
Lw

D

)
log2

(
∑n

j=1
wij
Lw

D

)
+ ∑n

j=1 p
(
Y = yj

)
∑n

i=1 mijlog2
(
mij
)
= Eout

N − Rin
N .

(12)

�

Remark 6. Similarly to Proposition 4, considering the concept of the capacity of reception [25]
and a weighted digraph with n nodes, we can propose the concept of the capacity of reception of a
network, Cin

N = Ein
N − Rout

N .

Based on the mathematical concept of the rate of transmission [25] and a weighted
digraph with n nodes, we can propose the concept of the index of capacity of passing of
a network.

Proposition 5. Given a weighted digraph, Gw
D, with n nodes and two random variables X and Y

such that the pair of transmitter and receiver (X,Y) is the joint distribution of the Markov Chain
associated with Aw

D of Gw
D, the IndCout

N is the index of capacity of passing of a network and is
determined by:

IndCout
N =

∣∣∣∣ Cout
N

log2n

∣∣∣∣, (13)

where mij are the elements of MT associated with Aw
D, i, j = 1, . . . , n.

Proof. Consider that the index of rate of passing of a network is the ratio between Cout
N and

the maximum that Cout
N can assume and two random variables X and Y such that the pair

of transmitter and receiver (X,Y) is the joint distribution of the Markov Chain associated
with Aw

D of Gw
D, i, j = 1, . . . , n. Thus,

IndCout
N =

∣∣∣∣∣∣ Cout
N

maxCout
N

∣∣∣∣∣∣. (14)

By Shannon [25] (p. 417), we obtain

maxCout
N = max

[
−∑n

i=1 ∑n
j=1 p

(
X = xi , Y = yj

)
log2

(
∑n

j=1 p
(
X = xi , Y = yj

))
+ ∑n

i=1 ∑n
j=1 p

(
X = xi , Y = yj

)
log2

(
p
(
X = xi

∣∣ Y = yj
))]

≤ max
[
−∑n

i=1 ∑n
j=1 p

(
X = xi , Y = yj

)
log2

(
∑n

j=1 p
(
X = xi , Y = yj

))]
= log2n.

(15)
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So,

IndCout
N =

∣∣∣∣ Cout
N

log2n

∣∣∣∣. (16)

�

Remark 7. In Proposition 5, if we consider Cin
N , we obtain the index of capacity of reception of a

network, IndCin
N .

3. Experimental Results

The 2020/2021 Champions League final was used to demonstrate and interpret the
mathematical models proposed. The two opposing teams were Manchester City (MC)
and Chelsea (CH). The match, after being originally scheduled to be played in Instambul,
Turkey, took place in Porto, Portugal due to the COVID-19 pandemic restrictions at the
time. In a very levelled match, CH won 1–0, with Kay Havertz scoring the winning goal.
For the notational analysis of each transition between nodes, i.e., passing sequence, the
uPATO platform was used [22,28]. The adjacency matrices were computed to calculate all
transition state matrices, as described in [21].

The CH starting team were: Édouard Mendy (1); Ben Chilwell (2); César Azpilicueta
(3); Thiago Silva (4); Antonio Rüdiger (5); Jorginho (6); Reece James (7); N’Golo Kanté
(8); Timo Werner (9); Mason Mount (10); and Kay Havertz (11). Substitutes Andreas
Christensen (12), Mateo Kovacic (13) and Christian Pulisic (14) entered the game at minutes
39, 66 and 80, with Thiago Silva (4), Mason Mount (10) and Timo Werner (9) coming out,
respectively. The MC starting eleven were: Ederson (1); Kyle Walker (2); John Stones
(3); Rúben Dias (4); Oleksandr Zinchenko (5); Ilkay Gundogan (6); Bernardo Silva (7);
Phill Foden (8); Kevin de Bruyne (9); Raheem Sterling (10); and Riyad Mahrez (11). Used
substitutes were Gabriel Jesus (12), who replaced Kevin de Bruyne (9) at minute 60; Sergio
Aguero (13), who entered the pitch for Sterling (10) at minute 77; and Fernandinho (14),
who substituted Silva (7) at minute 60.

The rate of passing variability and receiving variability of each player on both
teams (CH and MC, respectively) is presented in Figures 1 and 2, and in Table A1 of
the Appendix A. The players of both teams are relatively uniform and show little capacity
of variability, showing that the teams have well established passing patterns in the game
and that no player stands out in this regard.

Entropy 2021, 23, x FOR PEER REVIEW 6 of 11 
 

 

𝑰𝒏𝒅𝑪𝑵𝒐𝒖𝒕 = ቚ 𝑪𝑵𝒐𝒖𝒕𝐥𝐨𝐠𝟐 𝒏ቚ. (16)

□ 

Remark 7. In Proposition 5, if we consider 𝑪𝑵𝒊𝒏, we obtain the index of capacity of reception of a 
network, 𝑰𝒏𝒅𝑪𝑵𝒊𝒏. 

3. Experimental Results 
The 2020/2021 Champions League final was used to demonstrate and interpret the 

mathematical models proposed. The two opposing teams were Manchester City (MC) and 
Chelsea (CH). The match, after being originally scheduled to be played in Instambul, 
Turkey, took place in Porto, Portugal due to the COVID-19 pandemic restrictions at the 
time. In a very levelled match, CH won 1–0, with Kay Havertz scoring the winning goal. 
For the notational analysis of each transition between nodes, i.e., passing sequence, the 
uPATO platform was used [22,28]. The adjacency matrices were computed to calculate all 
transition state matrices, as described in [21]. 

The CH starting team were: Édouard Mendy (1); Ben Chilwell (2); César Azpilicueta 
(3); Thiago Silva (4); Antonio Rüdiger (5); Jorginho (6); Reece James (7); N’Golo Kanté (8); 
Timo Werner (9); Mason Mount (10); and Kay Havertz (11). Substitutes Andreas 
Christensen (12), Mateo Kovacic (13) and Christian Pulisic (14) entered the game at 
minutes 39, 66 and 80, with Thiago Silva (4), Mason Mount (10) and Timo Werner (9) 
coming out, respectively. The MC starting eleven were: Ederson (1); Kyle Walker (2); John 
Stones (3); Rúben Dias (4); Oleksandr Zinchenko (5); Ilkay Gundogan (6); Bernardo Silva 
(7); Phill Foden (8); Kevin de Bruyne (9); Raheem Sterling (10); and Riyad Mahrez (11). 
Used substitutes were Gabriel Jesus (12), who replaced Kevin de Bruyne (9) at minute 60; 
Sergio Aguero (13), who entered the pitch for Sterling (10) at minute 77; and Fernandinho 
(14), who substituted Silva (7) at minute 60. 

The rate of passing variability and receiving variability of each player on both teams 
(CH and MC, respectively) is presented in Figures 1 and 2, and in Table A1 of the 
Appendix A. The players of both teams are relatively uniform and show little capacity of 
variability, showing that the teams have well established passing patterns in the game and 
that no player stands out in this regard. 

 
Figure 1. Chelsea’s rate of passing and reception. 

0.00
0.10
0.20
0.30
0.40
0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ra
te

 o
f p

la
ye

r

Player

Chelsea

Rate of passing

Rate of reception
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When looking at the capacity of receiving variability, Player 1 is among the teams’
least variable. These are both goalkeepers, and the obtained values are in accordance
with what is expected in a football game: passing to the goalkeeper is not common and
very often regarded as an extraordinary occasion. Alternatively, and if this player takes
part in the organization of the attack, they receive the ball from a very limited number of
players—usually the center backs. In fact, this kind of option is taken in MC’s strategy
when the team incorporates the goalkeeper in the passing sequences. Naturally, variability
here is minimal. It is also worth noting that field players with little capacity of receiving
variability such as CH’s Player 4 (Thiago Silva) or the substitute Players 13 and 14 (Kovacic
and Pulisic) may show this characteristic due to the time each player played. Thiago Silva
played only 39 min due to a sudden injury, and Kovacic and Pulisic entered late in the
game. As for Player 9 (Timo Werner), the fact that this is a forward/striker, the early lead
by CH in the game, or the team’s tactical setup may explain the low value.

Regarding MC’s metrics, and apart from Player 1, Players 7, 9 and 10 and the sub-
stitutes 12, 13 and 14 had low receiving variability capacity. Interestingly, these were the
players that were substituted during the match. This may show that the technical staff
were right to be dissatisfied with the players’ performance and attempted to change the
course of the game.

In practical terms, knowing that a player has a higher rate of variability may indicate
that he shows a higher degree of unpredictability, and it therefore is more difficult to
predict to where the ball is going to go. The opposing team will face greater challenges
when playing against unpredictable players. On the other hand, variability must also
be seen within the group interactions. For example, teammates may have difficulties in
creating synergies with highly variable players due to their intrinsic higher unpredictability.
There is, therefore, a thin balance between what can be predictable and bring stability and
reliability to the game, and the variable, unpredictable and creative.

It is important to note that the units of the rate of variability metric are arbitrary and
are related exclusively to each node’s maximum capacity, making comparisons between
nodes (players) difficult. For a more comparable analysis, the index rate of variability levels
down all values and places them between 0 (least variability) and 1 (highest variability).

The index of rate of passing and receiving for each player that participated in the
game are presented in Figures 3 and 4. The values of each player are presented in Table A2
of the Appendix A.
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The low index values presented by the players are in accordance with the rate of
variability presented in Figures 1 and 2, as well as in Table A1. Here, a comparative
analysis may be made between players, taking into consideration that the values shown
are always between 0 and 1, the least and most variability possible, respectively. In this
example, both teams keep relatively similar values for the index of passing variability.
However, the index of receiving variability shows more dissimilar values, with CH’s Player
3 presenting the highest team value. CH’s Player 4 was substituted early in the game,
showing a low index value. An analysis of the opposing team shows that apart from MC’s
goalkeeper (Player 1), Players 7 and 9, both on the starting 11 and both substituted around
minute 60, showed low indexes of reception variability. This may have happened due to
the effective defensive strategy of the opposing team, lowering the possibilities of ways of
getting the ball to them, or due to an ineffective capacity to create receiving opportunities
in that game.

When analyzing the teams’ global rate of variability (Table 1), CH shows higher
values than MC both for the passing (0.256 vs. −0.112) and the receiving (0.407 vs. 0.293)
actions. It is important to note that the MC’s negative rate of total entropy depicts the
team’s tendency to follow more stable passing patterns (out-entropy) between players than
receiving (in-entropy) ones.

Table 1. Team metrics of rate and index of variability.

Chelsea Manchester City

Cout
N 0.256 −0.112

Cin
N 0.407 0.293

IndCout
N 0.067 0.029

IndCin
N 0.107 0.077
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Regarding both teams’ index of capacity of passing (0.067 vs. 0.029) and receiving
(0.107 vs. 0.077), the differences become clearer. CH showed a greater passing and receiving
variability index. This shows that the team was more unpredictable in their actions, and
thus more difficult to defend by the opponent, possibly creating better conditions to control
the game and creating chances of winning it.

4. Conclusions

To summarize, using a mixed Bayesian and non-linear approach to network analysis,
the proposed mathematical models allow us to better display the rate of variability within
the passing sequences in the football game, increasing the tools available for match perfor-
mance analysis. Higher rates of variability are associated to more unpredictability in the
patterns, posing greater challenges to the opposing team. Additionally, the advantage of
an index that allow one to analyze the performance on a finite scale provides the analysts
with a clearer understanding of the team or player’s level of variability. Further studies
should focus on applying these metrics to compare, for example, the effect of different
tactical formations on the rate and index of variability of each player or the whole team.
Additionally, comparing how these models behave against other metrics may be worth-
while, as the more tangible values given may be of greater value to the community. Finally,
we hope to extend the uPATO platform to include these new mathematical models, making
them available to the community and spreading their use and interpretation.
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Appendix A

Table A1. Individual passing and receiving capacity of variability.

Rout
i (ni) Rin

i (ni)
Player Chelsea Manchester City Chelsea Manchester City

1 0.241 0.230 0.143 0.089
2 0.226 0.224 0.351 0.314
3 0.232 0.220 0.436 0.569
4 0.226 0.230 0.181 0.409
5 0.233 0.231 0.303 0.400
6 0.253 0.228 0.246 0.547
7 0.228 0.233 0.340 0.149
8 0.239 0.254 0.310 0.319
9 0.248 0.250 0.157 0.140
10 0.242 0.250 0.241 0.170
11 0.250 0.243 0.355 0.273
12 0.224 0.250 0.202 0.132
13 0.258 0.260 0.079 0.054
14 0.247 0.248 0.140 0.118
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Table A2. Individual passing and receiving index of variability.

IndRout
i (ni) IndRin

i (ni)
Player Chelsea Manchester City Chelsea Manchester City

1 0.063 0.061 0.038 0.023
2 0.059 0.059 0.092 0.082
3 0.061 0.058 0.115 0.149
4 0.059 0.061 0.048 0.108
5 0.061 0.061 0.080 0.105
6 0.066 0.060 0.065 0.144
7 0.060 0.061 0.089 0.039
8 0.063 0.067 0.081 0.084
9 0.065 0.066 0.041 0.037
10 0.064 0.066 0.063 0.045
11 0.066 0.064 0.093 0.072
12 0.059 0.066 0.053 0.035
13 0.068 0.068 0.021 0.014
14 0.065 0.065 0.037 0.031

References
1. Passos, P.; Davids, K.; Araujo, D.; Paz, N.; Minguens, J.; Mendes, L. Network as a novel tool for studying team ball sports as

complex social system. J. Sci. Med. Sport 2011, 14, 170–176. [CrossRef] [PubMed]
2. Mclean, S.; Salmon, P.M.; Gorman, A.D.; Stevens, N.J.; Solomon, C. A social network analysis of the goal scoring passing networks

of the 2016 European Football Championships. Hum. Mov. Sci. 2018, 57, 400–408. [CrossRef] [PubMed]
3. Ribeiro, J.; Silva, P.; Duarte, R.; Davids, K.; Garganta, J. Team sports performance analysed through the lens of social network

theory: Implications for research and practice. Sports Med. 2017, 47, 1689–1696. [CrossRef] [PubMed]
4. Lusher, D.; Robins, G.; Kremer, P. The application of social network analysis to team sports. Meas. Phys. Educ. Exerc. 2010, 14,

211–224. [CrossRef]
5. Clemente, F.; Martins, F.; Mendes, R. Social Network Analysis Applied to Team Sports Analysis; Springer International Publishing:

Dordrecht, The Netherlands, 2016.
6. Gonçalves, B.; Coutinho, D.; Santos, S.; Lago-Penas, C.; Jiménez, S.; Sampaio, J. Exploring team passing networks and player

movement dynamics in youth association football. PLoS ONE 2017, 12, e0171156.
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