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Abstract: This paper works on building an effective massive multi-input multi-output (MIMO)
relay system by increasing the achievable sum rate and energy efficiency. First, we design a two-
hop massive MIMO relay system instead of a one-hop system to shorten the distance and create
a Line-of-Sight (LOS) path between relays. Second, we apply Rician channels between relays in
this system. Third, we apply low-resolution Analog-to-Digital Converters (ADCs) at both relays to
quantize signals, and apply Amplify-and-Forward (AF) and Maximum Ratio Combining (MRC) to
the processed signal at relay R1 and relay R2 correspondingly. Fourth, we use higher-order statistics
to derive the closed-form expression of the achievable sum rate. Fifth, we derive the power scaling
law and achieve the asymptotic expressions under different power scales. Last, we validate the
correctness of theoretical analysis with numerical simulation results and show the superiority of
the two-hop relay system over the one-hop relay system. From both closed-form expressions and
simulation results, we discover that the two-hop system has a higher achievable sum rate than the
one-hop system. Besides, the energy efficiency in the two-hop system is higher than the one-hop
system. Moreover, in the two-hop system, when quantization bits q = 4, the achievable sum rate
converges. Therefore, deploying low-resolution ADCs can improve the energy efficiency and achieve
a fairly considerable achievable sum rate.

Keywords: MIMO relay system; Rician channel; low-resolution ADCs; achievable sum rate

1. Introduction

In the field of wireless communication, multi-input multi-output (MIMO) systems
have been widely used for their superior performance like increasing channel capacity and
improving user anti-interference performance [1]. However, MIMO systems also have the
following disadvantages. First, when the distances between users and targets are large,
the signal cannot reach the targets directly due to the heavy shadow and path loss [2–5].
Therefore, there is no Line-of-Sight (LOS) between users and targets and only Rayleigh
channels can be applied between [6,7]. Second, when a large number of transmitting
and receiving antennas are equipped with high-resolution Analog-to-Digital Converters
(ADCs), the system will consume tremendous amounts of energy. To be specific, if a high-
resolution ADC is with b-bit precision and the sampling frequency is fs, fs ∗ 2b conversions
will be required per second, which means the energy consumption of the system increases
exponentially with the quantization accuracy [2].

With the development of multi-hop communication, we can decrease the distances
between relays so that LOS can appear. Then we can apply Rician channels instead of
Rayleigh channels to reduce the achievable sum rate. Besides, using low-resolution ADCs
instead of high-resolution ADCs can alleviate the energy consumption burden of the MIMO
system and achieve a fairly considerable achievable sum rate at the same time.
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1.1. Related Works

The authors of [8,9] applied Rician channels to MIMO systems. However, the study
only concentrated on the one-hop scenario. Therefore, it can only cover a limited commu-
nication distance in real problems. In order to reduce the power consumption of ADCs,
scholars have made plenty of attempts with the idea of using low-resolution ADCs. The
authors of [10] studied the hybrid ADCs/DACs relay system and proposed the power
scaling law. This law revealed that the transmission power could be reduced inversely
proportional to the number of relay antennas, and an effective power allocation scheme was
further proposed based on this law. The authors of [11] studied the one-bit low-resolution
ADCs relay system for the MIMO system, which is a special case of low-resolution ADCs,
and proved one-bit low-resolution ADCs is effective for reducing energy consumption.
The authors of [12,13] applied low-resolution ADCs to the Rician channels relay system.
However, they only considered the one-hop relay system scenario, so the communication
distance was limited. Since it is very important for the MIMO system to increase the achiev-
able sum rate, reduce the energy consumption and maintain long-distance communication,
we consider the uplink of a two-hop low-resolution ADCs massive MIMO relaying system
over the Rician channel in our paper.

1.2. Contributions

Our work considers the uplink of a two-hop low-resolution ADCs massive MIMO
relay system over Rician channels. Firstly, we derive the closed-form expression of the
achievable sum rate of the uplink of the low-resolution ADCs massive MIMO relay system
over two-hop Rician channels and one-hop Rayleigh channels based on the higher-order
statistics of perfect channel state information (CSI). Secondly, we derive the asymptotic
closed-form expressions when the number of antennas tends to infinity. Next, we further
achieve the law of power scaling and asymptotic values under different power scales, and
conclude that the transmission power scaled down inversely proportional to the number
of antennas at relays. Finally, we compare the achievable sum rates of the two-hop Rician
system and the one-hop Rayleigh system, and validate the correctness of the theoretical
analysis with numerical simulation results.

More specifically, the contributions of this work are summarised as follows:
1. We design a two-hop Rician channel system, which guarantees the LOS between

users, relays and targets, and takes the advantage of Rician channels to increase the
achievable sum rate while maintaining long-distance communication.

2. We use both mathematical approaches and simulation results to prove the superior-
ity of achievable sum rate of our two-hop Rician channel system over the one-hop Rayleigh
channel system, which is more widely applied to MIMO systems.

3. We apply low-resolution ADCs to our two-hop Rician system to reduce the energy
consumption, and use mathematical analysis and simulation results to find that when
quantization bits q = 4, the system achieves a fairly considerable achievable sum rate while
greatly reduces the energy consumption.

1.3. Notations

Notation: The superscripts (·)T , (·)H , tr(·) and diag(·) represent the transpose, Her-
mitian transpose, trace of the matrix, and diagonal matrix, respectively. || · || represents the
Euclidean norm. CN(∗, σ2) represents the complex Gaussian distribution with the mean
of ∗ and the variance of σ2. E[·] represents the expectation. IN denotes an N × N identify
matrix. Xij or [X]ij represents the (i, j)th entry of X.

2. System Model and Signal Processing
2.1. One-Hop Rayleigh Channel System

Figure 1 shows the system model of the uplink of a one-hop massive MIMO relay with
low-resolution ADCs under Rayleigh channels. This system contains relay R1 with NR1
antennas, and K users with single antenna. The system works under Rayleigh channels
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because the distances between users and the relay are very large and there is no LOS
between users and the relay.

Figure 1. System model of a one-hop MIMO system under Rayleigh channels.

We use GR1 ⊂ CNR1×K to denote the MIMO channel matrix. According to [9], GR1
can be represented as

GR1 = HR1D1/2
R1 (1)

where DR1 is a K × K diagonal matrix representing the large-scale fading between K
users and K different randomly selected antennas from NR1 antennas in relay R1 with

the probability of 1/NR1, and [DR1]kk = αk. αk = (
dre f

du_R1
)v, where dre f represents the

reference distance, di_j represents the distance from node i to node j, v is the power
exponent coefficient.

HR1 ⊂ CNR1×K denotes the fast-fading matrix of the Rayleigh channels. Every column
of HR1 follows CN(0, 1

2 ).
Assume that the signal transmitted by K user antennas is xS = [x1, x2, ..., xK]

T , where
E[xSxT

S ] = IK. After one time slot, the signal received by relay R1 can be expressed as

yR1 =
√

PuGR1xS + nR1 (2)

where Pu is the transmission power of each user, nR1 is the white noise follows i.i.d complex
Gaussian distribution at relay R1, nR1 ∼ CN(0, σ2

R1).
yR1 is then quantized by low-resolution ADCs at R1. Based on Additive Quantization

Noise Model (AQNM) [14,15], the quantized signal can be represented as

ỹR1 = Q[yR1] = myR1 + ñR1 (3)

where ñR1 denotes the additive quantization noise vector and is independent from the
received signal yR1, m denotes the linear quantization gain. According to [10,16,17], m
satisfies the following equation m = 1− ρ, where ρ represents the quantization distortion
factor and equals the ratio of the quantizer error variance over received signal variance.

For relay R1, ρ =
E[|yR1−ỹR1|2]

E[|yR1|2]
. When the number of quantization bits q ≤ 5, the values of ρ

is shown in Table 1. When q > 5, ρ ≈ π
√

3
2 · 2−2q.
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Table 1. Quantization distortion factor ρ under Different ADC quantization bits q. According
to [10,16,17], the values of ρ (ρ1, ρ2) when the number of quantization bits q ≤ 5 is as follows

q 1 2 3 4 5

ρ, ρ1, ρ2 0.3634 0.1175 0.03454 0.009497 0.002499

According to [18], the covariance matrix of the quantization noise can be expressed as

RñR1
= mρdiag(PuGR1GH

R1 + σ2
R1INR1) (4)

Because Maximum Ratio Combining (MRC) has low-complexity and is able to achieve
the optimal reception performance, we use MRC to linear process the quantized signal ỹR1,
where the MRC matrix WH

R1 = GH
R1. Therefore, the processed signal xR1 can be written as

xR1 = WH
R1ỹR1 = m

√
PuGH

R1GR1xS + mGH
R1nR1 + GH

R1ñR1 (5)

Noticing that the signal of the kth user and the other users in (5) are uncorrelated, the
received signal of the kth user at relay R1 can be written as

xR1,k = m
√

PugH
R1,kGR1xS,k︸ ︷︷ ︸

desired signal

+m
√

PuΣK
j 6=kgH

R1,jGR1xS,j︸ ︷︷ ︸
interference

+mgH
R1,knR1 + gH

R1,kñR1︸ ︷︷ ︸
noise

(6)

2.2. Two-Hop Rician Channel

In order to increase the achievable sum rate, we convert the one-hop MIMO system to
two-hop MIMO system, so that the distance between users and relays can be reduced. As a
result, LOS will appear between users and relays and Rician channels can be applied to
increase the achievable sum rate.

Figure 2 shows the system model of the uplink of a two-hop massive MIMO system
with low-resolution ADCs under Rician channels. This system contains relay R1 with NR1
antennas, relay R2 with NR2 antennas and K users with a single antenna. The system works
under Rician channels because LOS exists between users and R1 and between R1 and R2.

Figure 2. System model of a two-hop MIMO system under Rician channels.

We use GR1 ⊂ CNR1×K to denote the MIMO channel matrix between users, GR2 ⊂
CNR2×K to denote the MIMO channel matrix between R1 and R2. GR1 can be represented as

GR1 = HR1D1/2
R1

GR2 can be represented as
GR2 = HR2D1/2

R2 (7)
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where DR1 is a diagonal matrice representing the large-scale fading between K users and
the K different randomly selected antennas from NR1 antennas with the probability of
1/NR1 at relay R1, and [DR1]kk = αk. DR2 is a diagonal matrice representing the large-scale
fading between K users and K different randomly selected antennas from NR2 antennas

at relay R2 with the probability of 1/NR2, and [DR2]kk = βk. αk = (
dre f

du_R1
)v, βk = (

dre f
dR1_R2

)v,
where dre f represents the reference distance, di_j represents the distance from node i to
node j, v is power exponent coefficient.

HR1 ⊂ CNR1×K and HR2 ⊂ CNR2×K denote the fast-fading matrix of Rician channels.
According to [19], HR1 and HR2 can be represented as:

HR1 = ¯HR1[ΩR1(ΩR1 + IK)
−1]1/2 + HR1[(ΩR2 + IK)

−1]1/2 (8)

GR2 = HR2D1/2
R2

Same as the previous chapter, we can get the quantized signal ỹR1 at R1as

ỹR1 = Q[yR1] = myR1 + ñR1

From (4), we can get the covariance matrix of the quantization noise RñR1
at R1 as

RñR1
= m1ρ1diag(PuGR1GH

R1 + σ2
R1INR1) (9)

where m1 denotes the linear quantization gain at R1, ρ1 denotes the quantization distortion
factor at R1.

The processed signal xR1 can be expressed as

xR1 = WH
R1ỹR1 = m

√
PuGH

R1GR1xS + mGH
R1nR1 + GH

R1ñR1

Then, we apply the technique of Amplify-and-Forward (AF) to signal xR1 and transmit
the processed signals to R2 with K randomly selected antennas. The signal yR2 received at
relay R2 can be denoted as

yR2 = γGR2xR1 + nR1 (10)

where GR2 is the Rayleigh fading channel between relay R1 and R2, nR2 ∼ CN(0, σ2
R2),

which is the white noise follows i.i.d complex Gaussian distribution at relay R2. γ is an
amplification factor at relay R1, which satisfies the power constraint E[‖γxR1‖2] = PR.
Therefore, γ can be expressed as

γ =

√
pR

E[‖xR1‖2]
(11)

where PR represents the transmit power at relay R1,
E[‖xR1‖2] = m2

1[putr(E[GH
R1GR1GH

R1GR1]) + σ2
R1tr(E[GH

R1GR1])] + tr(E[GH
R1RñR1

GR1]).
To simplify the expression, we make the following definitions.

∆R1,k =
2µk + 1
(µk + 1)2 ΦR1,ki =

sin
(

NR1π(sinθR1 − sinθR1,i)/2
)

sin
(
π(sinθR1,k − sinθR1,i)/2

) Qki =

µkµiΦ2
ki

NR1
+ µk + µi + 1

(µk + 1)(µi + 1)

∆R2,k =
2εk + 1
(εk + 1)2 ΦR2,ki =

sin
(

NR2π(sinθR2 − sinθR2,i)/2
)

sin
(
π(sinθR2,k − sinθR2,i)/2

) Rki =

εkεiΦ2
ki

NR2
+ εk + εi + 1

(εk + 1)(εi + 1)

Therefore, γ can be expressed as follows, the proof is attached in Appendix A.
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γ =

√
PR

m2
1(PuS1 + NR1σ2

R1ΣK
i=1αi) + m1ρ1S2

S1 = NR1ΣK
i=1α2

i (NR1 + ∆R1,i) + NR1ΣK
i=1αiΣK

l=1αlQil

S2 = puNR1ΣK
n=1αn(αn + ΣK

i=1αi) + NR1σ2
R1ΣK

n=1αn (12)

Similar to the quantization at relay R1, the quantized signal ỹR2 at relay R2 can be
modeled as

ỹR2 = Q[yR2] = m1yR2 + ñR2 (13)

The covariance matrix of the quantization noise ñR1 can be written as

RñR2
= m2ρ2diag(γ2RyR2 + σ2

R2INR2) (14)

where m2 denotes the linear quantization gain at R2, ρ2 denotes the quantization dis-
tortion factor at R2, RyR2 = GR2GH

R1RyR1GR1GH
R2, RỹR2

= m2
1(PuGR1GH

R1 + σ2
R1INR1) +

m1ρ1diag(PuGR1GH
R1 + σ2

R1INR1).
Same as MRC processing at relay R1, we also use MRC to process signals at R2, where

the MRC matrix WH
R2 = GH

R2. Therefore, the processed signal xR2 can be written as

xR2 = WH
R2ỹR2 = γm1m2

√
PuGH

R2GR2GH
R1GR1xS + γm1m2GH

R2GR2GH
R1nR1

+ γm2GH
R2GR2GH

R1ñR1 + m2GH
R2nR2 + GH

R2ñR1 (15)

Noticing that the signal of the kth user and the other users in (15) are uncorrelated, the
received signal of the kth user at relay R2 can be written as

xR2,k = γm1m2
√

PugH
R2,kGR2GH

R1gR1,kxS,k︸ ︷︷ ︸
desired signal

+ γm1m2
√

PuΣK
j 6=kgH

R2,kGR2GH
R1gR1,jxS,j︸ ︷︷ ︸

interference

+ γm1m2gH
R2,kGR2GH

R1nR1 + γm2gH
R2,kGR2GH

R1ñR1 + m2gH
R2,knR2 + gH

R2,kñR1︸ ︷︷ ︸
noise

(16)

3. System Achievable Rate Analysis
3.1. One-Hop Rayleigh Channel
3.1.1. Closed-Form Expression

Supposing that the CSI is perfect, based on Shannon Entropy and according to (6), we
can get the rate of the kth user in one-hop low-precision ADCs MIMO relay system over
Rayleigh channels as

RRayleigh
k =

1
2

E[log2(1 +
PRayleigh

k

NRayleigh
k

)] (17)

PRayleigh
k = m2Pu|gH

R1,kGR1|2 (18)

NRayleigh
k = m2PuΣK

j 6=k|g
H
R1,jGR1|2 + m2σ2

R1|gH
R1,k|

2 + |gH
R1,kRñR1

gR1,k| (19)

where PRayleigh
k represents the power of desired signal of the kth user, NRayleigh

k represents
the power of interference signal and the noise of the kth user.

According to [20], the rate of kth user can also be denoted as

RRayleigh
k =

1
2

log2(1 + SNRk) (20)
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where SNRk represents the Signal-to-noise Ratio (SNR) of the kth user at the receiving
end R1.

SNRk =
PRayleigh′

k

NRayleigh′
k

(21)

Based of (20) and (21), we can derive the closed-form expression for the achievable
sum rate of the kth user in the one-hop low-precision ADCs MIMO relay system over
Rayleigh channels is

RRayleigh
k =

1
2

log2(1 +
PRayleigh′

k

NRayleigh′
k

) (22)

In formula (22), PRayleigh′

k and NRayleigh′

k can be represented as follows, the proof is
attached in Appendix B.

PRayleigh′

k = m2PuE[|gH
R1,kGR1|2]

= m2Puα2
k NR1(NR1 + 1) (23)

NRayleigh′

k = m2PuΣK
j 6=kE[|gH

R1,jGR1|2]

+ m2σ2
R1E[|gH

R1,k|
2] + E[|gH

R1,kRñR1
gR1,k|]

= m2PuNR1ΣK
j 6=kαkαj + m2σ2

R1NR1αk

+ mραnNR1(PuΣK
i=1αi + Puαn + σ2

R1) (24)

3.1.2. Power Scaling Laws and Asymptotic Analysis

Based on the closed-form expression over Rayleigh channels given by (22), we further
analyze their performances and derive the law of energy scaling in different conditions.

Suppose that the transmit power at the user end is Pu = Eu
Na

R1
, a is the power scaling

constant. When the number of antennas tends to infinity, the limit of SNRk in (21) can be
represented as

lim
NR1→∞

SNRk = lim
NR1→∞

α2
km2EuN2−a

R1

αkm2σ2
R1NR1 + ΣK

n=1αnmρσ2
R1NR1

= lim
NR1→∞

α2
kmEuN1−a

R1

αkmσ2
R1 + ΣK

n=1αnρσ2
R1

(25)

When a takes different values, we can obtain the following power scaling law

lim
NR1→∞

SNRk =


∞ a < 1

α2
k mEu

αkmσ2
R1+ΣK

n=1αnρσ2
R1

a = 1

0 a ≥ 1

(26)

As can be seen from (26), when NR1 tends to infinity, the transmit power at the user
end can be scaled down by 1

Na
R1

. When the scale index a satisfies a = 1, the achievable
rate remains stable. Based on (21), (22) and (26), when the prefect CSI exists from users to
R1, we assume that NR1 � K � 1, the large-scale fading between users and R1 satisfies
α1 = α2 = · · · = αk = α, the user transmit power Pu � σ2

R1, SNRk can be approximated as

SNRk ≈
mNR1

K
(27)

The proof is attached in Appendix C.
The uplink achievable sum rate can be approximated as
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RRayleigh
sum =

K
2

log2(1 +
mNR1

K
) (28)

3.2. Two-Hop Rician Channels
3.2.1. Closed-Form Expression

Similar to (17), the achievable rate of the kth user in two-hop low-precision ADCs
MIMO relay system over Rician channels can be represented as

RRician
k =

1
2

E[log2(1 +
PRician

k
NRician

k
)] (29)

where PRician
k represents the power of desired signal of the kth user, and NRician

k represents
the power of interference signal and the of noise of the kth user.

The detailed formula of PRician
k and NRician

k can also be represented as

PRician
k = γ2m2

1m2
2Pu|gH

R2,kGR2GH
R1gR1,k|2 (30)

NRician
k = γ2m2

1m2
2PuΣK

j 6=k|g
H
R2,kGR2GH

R1gR1,j|2 + γ2m2
1m2

2σ2
R1|gH

R2,kGR2GH
R1|2

+ γ2m2
2|gH

R2,kGR2GH
R1RñR1

GR1GT
R2gR2,k|2 + m2

2σ2
R2|gR2,k|2

+ |gH
R2,kRñR2

gR2,k|2 (31)

Similar to (20), the rate of kth user can be denoted as

RRician
k =

1
2

log2(1 + SNRk) (32)

where SNRk represents the SNR of the kth user at the receiving end R2.

SNRk =
PRician′

k

NRician′
k

(33)

Based of (32) and (33), we can derive the closed-form expression for the achievable
sum rate of the two-hop low-precision ADCs MIMO relay system over Rician channels is

RRician
k =

1
2

log2(1 +
PRician′

k

NRician′
k

) (34)

In formula (34), PRayleigh′

k and NRayleigh′

k can be represented as follows, the proof is
attached in Appendix D.

PRician′
k = γ2m2

1m2
2PuE[|gH

R2,kGR2GH
R1gR1,k|2]

= γ2m2
1m2

2Puαkβk NR1NR2[αkβk(NR1 + ∆R1,k)(NR2 + ∆R2,k) + ΣK
i 6=kαiβiQki, Rki] (35)
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NRician′
k = ARician

k + BRician
k + CRician

k + DRician
k + ERician

k

ARician
k = γ2m2

1m2
2PuΣK

j 6=kE[|gH
R2,kGR2GH

R1gR1,j|2]

= γ2m2
1m2

2Puβk NR1NR2ΣK
j 6=kαj[αkβkQkj(NR2 + ∆R2,k)

+ αjβ jRkj(NR1 + ∆R1,j) + ΣK
i 6=kαiβiRkiQij]

BRician
k = γ2m2

1m2
2σ2

R1E[|gH
R2,kGR2GH

R1|2]
= γ2m2

1m2
2σ2

R1βk NR1NR2[αkβk(NR2 + ∆R2,k) + ΣK
i 6=kαiβ jRki]

CRician
k = γ2m2

2E[gH
R2,kGR2GH

R1RñR1
GR1GH

R2gR2,k]

= γ2m1ρ1m2
2βk NR1NR2[Pu

(
(NR2 + ∆R2,k)αkβk(αk + ΣK

l 6=iαl)

+ ΣK
i 6=kαiβiRki(αi + ΣK

l 6=iαl)
)
+ σ2

R1
(
αkβk(NR2 + ∆R2,k) + ΣK

i 6=kαiβiRki
)
]

DRician
k = m2

2σ2
R2E[|gR2,k|2] = m2

2σ2
R2NR2βk

ERician
k = E[gH

R2,kRñR1
gR2,k]

= γ2m1m2ρ2NR1NR2βk
(
αkβk∆R2,k(PuΣK

i=1αi + m1NR1Puαk + ρ1Puαk + σ2
R1)

+ ΣK
n=1αnβn(puΣK

i=1αi + m1NR1Puαn + ρ1 puαn + σ2
R1)
)
+ m2ρ2σ2

R2NR2βk (36)

3.2.2. Power Scaling Laws and Asymptotic Analysis

Based on the closed-form expressions over Rician channel given by (33) and (34), we fur-
ther analyze their performances and derive the law of energy scaling in different conditions.

Suppose that the transmit power at the user end is Pu = Eu
Na

R1
, the transmit power at

relay R1 is PR = Eu
Nb

R2
, a and b are power scaling constants, λ = NR2

NR1
< ∞. When the NR1

and NR2 tend to infinity, the limit of SNRk in (33) can be represented as

lim
NR1→∞

SNRk = lim
NR1→∞

m2
1m2γ2PuN2

R1NR2α2
k βk

m1m2γ2NR1NR2αkβkσ2
R1 + σ2

R2

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

(37)

When a and b take different values, we can obtain the following power scaling law,
the proof is attached in Appendix E.

lim
NR1→∞

SNRk =



∞ a, b < 1
m2ERα2

k βk
σ2

R2ΣK
i=1α2

i
a < b = 1

m1Euαk
σ2

R1
b < a = 1

m1m2EU ERα2
k βk

τ a = b = 1
0 a > 1 or b > 1

(38)

where τ = m2ERαkβkσ2
R1 + σ2

R2(m1EuΣK
i=1α2

i + σ2
R1ΣK

i=1αi). As can be seen from (38), when
NR1 tends to infinity, the transmit power at the user end can be scaled down by 1

Na
R1

and
1

Nb
R2

. When the scale index a and b satisfy a < b = 1, b < a = 1 or a = b = 1, the achievable

rate remains stable.
Based on (38) and according to [13], when the prefect CSI exists from users to R1

and from R1 to R2, we assume that NR2 > NR1 � K � 1, the large-scale fading between
users and R1 satisfies α1 = α2 = · · · = αk = α, the fading between R1 and R2 satisfies
β1 = β2 = · · · = βk = β, the user transmit power pu � σ2

R1, R1 transmit power pR � σ2
R2,

λ = NR2
NR1

< ∞, SNRk can be approximated as
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SNRk ≈
m1NR1

K
(39)

Therefore, no matter the system is under Rayleigh channel or Rician channel, we can
derive the approximate uplink achievable sum rate as

RRician
sum =

K
2

log2(1 +
m1NR1

K
) (40)

The proof is attached in Appendix F.

4. Results

In this section, we use system 1 to represent the one-hop Rayleigh system, system 2
to represent the two-hop Rician system. We set different experiments and visualize the
1000-time Monte Carlo simulation results and the achievable sum rate calculated from
the closed-form expressions. Then we compare the results of system 1 and system 2
to verify the correctness of theoretical analysis. In our experiments, we set the number
of users K = 10, the transmission power of users Pu = 20dB, the transmission energy
PR = 25dB, the noise energy at R1 and R2 as σ2

R1 = 1dB, σ2
R2 = 1dB respectively. We

assume NR2 = 4NR1, the large-scale fading coefficient αk = (
dre f

du_R1
)v, βk = (

dre f
dR1_R2

)v, where
dre f represents the reference distance, di_j represents the distance from node i to node j, v is
the power exponent coefficient. During the simulation, we set dre f = 100m, dR1_R2 = 150m,
v = 2.4. In system 1, we set du_R1 = [700, 1136, 1096, 694, 285, 872, 531, 489, 440, 356]m. In
system 2, we set dR1_R2 = [550, 986, 946, 544, 135, 722, 381, 339, 290, 206]m. We use θR1,i to
represent the arrival angle from users to R1, θR2,j to represent the arrival angle from R1 to
R2, θR2,i and θR2,j obeys the uniform distribution on [−π

2 , π
2 ].

4.1. Experiment 1: Achievable Sum Rates with Different NR1

Figure 3 shows the variation curve of the achievable sum rate in systems 1 and 2
with the variation of NR1. The asterisks indicate the experimental result obtained through
1000 times Monte Carlo simulations, and the circles indicate the simulation result of the
achievable sum rate calculated by the closed-form expression (22) and (34). As is shown in
Figure 3, the curve of the Monte Carlo simulations perfectly matches the curve derived
from the closed-form expressions, which proves the correctness of the derived closed-form
expressions (22) and (34). Obviously, when the simulation parameters are the same, the
achievable sum rate of the two-hop Rican system is higher than the achievable sum rate of
the one-hop Rayleigh system. This result proves that converting one-hop Rayleigh system
to two-hop Rician system can improve the achievable sum rate. It is in consistent with the
actual communication process where there is LOS signal, and the communication quality
under Rician channel is better.

Figure 3. Achievable sum rate with different NR1.



Entropy 2021, 23, 1074 11 of 18

4.2. Experiment 2: Achievable Sum Rates with Different q

Figure 4 shows the variation curve of the achievable sum rate in systems 1 and 2 with
the variation of q when NR1 = 200, 400, 800. Apart from previous findings, we can also
discover that the low-resolution quantization brings performance loss. This is because
when the quantization occurs, it reduces the SNR and causes performance degradation.
We can also discover that when the number of quantization bits q ≥ 4, the achievable sum
rate can persist at a stable rate.

Figure 4. Achievable sum rate with different Quantization Bits q.

4.3. Experiment 3: ADC Energy Efficiency with Different q

Figure 5 shows the variation curve of the ADC Energy Efficiency in systems 1 and 2
with the variation of q when NR1 = 200, 400, 800. In Figure 5, the ADC energy efficiency
can be obtained by EE = R

P , where R represents the achievable sum rate, P represents the
energy loss. According to [20,21], P = c0NR1 ∗ 2q + c1, c0 = 0.0001W, c1 = 0.02W. The
result shows that in both systems, the energy efficiency of the ADC shows a logarithmic
downtrend when q increases, which denotes that the low-resolution ADC can improve the
energy efficiency and reduce the energy consumption during signal transmission. Besides,
we can clearly find that when q is small, system 2 has a higher ADC energy efficiency
compared with system 1, which proves the superiority of system 2.

Figure 5. ADC Energy Efficiency with different Quantization Bits q.

4.4. Experiment 4: Asymptotic Achievable Sum Rates in Two Systems

Figure 6 shows the variation curve of achievable sum rates when NR1 increases with
different scaling indexes and the corresponding asymptotic values. When NR1 is relatively
small, the results of the 1000-time Monte Carlo simulation do not match with the analytical
results precisely. However, as the number of antennas continues to increase, the 1000-time
Monte Carlo simulation results can perfectly match the analytical results. It is because the
law of power scaling is derived when NR1 is large enough.
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Figure 6. Asymptotic achievable sum rates with Different Scaling Indexes.

Besides, Figure 6 shows that in system 1, Pu can be scaled down inversely proportional
to NR1 when scaling index a = 1 while maintain a desirable achievable sum rate when NR1
grows large. In system 2, Pu and PR can be scaled down inversely proportional to NR1 and
NR2 when a = 0, b = 1, or a = 1, b = 0, or a = 1, b = 1 and maintain desirable achievable
sum rates when NR1 grows large. The results shown in Figure 6 are consistent with the
theoretical analysis given by Equations (26) and (38).

5. Conclusions

In this paper, we investigate the uplink of a two-hop low-resolution ADCs massive
MIMO relaying system over Rician channels and compare its superiority of the achievable
sum rate with the one-hop Rayleigh channel system. Firstly, we use the higher-order
statistics to derive the closed-form expression of achievable sum rate. From the simulation
results, we discover that converting a one-hop Rayleigh channel system into a two-hop
Rician channel system can increase the achievable sum rate. Besides, the use of low-
resolution ADCs only causes limited loss of achievable sum rate, but greatly improves the
energy efficiency. Secondly, we discover that as the number of relay antennas continues
to increase, the achievable sum rate eventually reaches a stable state. Finally, the power
scaling law shows that when the number of antennas at the relay grows large, both Pu
and PR can be scaled down inversely proportional to NR1 and NR2, while maintaining a
desirable achievable sum rate.
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MIMO Multi-input Multi-output
LOS Light of Sight
ADCs Analog-to-Digital Converters
CSI Channel State Information
AQNM Additive Quantization Noise Model
SNR Signal-to-noise Ratio
MRC Maximum Ratio Combining
AF Amplify-and-Forward

Appendix A

According to [20], we can get the higher-order statistics

E[||gR1,k||2] = αk NR1

E[||gR2,k||2] = βk NR2

E[|gR1,k, gR1,i|2] =
{

α2
k NR1(NR1 + ∆R1,k) i = k

αkαi NR1Qki i 6= k

E[|gR2,k, gR2,i|2] =
{

β2
k NR2(NR2 + 1) i = k

βkβi NR2Rki i 6= k

Substitute higher-order statistics into (11), the first term in the denominator
tr(E

[
[GH

R1GR1GH
R1GR1]

]
) can be represented as

tr(E
[
[GH

R1GR1GH
R1GR1]

]
)

= tr(E[|gH
R1,i, gR1,i|2] + E[ΣK

i 6=l |g
H
R1,i, gR1,l |2])

= ΣK
l=1α2

i NR1(NR1 + ∆R1,i) + ΣK
i=1ΣK

l 6=iαiαl NR1Qil
∆
= S1

The second term in the denominator σ2
R1tr(E[GH

R1GR1])] can be represented as

σ2
R1tr(E[GH

R1GR1])]

= ΣK
l=1E[gH

R1,l , gR1,l ]

= NR1ΣK
l=1αl

The simplification process of the third term in the denominator tr(E[GH
R1RñR1

GR1]) is
as follows

tr(E[GH
R1RñR1

GR1]) = kρtr
(
E[GH

R1diag(PuGR1GH
R1 + σ2

R1INR1)GR1]
)

= kρtr
(
E[ΣNR1

m=1|gmi|2(σ2
R1 + PuΣK

i 6=n|gmi|2 + Pu|gmn|2])
)

when σ2
R1 = 1

tr(E[GH
R1RñR1

GR1]) = ΣNR1
m=1E[|gmn|2] + ΣNR1

m=1ΣK
i 6=nE[|gmn|2]E[|gmi|2] + PuΣNR1

m=1E[|gmn|4]

According to [13], we can get the higher-order statistics

E[|gR1,mn|2] = αn

E[|gR1,mn|4] = 2α2
n

Substitute the higher-order statistics back to the previous calculation, we can get

tr(E[GH
R1RñR1

GR1]) = tr
(

NR1(σ
2
R1αn + PuαnΣK

i=1αi + Puα2
n)
)

= PuNR1ΣK
n=1αn(αn + ΣK

i=1αi) + NR1σ2
R1ΣK

n=1αn
∆
= S2
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Therefore, we can get the amplication factor γ as

γ =

√
pR

m2
1(puS1 + NR1σ2

R1ΣK
i=1αi) + m1ρ1S2

Appendix B

According to [17,20,22], we can get the higher-order statistics

E[||gR1,k||2] = αk NR1

E[|gR1,k, gR1,i|2] =
{

α2
k NR1(NR1 + 1) i = k

αkαi NR1 i 6= k

Substitute high-order statistics into (18) and (19), we can get

PRayleigh′

k = m2PuE[|gH
R1,kGR1|2]

= m2Puα2
k NR1(NR1 + 1)

NRayleigh′

k = m2PuΣK
j 6=kE[|gH

R1,jGR1|2]

+ m2σ2
R1E[|gH

R1,k|
2] + E[|gH

R1,kRñR1
gR1,k|]

= m2PuNR1ΣK
j 6=kαkαj + m2σ2

R1NR1αk

+ mρ1ΣK
n=1αnNR1(PuΣK

i=1αi + Puαn + σ2
R1)

Appendix C

SNRk =
m2Puα2

k NR1(NR1 + 1)
m2PuNR1ΣK

j 6=kαkαj + m2σ2
R1NR1αk + m1ρ1ΣK

n=1αnNR1(PuΣK
i=1αi + Puαn + σ2

R1)

=
m2Puα2N2

R1
m2Puα2KNR1 + m(1−m)Puα2KNR1

=
m2Puα2N2

R1
mPuα2KNR1

=
mNR1

K

Appendix D

Formula (35) represents the power of the desired signal of the kth user, the calculation
process is as follows

PRician′
k = γ2m2

1m2
2PuE[|gH

R2,kGR2GH
R1gR1,k|2]

= E[|ΣK
i=1gH

R2,kgR2,ig
H
R1,igR1,k|2]

= ΣK
i=1E[|gH

R2,kgR2,ig
H
R1,igR1,k|2] + ΣK

i=1ΣK
l 6=i E[gH

R2,kgR2,ig
H
R2,lgR2,k]E[g

H
R2,igR2,kgH

R2,kgR2,l ]︸ ︷︷ ︸
0

= E[|gH
R2,kgR2,k|2]E[gH

R1,kgR1,k|] + ΣK
i 6=kE[|gH

R2,kgR2,i|2]E[|gH
R1,igR1,k|2]

Substitute the higher-order statistics back to the previous calculation, we can get

PRayleigh′

k = γ2m2
1m2

2Puαkβk NR1NR2[αkβk(NR1 + ∆R1,k)(NR2 + ∆R2,k) + ΣK
i 6=kαiβiQkiRki]
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Formula NRician′
k in (36) represents the power of interference signal and the power of

noise of the kth user and it contains four terms. The calculation process is as follows

(1) ARician
k

Substitute higher-order statistics into ARician
k , we can get the power of interference

ARician
k = γ2m2

1m2
2 puβk NR1NR2ΣK

j 6=kαj[βkαkQkj(NR2 + ∆R2,k)]

(2) BRician
k

Substitute higher-order statistics into BRician
k , we can get the power of gaussian white

noise at R1

BRician
k = γ2m2

1m2
2σ2

R1βk NR1NR2[αkβk(NR2 + ∆R2,k) + ΣK
i 6=kαiβ jRki]

(3) CRician
k

CRician
k = m1ρ1E[gH

R2,kGR2GH
R1diag(PuGR1GH

R1 + σ2
R1 INR1 )GR1GH

R2gR2,k]

= m1ρ1PuE[gH
R2,kGR2GH

R1diag(GR1GH
R1)GR1GH

R2gR2,k] + m1ρ1σ2
R1E[gH

R2,kGR2GH
R1GR1GH

R2gR2,k]

We use E[S1] to represent the first term in CRician
k , E[S2] to represent the second term in

CRician
k . Substitute higher-order statistics into CRician

k , we can get the power of quantization
noise at R1.

The calculation process is as follows

E[S1] = E[gH
R2,kGR2GH

R1diag(GR1GH
R1)GR1GH

R2gR2,k]

= ΣNR1
m=1

(
ΣK

i 6=kE[|gH
R2,kgR2,i|2]E[|gR1,mi|4] + ΣK

i=1ΣK
l 6=iE[|g

H
R2,kgR2,i|]E[|gR1,mi|2|gR1,ml |2]

)
= ΣNR1

m=1
(
ΣK

i 6=kE[|gH
R2,kgR2,i|2]E[|gR1,mi|4] + E[|gR2,k|4]E[|gR1,k|4]

+ ΣK
i 6=kΣK

l 6=iE[|g
H
R2,k, gR2,i|2]E[|gR2,mi|2|gR2,ml |2]

+ ΣK
l 6=iE[|gR2,k|4]E[|gR1,mk|2|gR1,ml |2]

)
= βk NR1NR2

(
(NR2 + ∆R2,k)αkβk(αk + ΣK

l 6=iαl) + ΣK
i 6=kαiβiRki(αi + ΣK

l 6=iαl)
)

E[S2] = E[gH
R2,kGR2GH

R1GR1GH
R2gR2,k] = E[|gR2,kGR2GH

R1|2]

= βk NR1NR2σ2
R1
(
αkβk(NR2 + ∆R2,k) + ΣK

i 6=kαiβiRki
)

∴ CRician
k = γ2m1ρ1m2

2βk NR1NR2
[
Pu
(
(NR2+∆R2,k )αkβk(αk + ΣK

l 6=iαl) + ΣK
i 6=kαiβiRki(αi + ΣK

l 6=iαl)
)

+ σ2
R1
(
αkβk(NR2 + ∆R2,k) + ΣK

i 6=kαiβiRki
)]

(4) DRician
k
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Substitute higher-order statistic into DRician
k , we can get

DRician
k = m2

2σ2
R2E[|gR2,k|2] = m2

2σ2
R2NR2βk

(5) ERician
k

Combine (14) and higher-order statistics, we can get

m2
1E[gH

R1,n(PuGR1GH
R1 + σ2

R1INR1)gR1,n] = m2
1αnNR1(PuΣK

i=1αi + NR1Puαn + σ2
R1)

m1ρ1E[gH
R1,ndiag(PuGR1GH

R1 + σ2
R1INR1)gR1,n]

= Pu(Σ
NR1
m=1E[|gR1,mn|4] + ΣNR1

m=1ΣK
i 6=kE[|gR1,mi|2]) + σ2

R1ΣK
n=1E[|gR1,mn|2]

= m1ρ1αnNR1(PuΣK
i=1αi + Puαn + σ2

R1)

Combine the two items together, we can get

E[gH
R1,n

(
m2

1(PuGR1GH
R1 + σ2

R1INR1) + m1ρ1diag(PuGR1GH
R1 + σ2

R1INR1)
)
gR1,n]

= m1αnNR1(PuΣK
i=1αi + m1NR1Puαn + ρ1Puαn + σ2

R1)

According to [21], we can get the higher-order statistics ΣNR2
m=1E[|gR2,mk|4] = β2

k NR2(1 +

∆R2,k), ΣNR2
m=1E[|gR2,mk|4] = NR2βk. Assume that5n = m1αnNR1(PuΣK

i=1αi + m1NR1Puαn +

ρ1Puαn + σ2
R1), we can get

ERician
k = E[gH

R2,kRñR1
gR2,k]

= m2ρ2σ2
R2E[|gR2,k|2] + m2ρ2ΣNR2

m=1E[|gR2,mk|4]5k +m2ρ2ΣNR2
m=1ΣK

n 6=kE[|gR2,mk|2]E[|gR2,mn|2]5n

Therefore, the quantization noise power DRician
k at R2 can be represented as

ERician
k = E[gH

R2,kRñR1
gR2,k]

= γ2m1m2ρ2NR1NR2βk
(
αkβk∆R2,k(puΣK

i=1αi + m1NR1 puαk + ρ1 puαk + σ2
R1)

+ ΣK
n=1αnβn(puΣK

i=1αi + m1NR1 puαn + ρ1 puαn + σ2
R1)
)
+ m2ρ2σ2

R2NR2βk

Appendix E

Substitute γ into (37), the second term in the denominator can be expressed as

σ2
R2

γ2αkβk N2
R1

= m1λbσ2
R2Nb−2

R1 ×
m1(∆1 + ∆2 + ∆3) + (1−m1)(∆3 + ∆4)

ERαkβk
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where ∆1 = EuN2−a
R1 ΣK

i=1α2
i , ∆2 = EuN−a

R1 (Σ
K
i=1αi)

2, ∆3 = NR1σ2
R1ΣK

i=1αi,
∆4 = EuN−a

R1 ΣK
i=1αi(αi + ΣK

l=1αl). When the value of a and b are different, the limit values
are different.

(1)a < 1, b < 1

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

m2
1λbσ2

R2
ERαk βk

Nb−1
R1 ∆1

= ∞

(2)b = 1, a < b

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1
m2

1λσ2
R2

ERαk βk
∆1

=
m2ERα2

k βk

σ2
R2ΣK

i=1α2
i

(3)a = 1, a > b

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1
m1m2λ2

R1
=

m1Euαk

σ2
R1

(4)a = b = 1

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

m2
1λσ2

R2(m1∆1+∆3)
ERαk βk

=
m1m2EUERα2

k βk

τ

where τ = m2ERαkβkσ2
R1 + σ2

R2(m1EuΣK
i=1α2

i + σ2
R1ΣK

i=1αi)

(5)a > 1

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 + λbσ2

R2Nb−1
R1 O(1)

= 0

(6)a ≤ 1 < b

lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1m2λσ2
R1 +

σ2
R2

γ2αk βk N2
R1

= lim
NR1→∞

m2
1m2λEuαk N1−a

R1

m1λbσ2
R2Nb−1

R1 O(N1−a
R1 )

= 0

Appendix F

Supposing that we have the prefect CSI, NR1 > NR2 � K � 1, α1 = α2 = · · · = αk = α,
β1 = β2 = · · · = βk = β, Pu � σ2

R1, PR � σ2
R2, SNRk can be approximated as follows
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SNRk ≈
m2

1m2Puα2βNR1NR2

m2
1m2NR1NR2αβσ2

R2 + m1(1−m1)K2NR1NR2σ2
R1αβ

≈ m1NR1

K

Therefore, we derive the asymptotic expression as

Rsum ≈
K
2

log2(1 +
m1NR1

K
)
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