
entropy

Article

Schrödinger’s Ballot: Quantum Information and the Violation
of Arrow’s Impossibility Theorem

Xin Sun 1,* , Feifei He 2, Mirek Sopek 3 and Meiyun Guo 4

����������
�������

Citation: Sun, X.; He, F.; Sopek, M.;

Guo, M. Schrödinger’s Ballot:

Quantum Information and the

Violation of Arrow’s Impossibility

Theorem. Entropy 2021, 23, 1083.

https://doi.org/10.3390/e23081083

Academic Editor: Gregg Jaeger

Received: 1 July 2021

Accepted: 13 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Foundation of Computer Science, Catholic University of Lublin, 20-950 Lublin, Poland
2 Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou 510275, China; heff5@mail2.sysu.edu.cn
3 MakoLab SA, 91-062 Lodz, Poland; sopek@makolab.com
4 Institute of Logic and Intelligence, Southwest University, Choingqing 400715, China; guomy007@swu.edu.cn
* Correspondence: xin.sun.logic@gmail.com

Abstract: We study Arrow’s Impossibility Theorem in the quantum setting. Our work is based on the
work of Bao and Halpern, in which it is proved that the quantum analogue of Arrow’s Impossibility
Theorem is not valid. However, we feel unsatisfied about the proof presented in Bao and Halpern’s
work. Moreover, the definition of Quantum Independence of Irrelevant Alternatives (QIIA) in Bao
and Halpern’s work seems not appropriate to us. We give a better definition of QIIA, which properly
captures the idea of the independence of irrelevant alternatives, and a detailed proof of the violation
of Arrow’s Impossibility Theorem in the quantum setting with the modified definition.
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1. Introduction

Many voting protocols based on classical cryptography have been developed and
successfully applied in the last two decades [1,2]. However, the security of protocols based
on classical cryptography is based on the unproven complexity of some computational
algorithms, such as the factoring of large numbers. The research in quantum computation
shows that quantum computers are able to factor large numbers in a short time, which
means that classical protocols based on such algorithms are already insecure. To react to
the risk posed by forthcoming quantum computers, a number of quantum voting protocols
have been developed in the last decade [3–13].

While all these works have focused on the security problems of voting from a crypto-
graphic perspective, Bao and Halpern [14] studied quantum voting from a social choice
theoretic perspective by showing that the quantum analog of Arrow’s Impossibility Theo-
rem is violated in the quantum setting. The idea and formalization of Bao and Halpern [14]
are both interesting. However, we feel unsatisfied about the proof presented in [14]. From a
mathematical perspective, the proof in [14] is not rigorous, especially in dealing with the
notion of Quantum independence of irrelevant alternatives (QIIA). Moreover, the defi-
nition of QIIA in [14] seems not appropriate to us since it does not capture the idea of
independence of irrelevant alternatives. Facing an inappropriate definition of QIIA and an
unsatisfying proof in [14], we can still question whether Arrow’s Impossibility Theorem is
indeed violated in the quantum setting. To answer this question, in this paper we give a
better definition of QIIA, which properly captures the idea of independence of irrelevant
alternatives, and a detailed proof of the violation of Arrow’s Impossibility Theorem in the
quantum setting with the modified definition.

The structure of this paper is as follows. We review some background knowledge on
classical and quantum voting in Section 2. In Section 3 we introduce a voting rule called
quantum Condorcet voting and prove that Arrow’s Impossibility Theorem is violated by
quantum Condorcet voting. We discuss related work in Section 4 and conclude this paper
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with the plan for the future work in Section 5. Some primitives of the quantum information
theory which are used in this paper are collected in Appendix A.

2. Background
2.1. Classical Voting System

Now we will briefly review the theory of classical voting. A more detailed introduction
to the classical voting and social choice theory can be found in Zwicker [15], Pacuit [16]
and Brandt et al. [17].

Let V = {v1, . . . , vn} be a finite set of (at least two) voters and C = {c1, c2, . . . , cm}
be a non-empty set of candidates. Each voter vi ∈ V is endowed with preference �i over
C. The preference �i is a binary relation on C that is irreflexive, transitive, and complete.
In other words, �i is a linear order on C. Set theoretically, an order � is defined by a set
of ordered pairs such as {(c1, c2), (c2, c3), (c1, c3)}. We use x � y to represent (x, y) ∈�.
Let L(C) denote the set of all linear orders on C. A profile R = (R1, . . . , Rn) ∈ L(C)V is a
vector of linear orders (i.e., preferences), where Ri is the linear order supplied by voter vi.
We write VR

x�y to denote the set of voters that rank candidate x above candidate y under
profile R. A Social Welfare Function (SWF) is a function F : L(C)V 7→ L(C). Two widely
accepted properties of SWF are unanimity and independence of irrelevant alternatives.

Definition 1 (Unanimity). An SWF F satisfies the unanimity condition if, whenever all voters
rank x above y, then so does society:

VR
x�y = V implies (x, y) ∈ F(R).

Definition 2 (Independence of Irrelevant Alternatives (IIA)). An SWF F satisfies IIA if the
relative social ranking of two candidates only depends on their relative voter rankings:

VR
x�y = VR′

x�y implies (x, y) ∈ F(R)⇔ (x, y) ∈ F(R′).

The intuition about IIA is that two ballot profiles that are similar according to (x, y) should
produce the same ranking for (x, y). This intuition will be used later to define the quantum
analogue of IIA.

The celebrated Arrow’s Impossibility Theorem states that any SWF that satisfies both
unanimity and IIA must also satisfy a property that any SWF should not satisfy: dictatorship.

Definition 3 (Dictatorship). An SWF F satisfies dictatorship if there is a voter vi ∈ V such that
F(R) = Ri for every profile R = (R1, . . . , Rn).

Theorem 1 (Arrow [18]). Any SWF for three or more candidates that satisfies unanimity and the
IIA must also satisfy dictatorship.

Arrow’s Impossibility Theorem is an important result in the field of social choice and
welfare economics. According to the theorem, when there are more than two options, it is
impossible for a ranked-voting system to reach a community-wide order of preferences by
collecting and converting individuals’ preferences orders while meeting a set of conditions
which are the requirements for a reasonably fair voting procedure.

2.2. Quantum Voting System

Now we introduce our formalism of quantum voting system, which is similar to
the formalism of Bao and Halpern [14]. In a quantum voting system with candidates
C = {c1, c2, . . . , cn}, we specify a Hilbert space H of which the dimension is |L(C)|. That is,
H = C|L(C)|. Every voter vi ∈ V is associated with a Hilbert space Hi which is isomorphic
to H. Every linear order R ∈ L(C) is naturally viewed as basis vector |R〉 of H. The basis
B = {|R1〉i, . . . , |R|L(C)|〉i} is called the preference basis for Hi.

Consider a pair (x, y) of candidates. H decomposes into subspaces associated with the
possible relationships between x and y. By Sx�y, we denote the subspace spanned by the
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B elements that encode x � y (e.g., |x � y � z〉, |z � x � y〉). We use Πx�y to denote the
projector onto the subspace Sx�y and use Ωx�y to denote the maximal mixed state of the
subspace Sx�y, i.e., Ωx�y = 1

Tr(Πx�y)
Πx�y.

A quantum ballot of voter vi is a density operator ρ ∈ D(Hi). A quantum ballot
profile is a density operator ρ ∈ D(H1 ⊗ . . .⊗Hn). We use Tr 6=i(ρ) to denote the quantum
ballot obtained by applying partial trace on ρ to trace out all components that are not
equal to i. A basis quantum ballot profile is a profile in which every component is a
density operator of a basis vector. A quantum social welfare function (QSWF) is a linear
map E : D(H1 ⊗ . . .⊗Hn) 7→ D(H). The result of voting with quantum ballot profile ρ is
obtained by measuring E(ρ) on the preference basis.

Definition 4 (Quantum Unanimity [14]). A QSWF E satisfies the sharp unanimity condition if
it satisfies the following:

• For all quantum ballot profiles ρ and all pairs of candidates (x, y), if Tr(Πx�y(Tr 6=i(ρ))) = 1
for each voter vi, then Tr(Πx�y(E(ρ))) = 1.

A QSWF E satisfies the unsharp unanimity condition if it satisfies the following:

• For all quantum ballot profiles ρ and all pairs of candidates (x, y), if Tr(Πx�y(Tr 6=i(ρ))) > 0
for each voter vi, then Tr(Πx�y(E(ρ))) > 0.

A QSWF E satisfies the quantum unanimity condition if it satisfies both sharp and unsharp
unanimity conditions.

Sharp unanimity ensures that if all voters prefer x to y with certainty, then the society
prefers x to y with certainty. On the other hand, unsharp unanimity ensures that if every
voter prefers x to y with positive probability, then the society also prefers x to y with
positive probability.

Definition 5 (Quantum Independence of Irrelevant Alternatives (QIIA)). A QSWF E satis-
fies the sharp IIA condition if it satisfies the following:

• For all quantum ballot profiles ρ and ρ′ and all pairs of candidates (x, y), if Tr(Πx�y(Tr 6=i(ρ))) =
Tr(Πx�y(Tr 6=i(ρ

′))) for each voter vi, then Tr(Πx�y(E(ρ))) = 1 implies that
Tr(Πx�y(E(ρ′))) = 1.

A QSWF E satisfies unsharp IIA if the following condition is satisfied:

• For all quantum ballot profiles ρ, ρ′ and all pairs of candidates (x, y), if Tr(Πx�y(Tr 6=i(ρ))) =
Tr(Πx�y(Tr 6=i(ρ

′))) for each voter vi, then Tr(Πx�y(E(ρ))) > 0 implies that
Tr(Πx�y(E(ρ′))) > 0.

A QSWF E satisfies the QIIA condition if it satisfies both sharp and unsharp IIA conditions.

Note that QIIA in our definition is different from the QIIA in [14]. QIIA in [14] states
that whether E(ρ) has support on Sx�y depends only on whether each ρi has support
on Sx�y and Sy�x. More precisely, it states that for all quantum ballot profiles ρ, ρ′ and
all pairs of candidates (x, y), if Tr(Πx�y(Tr 6=i(ρ))) > 0 iff Tr(Πx�y(Tr 6=i(ρ

′))) > 0 and
Tr(Πy�x(Tr 6=i(ρ))) > 0 iff Tr(Πy�x(Tr 6=i(ρ

′))) > 0 for each voter vi, then Tr(Πx�y(E(ρ))) >
0 implies that Tr(Πx�y(E(ρ′))) > 0.

The intuition of QIIA is the same as the intuition of classical IIA: it states that two
ballot profiles that are similar according to (x, y) should produce the same ranking for
(x, y). It seems Bao and Halpern [14] considered two ballot profiles ρ and ρ′ to be similar
according to (x, y) as long as Tr(Πx�y(Tr 6=i(ρ))) > 0 iff Tr(Πx�y(Tr 6=i(ρ

′))) > 0 and
Tr(Πy�x(Tr 6=i(ρ))) > 0 iff Tr(Πy�x(Tr 6=i(ρ

′))) > 0. To us this requirement is too weak.
For example, ρ = 0.99|x � y � z〉〈x � y � z|+ 0.01|y � x � z〉〈y � x � z| and ρ′ =
0.01|x � y � z〉〈x � y � z|+ 0.99|y � x � z〉〈y � x � z| are similar according to (x, y)
in Bao and Halpern’s definition, but intuitively they shouldn’t. On the other hand, in our
definition ρ and ρ′ are not similar according to (x, y). Indeed, in our definition two profiles
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ρ and ρ′ are similar according to (x, y) only if Tr(Πx�y(Tr 6=i(ρ))) = Tr(Πx�y(Tr 6=i(ρ
′))) for

all voter vi. According to our QIIA, ρ and ρ′′ = 0.99|x � z � y〉〈x � z � y|+ 0.01|y � z �
x〉〈y � z � x| are similar according to (x, y). We believe our definition of QIIA properly
captures the idea of independence of irrelevant alternatives. That’s why we use it to replace
the QIIA of Bao and Halpern [14].

Definition 6 (Quantum Dictatorship [14]). A QSWF E satisfies sharp dictatorship if there is a
voter vi such that:

• For all quantum ballot profiles ρ = (ρ1, . . . , ρn) and all pairs of candidates (x, y), Tr(Πx�yρi) = 1
iff Tr(Πx�y(E(ρ))) = 1.

A QSWF E satisfies unsharp dictatorship if there is a voter vi such that:

• For all quantum ballot profiles ρ = (ρ1, . . . , ρn) and all pairs of candidates (x, y), Tr(Πx�yρi) > 0
iff Tr(Πx�y(E(ρ))) > 0.

A QSWF E satisfies quantum dictatorship if it satisfies both sharp and unsharp dictatorship.

Sharp dictatorship states that whenever the dictator prefers x to y with certainty, then so
does the society. Unsharp dictatorship states that whenever the dictator prefers x to y with
positive probability, then so does the society.

3. Quantum Condorcet Voting and Arrow’s Impossibility Theorem

We will use a special voting rule called Quantum Condorcet Voting Eqcv to refute
Arrow’s Impossibility Theorem in the quantum setting. Since Eqcv is a linear map from
D(H1 ⊗ . . .⊗Hn) to D(H), we only need to specify how Eqcv operates on a basis quantum
ballot profile.

Definition 7 (Quantum Condorcet Voting). Let ρ1 ⊗ . . .⊗ ρn be a basis quantum ballot profile.
The quantum Condorcet voting Eqcv operates in the following steps:

1. Calculates the Condorcet score of each candidate according to ρ1 ⊗ . . .⊗ ρn. The Condorcet
score of a candidate is the number of winning in pairwise comparison with other candidates.
That is, for a candidate x, his Condorcet score Sc(x) is |{y ∈ C : |VR

x�y| ≥ |VR
y�x|}| where

R is the classical ballot profile corresponding to ρ1 ⊗ . . .⊗ ρn.
2. Generate a weak order� over all candidates according to their Condorcet score. That is, x � y

iff Sc(x) ≥ Sc(y).
3. Complete the weak order. That is, generate the set {�1, . . . ,�m} in which each �i is a linear

order that extends � and {�1, . . . ,�m} contains all extensions of �.
4. Transform the linear order into a quantum state. That is, for {�1, . . . ,�m} we create a

quantum state σ1 = 1
m ∑

i
σi, where each σi is the basis ballot that corresponds to �i.

5. Give the minority a shot. For any candidate pair (x, y) which is encoded by at least one ρi, We
spread an amount δ ∈ (0, 1) of weight across the x � y subspace. That is, σ1 is changed to
σ2 = (1− kδ)σ1 + δΩx1�y1 + . . . + δΩxk�yk , where (x1, y1), . . . , (xk, yk) ranges over all
candidate pairs that are encoded by at least one ρi. The parameter δ is required to satisfy that
δ < 1

|C|2 .

6. Enforce unanimity. For any candidate pair (x, y) which is encoded by all the ρi, we project

σ2 onto the x � y subspace. That is, σ2 is changed to σ3 = Πxk�yk ...Πx1�y1 σ2Πx1�y1 ...Πxk�yk

Tr(Πxk�yk ...Πx1�y1 σ2)
,

where (x1, y1), . . . , (xk, yk) ranges over all candidate pairs that are encoded by all the ρi.

Both giving the minority a shot and enforcing unanimity are first introduced in Bao and
Halpern [14]. While they may look strange at first sight, both of them will be useful in
disproving Arrow’s Impossibility Theorem.

Theorem 2. The Quantum Condorcet Voting Eqcv satisfies sharp unanimity.
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Proof. Let ρ = ρ1⊗ . . .⊗ ρn be a basis quantum ballot profile. If Tr(Πx�y(ρi)) = 1 for each
voter vi, then each ρi encodes x � y since ρi is a basis ballot. Then the projector Πx�y will
be applied in the step of enforcing unanimity. Therefore, Tr(Πx�y(Eqcv(ρ))) = 1.

Now let ρ be a quantum ballot profile such that Tr(Πx�y(Tr 6=i(ρ))) = 1 for each
voter vi. Note that Tr(Πx�y(Tr 6=i(ρ))) = 1 implies that Tr 6=i(ρ) = xi

1|φi
1〉〈φi

1| + . . . +
xi

m|φi
m〉〈φi

m| where each φi
j is a basis vector that encodes x � y and ∑

j
xi

j = 1. There-

fore, ρ = x1
1 . . . xn

1 |φ1
1 ⊗ . . . ⊗ φn

1 〉〈φ1
1 ⊗ . . . ⊗ φn

1 | + . . . + x1
m . . . xn

m|φ1
m ⊗ . . . ⊗ φn

m〉〈φ1
m ⊗

. . . ⊗ φn
m|. It then follows that Tr(Πx�y(Tr 6=i(|φ1

j ⊗ . . . ⊗ φn
j 〉〈|φ1

j ⊗ . . . ⊗ φn
j |))) = 1 for

all i. Then we know that Tr(Πx�y(Eqcv(|φ1
j ⊗ . . . ⊗ φn

j 〉〈|φ1
j ⊗ . . . ⊗ φn

j |))) = 1 because

|φ1
j ⊗ . . . ⊗ φn

j 〉〈|φ1
j ⊗ . . . ⊗ φn

j | is a basis quantum ballot profile. Therefore, we have

Tr(Πx�y(Eqcv(ρ))) = x1
1 . . . xn

1 + . . . + x1
m . . . xn

m = 1.

Theorem 3. The Quantum Condorcet Voting Eqcv satisfies unsharp unanimity.

Proof. Let ρ = ρ1 ⊗ . . . ⊗ ρn be a basis quantum ballot profile where each ρi is a basis
vector of Hi. If Tr(Πx�y(ρi)) > 0 for each voter vi, then each ρi encodes x � y since ρi is a
basis ballot. Then the projector Πx�y will be applied in the step of enforcing unanimity.
Therefore, Tr(Πx�y(Eqpv(ρ))) = 1 > 0.

Now let ρ be a quantum ballot profile such that Tr(Πx�y(Tr 6=i(ρ))) > 0 for each voter
vi. Note that Tr(Πx�y(Tr 6=i(ρ))) > 0 implies that Tr 6=i(ρ) = xi|φi〉〈φi|+ . . . for some basis
vector |φi〉 which encodes x � y and 0 < xi ≤ 1. Hence ρ = x1 . . . xn|φ1 ⊗ . . .⊗ φn〉〈φ1 ⊗
. . .⊗ φn|+ . . .. Note that |φ1 ⊗ . . .⊗ φn〉〈φ1 ⊗ . . .⊗ φn| is a basis quantum ballot profile in
which each φi encode x � y. It then follows that Tr(Πx�y(Eqcv(|φ1 ⊗ . . .⊗ φn〉〈φ1 ⊗ . . .⊗
φn|))) = 1. From 0 < x1 . . . xn ≤ 1 we now know that Tr(Πx�y(Eqpv(ρ))) > 0.

Theorem 4. The Quantum Condorcet Voting Eqcv satisfy sharp IIA.

Proof. Let ρ = ρ1 ⊗ . . .⊗ ρn and ρ′ = ρ′1 ⊗ . . .⊗ ρ′n be two basis quantum ballot profiles.
Assume Tr(Πx�y(ρi)) = Tr(Πx�y(ρ′i)) for each voter vi. If Tr(Πx�y(Eqcv(ρ))) = 1, then
we know x � y is encoded by all the ρi. For otherwise Ωy�x will appear in σ2 in the
step of giving the minority a shot, making Tr(Πx�y(Eqcv(ρ))) < 1. Since Tr(Πx�y(ρi)) =
Tr(Πx�y(ρ′i)) for each voter vi, we know that x � y is encoded by all the ρ′i. Hence
Tr(Πx�y(Eqcv(ρ′))) = 1.

Now, let ρ and ρ′ be quantum ballot profiles such that Tr(Πx�y(Tr 6=i(ρ)))
= Tr(Πx�y(Tr 6=i(ρ

′))) for each voter vi. If Tr(Πx�y(Eqcv(ρ))) = 1, then we know x � y
is encoded by all Tr 6=i(ρ), i.e., Tr(Πx�y(Tr 6=i( ρ))) = 1. For otherwise Ωy�x will appear
in σ2 in the step of giving the minority a shot and Πx�y will not appear in σ3 in the
step of enforcing unanimity, making Tr(Πx�y(Eqcv(ρ))) < 1. Since Tr(Πx�y(Tr 6=i(ρ)))
= Tr(Πx�y(Tr 6=i(ρ

′))) for each voter vi, we know that x � y is encoded by all ρ′i. Hence
Tr(Πx�y(Eqcv(ρ′ ))) = 1.

Theorem 5. The Quantum Condorcet Voting Eqcv satisfies unsharp IIA.

Proof. Let ρ = ρ1 ⊗ . . .⊗ ρn and ρ′ = ρ′1 ⊗ . . .⊗ ρ′n be two basis quantum ballot profiles.
Assume Tr(Πx�y(ρi)) = Tr(Πx�y(ρ′i)) for each voter vi. From Tr(Πx�y(Eqcv(ρ))) > 0 we
know that y � x is not encoded by all candidates. Without loss of generality, let’s assume
ρ1 encodes x � y but not y � x. Then ρ′1 also encodes x � y but not y � x. Hence
Tr(Πx�y(Eqcv(ρ′))) > 0.

Now, let ρ and ρ′ be quantum ballot profiles such that Tr(Πx�y(Tr 6=i(ρ)))
= Tr(Πx�y(Tr 6=i(ρ

′))). If Tr(Πx�y(Eqcv(ρ))) > 0, then we know y � x is not encoded
by all Tr 6=i(ρ). Since Tr(Πx�y(Tr 6=i(ρ))) = Tr(Πx�y(Tr 6=i(ρ

′))) for each voter vi, we know
that y � x is not encoded by all Tr 6=i(ρ

′). Hence Tr(Πx�y( Eqcv(ρ′))) > 0.
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Theorem 6. The Quantum Condorcet Voting Eqcv does not satisfy sharp dictatorship.

Proof. We will construct a ballot profile in which no candidate is a dictator. Let {x, y, z} be
the set of candidates. Let ρ = ρ1⊗ ρ2⊗ ρ3 be a quantum ballot profile where ρ1 = |x � y �
z〉〈x � y � z|, ρ2 = |y � z � x〉〈y � z � x|, ρ3 = |z � x � y〉〈z � x � y|. Then the weak
order generated by Eqcv according to the Condorcet score is x ≡ y ≡ z. The completion
of x ≡ y ≡ z is {x � y � z, x � z � y, y � x � z, y � z � x, z � x � y, z � y � x}.
Therefore the quantum state generated in step 4 of quantum Condorcet voting is σ1 =
1
6 (|x � y � z〉〈x � y � z|+ |x � z � y〉〈x � z � y|+ |y � x � z〉〈y � x � z|+ |y � z �
x〉〈y � z � x|+ |z � x � y〉〈z � x � y|+ |z � y � x〉〈z � y � x|). Therefore, we have
Tr(Πx�yρ1) = 1 but Tr(Πx�y(Eqcv(ρ))) < 1, Tr(Πy�zρ2) = 1 but Tr(Πy�z(Eqcv(ρ))) < 1,
Tr(Πz�xρ3) = 1 but Tr(Πz�x(Eqcv(ρ))) < 1. This violates sharp dictatorship.

Theorem 7. The Quantum Condorcet Voting Eqcv does not satisfy unsharp dictatorship.

Proof. Consider again the profile constructed in the above proof. We have Tr(Πz�x(Eqcv(ρ))) >
0 but Tr(Πz�xρ1) ≯ 0, Tr(Πx�y(Eqcv(ρ))) > 0 but Tr(Πx�yρ2) ≯ 0, Tr(Πy�z(Eqcv(ρ))) > 0
but Tr(Πy�zρ3) ≯ 0. This violates unsharp dictatorship.

By combining Theorems 2–7 we conclude that Quantum Condorcet Voting satisfies
Quantum Unanimity and the QIIA but prevents Quantum Dictatorship. In other words,
we can infer the following corollary:

Corollary 1. Arrow’s Impossibility Theorem is not valid in quantum voting.

4. Related Work
4.1. Security of Quantum Voting

Most of the related work on quantum voting focus on the security of voting. The
first quantum voting protocol was proposed by Hillery et al. [3]. They proposed two
voting modes, namely traveling ballot and distributed ballot to ensure the security of
voting. The protocol designed by Vaccaro et al. [4] uses entangled states to ensure that the
votes are anonymous and to allow the votes to be tallied. The entanglement is distributed
over separated sites; the physical inaccessibility of any one site is sufficient to guarantee
the anonymity of the votes. Horoshko and Kilin [6] proposed a quantum anonymous
voting scheme based on a Bell-state. Their protocol protects both the voters from a curious
tallyman and all the participants from a dishonest voter in an unconditionally secure way.
Wang et al. [10] proposed a quantum anonymous voting protocol assisted by two kinds
of entangled quantum states. They provided a mechanism of opening and permuting the
ordered votes of all the voters in an anonymous manner; any party who is interested in
the voting results can obtain the voting result through a simple calculation. Their protocol
possesses the properties of privacy, self-tallying, nonreusability, verifiability, and fairness
at the same time.

In our previous work [13] a simple voting protocol based on Quantum Blockchain
was proposed. Despite its simplicity, our protocol satisfies the most important properties
of the secure voting protocols: is anonymous, binding, non-reusable, verifiable, eligible,
fair and self-tallying. The protocol could also be implemented using presently available
technology. One limitation of this protocol is that it works for only 2 candidates. In a
recent paper [19] we overcame that limitation by realizing the classical Condorcet voting
on Quantum Blockchain.

4.2. Probabilistic Social Choice

Another field of research related to ours is the probabilistic social choice theory [20,21].
In probabilistic social choice, a voter’s ballot is represented by a probability distribution
(p1, . . . , pm) over candidates C = {c1, . . . , cm}, where pi is the probability for the voter to



Entropy 2021, 23, 1083 7 of 10

vote for ci. The voting rules in probabilistic social choice is a function that maps a collection
of ballots to a social ballot, which is again a probability distribution over candidates C.

Classical ballot and probabilistic ballot are incomparable in the sense that one cannot
completely express the other. It is easy to see that classical ballot cannot express probabilistic
ballot. On the other hand, although it is shown by Intriligator [20] that a probabilistic ballot
induces a weak order on candidates simply by ranking them according to the probability
assigned to them, this order is by no means a classical ballot. Indeed, a classical ballot
x � y � z informs us that x is chosen with certainty when comparing x and y and
comparing x and z, y is chosen with certainty when comparing y and z. But after some
simple deduction we can convince ourselves that no probabilistic ballot can give us the
same information.

Quantum ballot unifies both classical and probabilistic ballots as special cases. A basis
quantum ballot |x � y〉 is the same as a classical ballot x � y. For a probabilistic ballot
(px, py, pz), the quantum ballot px|x � y � z〉〈x � y � z| + py|y � x � z〉〈y � x �
z|+ pz|z � x � y〉〈z � x � y| is one of its quantum analogues.

The classical Arrow’s theorem, often implicitly, assumes that the social welfare func-
tion should yield a unique and complete ranking of societal choices for any set of individual
voter preferences. Therefore, it must provide the same ranking each time voters’ prefer-
ences are presented the same way (i.e., deterministically). This is usually referred to as
universality. I am not sure if this condition is fulfilled in the quantum approach.

5. Conclusions and Future Work

In this paper we study Arrow’s Impossibility Theorem in the quantum setting. We
first modify the definition of QIIA in a way that precisely captures the idea of independence
of irrelevant alternatives. We then present a detailed proof of the violation of Arrow’s
Impossibility Theorem with our modified definition.

The violation of Arrow’s Impossibility Theorem shows that quantum voting outper-
forms classical voting in practice from the perspective of democracy. The existing work
on quantum voting has already demonstrated its advantage on security. Since quantum
voting has advantages in both democracy and security, we believe that quantum voting
machines may be deployed for election in many countries in the foreseeable future with
the advancement of quantum information technology.

In [19], we have demonstrated that Condorcet voting on Quantum Blockchain signifi-
cantly simplifies the task of electronic voting, and at the same time ensures many desired
security properties. In the future, we will further improve Quantum Condorcet Voting
such that it has advantages for both security and the quality of the democratic processes.

We will also investigate the validity of other theorems of classical social choice theory
in the quantum setting. Those theorems include Sen’s Theorem on the impossibility of a
Paretian Liberal [22], the Muller-Satterthwaite Theorem on surjective monotonicity [23]
and the Gibbard-Satterthwaite Theorem on strategic manipulation [24]. The third direction
of research we are interested in, is quantum logic for social choice. Modal logic has been
used as a powerful tool to model and reason about social choice [25–28]. It is both natural
and valuable to develop a quantum logic to model and reason about quantum social
choice. A category theoretic characterization of Arrow’s Impossibility Theorem was given
in Abramsky [29]. Concerning the usage of category theory in the research of quantum
information [30], we will also develop a category theoretic characterization of quantum
voting in the future.

The classical social welfare function is deterministic in the sense that it yields a unique
ranking of societal choices for any set of ballot profiles. Therefore, it provides the same
ranking each time voters’ preferences are presented the same way. This is usually referred
to as universality. Does universality hold in quantum voting? It seems the answer is
both yes and no. Universality holds in quantum voting in the sense that a quantum
social welfare function yields a unique quantum ballot for a given quantum ballot profile.
Universality does not hold in quantum voting in the sense that measuring a quantum
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ballot in the preference basis produces a basis ballot, which is the final result of voting,
in a non-deterministic manner. This observation suggests that universality is not a proper
concept in quantum voting. In the future we will study some variants of universality which
plays a meaningful role in quantum voting.
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Appendix A. Basics of Quantum Information

Some primitives of quantum information which are used in this paper are collected in
this appendix. The readers who are interested in quantum information are recommended
to textbooks such as Yanofsky and Mannucci [31], Scherer [32], Nielsen and Chuang [33]
and Watrous [34].

Definition A1 (Hilbert space). A (finite-dimensional) Hilbert space H is a

1. complex vector space, that is,

φ, ψ ∈ H and a, b ∈ C⇒ aφ + bψ ∈ H,

2. with a (positive-definite) scalar product 〈·|·〉 : H×H 7→ C such that for all φ, ψ, φ1, φ2 ∈ H
and a, b ∈ C
(a) 〈φ|ψ〉 = 〈ψ|φ〉
(b) 〈φ|φ〉 ≥ 0
(c) 〈φ|φ〉 = 0 iff φ = 0
(d) 〈ψ|aφ1 + bφ2〉 = a〈ψ|φ1〉+ b〈ψ|φ2〉

In quantum computation and quantum information, we only consider finite-dimensional
Hilbert spaces. A vector φ of a Hilbert space is usually represented in the Dirac notion as |φ〉
in quantum computing. A Hilbert space H induces a norm ‖.‖ defined by ‖φ‖ =

√
〈φ|φ〉

for any φ ∈ H.

Definition A2 (orthonormal basis and dimension). An orthonormal basis {|φi〉} for a Hilbert
space H is a basis of H whose vectors are unit vectors and are orthogonal to each other, that is, for any
|φi〉, |φj〉, ‖φi‖ = 1 and 〈φi|φj〉 = 0. The dimension of a Hilbert space is the number of vectors of
an orthonormal basis.

Definition A3 (tensor product). Given Hilbert spaces V and W of dimension m and n re-
spectively, their tensor product, denoted V ⊗W, is a mn-dimensional space consisting of lin-
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ear combinations of outer products |v〉 ⊗ |w〉 of vectors |v〉 = (v1, v2, . . . , vm)T ∈ V and
|w〉 = (w1, w2, . . . , wn)T ∈W, where

|v〉 ⊗ |w〉 =


v1w1
v1w2

...
vmwn

 (A1)

Definition A4 (subspace). A subspace of a Hilbert space V is a subset W of V such that W is
also a Hilbert space.

Definition A5 (operator). A linear map A : H 7→ H is called an operator on H.

We use L(H) to denote the set of all operators on H.

Definition A6 (adjoint). The operator A∗ : H 7→ H that satisfies 〈A∗φ|ψ〉 = 〈φ|Aψ〉 for all
φ, ψ ∈ H is called the adjoint operator to A.

Definition A7 (projector). A projector of a Hilbert space H is a linear map P : H 7→ H such that
P2 = P and P∗ = P.

Every subspace V corresponds to a unique projector PV . Projectors are related to
projective measurements in quantum mechanics. We use an operator M to represent an
observable of the quantum system being observed, with a decomposition M = ∑m Pm,
where Pm is the projector onto the eigenspace of M with eigenvalue m. The result of
measuring the state |ψ〉 will be one of M’s eigenvalues, and the probability of getting result
m is p(m) = 〈ψ|Pm|ψ〉.

Definition A8 (trace). Let H be a Hilbert space and ρ be an operator on H. The trace of ρ is
defined by

Tr(ρ) = ∑
i
〈i|ρ|i〉

where {|i〉} is an orthonormal basis of H.

Definition A9 (positive semidefinite operator). An operator A : H 7→ H is positive semidefinite
if it holds that A = B∗B for some operator B ∈ L(H).

Definition A10 (density operator). A positive semidefinite operator ρ on H is a density operator
if it holds that ρ = ρ∗ and Tr(ρ) = 1.

Definition A11 (partial trace). Suppose the composite system of two subsystems A and B is
described by the density operator ρAB. The partial trace over B is defined by

ρA = TrB(ρAB) = ∑
i
(IA ⊗ 〈i|)ρAB(IA ⊗ |i〉)

where {|i〉} is an orthonormal basis of the Hilbert space HB. ρA is called the reduced density
operator of the subsystem A. The partial trace over A can be defined in a similar way.
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