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Abstract: Timely status updates are critical in remote control systems such as autonomous driving
and the industrial Internet of Things, where timeliness requirements are usually context dependent.
Accordingly, the Urgency of Information (UoI) has been proposed beyond the well-known Age of
Information (AoI) by further including context-aware weights which indicate whether the monitored
process is in an emergency. However, the optimal updating and scheduling strategies in terms of UoI
remain open. In this paper, we propose a UoI-optimal updating policy for timely status information
with resource constraint. We first formulate the problem in a constrained Markov decision process
and prove that the UoI-optimal policy has a threshold structure. When the context-aware weights
are known, we propose a numerical method based on linear programming. When the weights are
unknown, we further design a reinforcement learning (RL)-based scheduling policy. The simulation
reveals that the threshold of the UoI-optimal policy increases as the resource constraint tightens. In
addition, the UoI-optimal policy outperforms the AoI-optimal policy in terms of average squared
estimation error, and the proposed RL-based updating policy achieves a near-optimal performance
without the advanced knowledge of the system model.

Keywords: age of information; constrained Markov decision process; reinforcement learning; context-
awareness; timely status updates

1. Introduction

With the development of 5G and the Internet of Things (IoT), requirements for wireless
communication have shifted from merely providing communication channels to covering
the entire process of various IoT applications, e.g., autonomous vehicle [1] and virtual
reality (VR) [2], where sensing, communication, computation, and control form a closed
loop. Therefore, in addition to the communication delay, it is necessary to consider the
information delay counted from the generation of the state information to the execution,
namely the timeliness of information. For this purpose, Age of Information (AoI) has
been proposed, which is defined as the time elapsed since the generation time of the latest
received packets [3]. Due to its concise definition and clear physical meaning, AoI has been
widely used for the design of scheduling and updating policies in remote estimation [4–6]
and wireless communication networks [7–12]. Most existing works focus on optimizing
average AoI or peak age. In [13], the authors claim that minimizing average age cannot
satisfy the requirements for ultra-reliable low-latency communication (URLLC) and study
the tail distribution of AoI. The violation probability for peak age is derived in [14] and the
stationary distribution of AoI is studied in [15].

Nevertheless, the AoI still has some limitations. First, it fails to measure the nonlinear
performance degradation caused by information staleness. In [16–19], nonlinear age penalty
functions were introduced to solve this problem. Meanwhile, the Age of Synchronization
(AoS) [20] and Age of Incorrect Information (AoII) [21] are defined to associate information
freshness with the content of information. AoS is the time elapsed since the information at
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the receiver becomes desynchronized with the actual status of the monitored process. AoII
is defined as the product of an increasing time penalty function and a penalty function
of the estimation error. In addition, the status of heterogeneous data sources may change
at different rates. A fast-changing process may require information with a lower age.
However, age is independent of the changing rate and thus is not proper in the cases when
heterogeneous data sources are jointly considered. To solve this problem, weighted age
was introduced in [22,23] to distinguish important monitored processes. In [24], the metric
based on information theory is proposed as a replacement of the time-based metric, AoI,
to characterize the changing rate. In [5], the authors claim that minimizing age is not
equivalent to minimizing the estimation error in a remote estimation problem and propose
an effective age to solve this problem [25].

Practical systems (e.g., V2X-communication systems) may have different requirements
for information freshness with different contexts. The context refers to all environmental
factors that affect the requirement for information freshness. Therefore, resources should
be reserved for frequent status updates in emergency to ensure safety.

However, the timeliness metrics mentioned above pay no attention to the significance
of context information. To solve this problem, Urgency of Information (UoI) has been
proposed in [26–28] to measure the influence of inaccurate information on performance
under different contexts. To be specific, UoI uses a time-variant context-aware weight ω(t)
to distinguish different contexts. A higher ω(t) indicates that the system is in more urgent
situations (e.g., when a vehicle is approaching an intersection or overtaking) and therefore
requires frequent updates. For example, when a vehicle passes through an intersection,
the context-aware weight increases as the distance between the vehicle and the center of
the intersection decreases. Meanwhile, the estimation error Q(t) is introduced to measure
the information inaccuracy, which is defined as the difference between the actual status
and the estimated status at the receiver. The larger the absolute value of Q(t) is, the less
accurate the estimated status is. Therefore, UoI is defined as the product of context-aware
weight and a cost function of the estimation error Q(t):

F(t) = ω(t)δ(Q(t)). (1)

In discrete-time systems, the estimation error Q(t) is:

Q(t) =
t−1

∑
τ=g(t)

A(τ), (2)

where g(t) is the generation time of the latest status update at the receiver and A(t) is
the increment in estimation error in time slot t. Specifically, if the context-aware weight
is time-invariant (i.e., ω(t) = 1), and A(t) = 1 as well as δ(Q(t)) = Q(t), UoI is the same
as AoI. If the context-aware weight is process-dependent, UoI can represent weighted
age. If the cost function δ(Q(t)) is nonlinear, UoI can represent the nonlinear age penalty
function. For example, when the outdated information is worthless, e.g., the information
is about sales that expire after some time [29], then the shifted unit step cost function
δ(Q(t)) = u(Q(t)− τ), τ > 0 is recommended. For the unit step function, u(x) = 1 when
x ≥ 0 and otherwise u(x) = 0.

In this work, we considered a single-user remote monitoring system, and the objective
was to find an updating policy minimizing the average UoI over time under the constraint
on average update frequency. To solve this problem, Refs. [27,30] proposed update-index-
based adaptive schemes with Lyapunov optimization but did not conduct a theoretical
analysis of their optimality. In addition, the constrained Markov decision process (CMDP)
formulation was only used in the simulation for a numerically solved benchmark. Based on
the existing works, in this paper, we theoretically analyzed the structure of the UoI-optimal
policy and focused on how to derive an updating policy in an unknown environment.

The main contributions of this paper are summarized as follows.
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• In contrast to [27,30], we assumed that the context-aware weight is a first-order irre-
ducible positive recurrent Markov process or independent and identically distributed
(i.i.d.) over time. We formulated the updating problem as a CMDP problem and
proved the single threshold structure of the UoI-optimal policy. We then derived the
policy through LP with the threshold structure and discussed the conditions that the
monitored process needs to satisfy for the threshold structure.

• When the distributions of the context-aware weight and the increment in estimation
error were unknown, we used model-based RL method to learn the state transitions
of the whole system and derive a near-optimal RL-based updating policy.

• Simulations were conducted to verify the theoretical analysis of the threshold structure
and show the near-optimal performance of the RL-based updating policy. The results
indicate that: (i) the update thresholds decrease when the maximum average update
frequency becomes large; (ii) the update threshold for emergency can actually be larger
than that for ordinary states when the probability of transferring from emergency to
ordinary states tends to 1.

The rest of this paper is organized as follows. The system model and the problem
formulation are described in Section 2. In Section 3, we obtain the CMDP formulation of
the problem with the given distribution of context-aware weight and prove the threshold
structure of the UoI-optimal policy. The proposed model-based RL updating policy is
obtained in Section 4. In Section 5, the simulation results are shown and discussed while
the conclusions are drawn in Section 6.

2. System Model and Problem Formulation

In this paper, we considered a remote monitoring system, in which a fusion center
collects the status information (e.g., current location, velocity, information of surrounding)
from a vehicle of interest via a wireless channel with limited resources, as shown in Figure 1.
The whole system is considered as a discrete-time system and the status can be generated
at will. Due to the limitations on the wireless resources and energy supply, there is a
constraint on the average update frequency of the vehicle. The update decision in time slot
t is denoted by U(t) ∈ {0, 1}, where U(t) = 1 means that the vehicle decides to transmit
the current status to the center, and U(t) = 0 denotes that the vehicle decides to stay idle.

The wireless channel is assumed as a block fading channel with successful transmis-
sion probability ps. Let S(t) ∈ {0, 1} be the state of the channel. S(t) = 0 represents that
the channel is in deep fading, and no packet can be successfully transmitted. S(t) = 1
means the packets can be successfully transmitted to the center through the channel. If the
center receives an update, then U(t)S(t) = 1 and an ACK will be sent to the vehicle.

Let x(t) and x̂(t) denote the current status of the monitored vehicle and the estimated
status of the vehicle at the center, and Q(t) = x(t) − x̂(t) denotes the estimation error.
Similar to [26], we further assume that the time period of a packet transmission is less than
a time slot and the estimation at the center equals the latest status information received
by the center. This estimation scheme is easy to implement, theoretically tractable and
has been proven to be an optimal policy that can minimize the average squared error
of status estimation in a remote estimation system under energy constraints when the
monitored process is a Wiener process [31]. Then, the recurrence relation of the estimation
error Q(t) is:

Q(t + 1) = (1−U(t)S(t))Q(t) + A(t). (3)

Equation (3) indicates that the estimation error will be the amount of variation of the
monitored process from the generation time of the latest received status to the current time.
The increment A(t) represents the variation of the monitored process. For example, when
A(t) follows a Gaussian distribution with a mean of zero and variance of σ2, represented
by N(0, σ2), the monitored status follows a Wiener process. When A(t) takes values
from {0, 1,−1} with a probability of {1− 2prw, prw, prw}, where 0 < prw < 1

2 , then the
status of the monitored source will be a one-dimensional random walk. In this paper, we
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assumed that the monitored status of the vehicle is a Wiener process and A(t) is i.i.d. over
time. However, the increment in estimation error during a single slot cannot be infinite in
practical systems. Therefore, in contrast to [27,30], we assumed that increment A(t) obeys
a truncated Gaussian distribution, i.e., the probability density function (PDF) of A(t) is:

fA(t)(a) =
1
σ φ
(

a−µ
σ

)

Φ
(

Amax−µ
σ

)
−Φ

(−Amin−µ
σ

) , (4)

where µ and σ are the expectation and standard deviation of increment A(t). φ and Φ are
the PDF and the cumulative distribution function (CDF) of standard normal distribution.
We also assumed A(t) ∈ [−Amin, Amax], Amax = Amin > 0 and µ = 0.

Fusion CenterVehicle of 
Interest

Status Update

Feedback

Figure 1. Remote control and monitoring model. The vehicle of interest is shown in red.

Meanwhile, the scheduling policy of information updates should also be related to the
situation and environment of the system. For example, when the system is in an emergency,
it should be very sensitive to the accuracy and the delay of the status information, thus
the status should be updated more frequently. Therefore, our objective is to find a policy
telling the vehicle whether to transmit status information or not in each slot for a minimum
average UoI over time under the constraint:

min
U(t)

lim sup
T→∞

1
T

E

[
T−1

∑
t=0

w(t)Q(t)2

]

s.t. lim sup
T→∞

1
T

T−1

∑
t=0

E[U(t)] ≤ ρ,

(5)

where ω(t) > 0 is the context-aware weight, which is independent with Q(t). ρ ∈ (0, 1] is
the maximum average update frequency. The cost function of the estimation error used
here is δ(Q(t)) = (Q(t))2, which is inspired by the squared error of status estimation.

3. Scheduling with CMDP-Based Approach

In this section, we start by formulating problem (5) into a constrained Markov decision
process (CMDP) with assumptions on the distribution of the context-aware weight. We will
prove the threshold structure of the UoI-optimal updating policy and derive the optimal
policy through a linear programming (LP) formulation.

3.1. Constrained Markov Decision Process Formulation

In the remote monitoring system, the context may be related to the distance between
adjacent vehicles/mobile devices, the unexpected maneuver of the neighboring vehicles,
etc. In [32], the authors prove that whether the distance between two mobile wireless
devices with Ornstein–Uhlenbeck mobility is less than a certain threshold follows a first-
order Markov process. When the two devices are closer, they are more interested in
each other’s status information, communication and computing resources to facilitate
cooperation, share resources, and avoid collisions. At this time, the transmission of status
information is more urgent than when the two devices are far apart. As for the unexpected
maneuver of the neighboring vehicles, it is very challenging to find a proper formulation.
Instead, we assumed that such emergencies occur independently in each slot according



Entropy 2021, 23, 1084 5 of 21

to a certain probability. Therefore, in contrast to [27,30], we assumed that the context-
aware weight ω(t) is i.i.d. over time or a first-order irreducible positive recurrent Markov
process and formulated the problem (5) as a CMDP problem. The irreducible positive
recurrent Markov formulation guarantees the existence of the UoI-optimal policy (see
Appendix A). In this section, we will first focus on the situation where ω(t) is a first-order
Markov process:

• State space: The state of the vehicle in slot t, denoted by s(t) = (Q(t), ω(t)), includes
the current estimation error and the context-aware weight. Then, we discretize Q(t)
with the step size ∆Q > 0, i.e., the estimation error
Q(t) ∈ Q = {0,±∆Q,±2∆Q, · · · ,±n∆Q, · · · }. For example, when
Q(t) ∈ [n∆Q − 1

2 ∆Q, n∆Q + 1
2 ∆Q), its value will be taken as n∆Q. The smaller the

step size ∆Q, the smaller the performance degradation caused by discretization. In
addition, the value set of the context-aware weight is denoted by W. Then, the state
space S = {Q×W} is thus countable but infinite.

• Action space: At each slot, the vehicle can take two actions, namely U(t) ∈ U = {0, 1},
where U(t) = 1 denotes the vehicle deciding to transmit updates in slot t and U(t) = 0
denotes the vehicle deciding to wait.

• Probability transfer function: After taking action U at state s = (Q, ω), the next
state is denoted by s′ = (Q′, ω′). When the vehicle decides not to transmit or the
transmission fails, the probability of the estimation error transferring from Q to Q′

is written as Pr{Q′ −Q = a} = pa. Due to the discretization of the estimation error,
the increment a ∈ A = {0,±∆Q,±2∆Q, · · · ,±Am}, where Am = b Amax

∆Q
c∆Q > 0. In

addition, pa = FA(a + 1
2 ∆Q)− FA(a− 1

2 ∆Q), where FA(a) is the CDF of increment
A(t). In addition, the probability of the context-aware weight transferring from ω to
ω′ is written as Pr{ω → ω′} = pωω′ . Based on the assumption that the context-aware
weight ω(t) is independent with the estimation error Q(t), then the probability of the
state transferring from s = (Q, ω) to s′ = (Q′, ω′) given action U is:

Pr{s→ s′|U} = Pr{(Q, ω)→ (Q′, ω′)|U}

=

{
pωω′ pQ′−Q , U = 0,
pωω′((1− ps)pQ′−Q + ps pQ′−0) , U = 1.

(6)

• One-step cost: The cost caused by taking action U in state (Q, ω) is:

C(Q, ω, U) = ωQ2, (7)

while the one-step updating penalty only depends on the chosen action:

D(Q, ω, U) = U. (8)

The average cost caused under a certain policy π is the average UoI, which is defined
as C̄π and the average updating penalty under π is defined as D̄π . We aimed to find
the UoI-optimal policy which minimizes the average cost under the resources constraint.
Therefore, problem (5) can be formulated into the following CMDP problem:

min
π

C̄π = lim
T→∞

1
T
Eπ

[
T

∑
t=1

C(Q(t), ω(t), U(t))

]

s.t. D̄π = lim
T→∞

1
T
Eπ

[
T

∑
t=1

D(Q(t), ω(t), U(t))

]
≤ ρ.

(9)
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3.2. Threshold Structure of the Optimal Policy

We start from some basic definitions in [33] and show the properties of problem (9).

Definition 1. A stationary deterministic policy is a policy that takes the same action whenever in
a given state s = (Q, ω), while a stationary randomized policy chooses to update or not in state s
with a certain probability.

Theorem 1. There exists an optimal stationary randomized policy for problem (9). The optimal
policy is a probabilistic combination of two stationary deterministic policies. The two deterministic
policies only differ on at most one state and each policy minimizes the unconstrained cost in (10)
with a different Lagrange multiplier λ:

Lπ
λ = lim

T→∞

1
T
Eπ

[
T

∑
t=1

[C(Q(t), ω(t), U(t)) + λD(Q(t), ω(t), U(t))]

]
. (10)

Proof of Theorem 1. The proof is shown in Appendix A.

We denote the optimal policy that minimizes the unconstrained cost in (10) with a
given λ by π? and the cost obtained under policy π? by Lπ?

λ , namely Lπ?

λ = minπ Lπ
λ . Then,

there exists a differential cost function V(Q, ω) that satisfies the Bellman Equation [34]:

V(Q, ω) + Lπ?

λ = min

{
C(Q, ω, 1) + λD(Q, ω, 1)

+ (1− ps) ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV
(
Q + a, ω′

)
+ ps ∑

ω′∈W
pωω′

Am

∑
a=−Am

paV
(
a, ω′

)
,

C(Q, ω, 0) + ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV
(
Q + a, ω′

)
}

. (11)

To solve problem (5), we first prove that with a given λ, the optimal stationary
deterministic policy π? has a threshold structure. We then introduce a discounted problem
with a discount factor α and the discounted cost starting from state (Q, ω) under a certain
policy π is:

Jα,π(Q, ω) = lim
T→∞

Eπ

[
T

∑
t=0

αt[C(Q(t), ω(t), U(t))

+λD(Q(t), ω(t), U(t))] | (Q(0) = Q, ω(0) = ω)

]
. (12)

Denote the minimum cost starting from state (Q, ω) by Vα(Q, ω) = minπ Jα,π(Q, ω).
Then, we have:

Vα(Q, ω) =min

{
C(Q, ω, 1) + λD(Q, ω, 1) + (1− ps)α ∑

ω′∈W
pωω′

Am

∑
a=−Am

paVα

(
Q + a, ω′

)

+psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
a, ω′

)
, C(Q, ω, 0)

+α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′

)
}

. (13)

Define ∆(Q, ω) as the difference between the value functions by taking the two
different actions U = 0, 1, meaning that:
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∆(Q, ω) = C(Q, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′

)

−C(Q, ω, 1)− λD(Q, ω, 1)− psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
a, ω′

)

−(1− ps)α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′

)

=psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′

)
−Vα

(
a, ω′

)}
− λ. (14)

Define ∑Am
a=−Am

paVα(Q + a, ω) as a function fα(Q, ω). Then we will prove that for
∀|Q1| < |Q2|, we have fα(Q1, ω) < fα(Q2, ω). To this end, we first prove the following
Lemma 1.

Lemma 1. For a given discount factor α and a fixed context-aware weight ω, the value function
for Q equals the value function for −Q, namely:

Vα(Q, ω) = Vα(−Q, ω).

Proof of Lemma 1. The Lemma is proven by induction. Define V(k)
α (Q, ω) as the value func-

tion obtained after the kth iteration. Assume that for ∀Q, we have: V(k)
α (Q, ω) = V(k)

α (−Q, ω).
If action U is taken in the kth iteration, then the expected discounted cost is defined as
J(k)α,U(Q, ω). Therefore, V(k+1)

α (Q, ω) = minU J(k)α,U(Q, ω). We have:

J(k)α,0 (Q, ω) = C(Q, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
Q + a, ω′

)

= ω(−Q)2 + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
−Q− a, ω′

)

= CX(−Q, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
−Q + a, ω′

)
= J(k)α,0 (−Q, ω). (15)

Similarly, we can further prove that J(k)α,1 (Q, ω) = J(k)α,1 (−Q, ω). Notice that the value

function obtained in (k + 1)th iteration is obtained by: V(k+1)
α (Q, ω) = minU J(k)α,U(Q, ω),

and for any action U, J(k)α,U(Q, ω) = J(k)α,U(−Q, ω). Thus, V(k+1)
α (Q, ω) = V(k+1)

α (−Q, ω). By

letting k→ ∞, V(k)
α (Q, ω)→ Vα(Q, ω). Hence, Vα(Q, ω) = Vα(−Q, ω).

Lemma 2. For a given discount factor α and a fixed context-aware weight ω, function fα(Q, ω) for
Q increases monotonically with the absolute value of Q, namely: for ∀|Q1| < |Q2|, fα(Q1, ω) <
fα(Q2, ω).

Proof of Lemma 2. Using the induction method, we first assume that for ∀|Q1| < |Q2|, we
have f (k)α (Q1, ω) < f (k)α (Q2, ω). Therefore:
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J(k)α,0 (Q1, ω) = C(Q1, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
Q1 + a, ω′

)

= ωQ2
1 + α ∑

ω′∈W
pωω′ f

(k)
α (Q1, ω′)

< C(Q2, ω, 0) + α ∑
ω′∈W

pωω′ f
(k)
α (Q2, ω′)

= J(k)α,0 (Q2, ω). (16)

Similarly, we can obtain J(k)α,1 (Q1, ω) < J(k)α,1 (Q2, ω). Meanwhile, V(k+1)
α (Q, ω) =

minU J(k)α,U(Q, ω), then we have V(k+1)
α (Q1, ω) < V(k+1)

α (Q2, ω), for ∀|Q1| < |Q2|. Ob-
viously, if we want to use induction to complete the proof of Lemma 2, we have to prove
that: f (k+1)

α (Q1, ω) < f (k+1)
α (Q2, ω), for ∀|Q1| < |Q2|. To simplify the proof, it is assumed

that Q2 > Q1 > 0. The discussion will be divided into the following three situations.

• When Am ≤ |Q1|, then |Q1 + a| < |Q2 + a|, for ∀a ∈ [−Am, Am], we can derive that:

f (k+1)
α (Q1, ω) =

Am

∑
a=−Am

paV(k+1)
α (Q1 + a, ω)

<
Am

∑
a=−Am

paV(k+1)
α (Q2 + a, ω) = f (k+1)

α (Q2, ω). (17)

• When Am > |Q2|, there exists an increment a′ ∈ A′ = {a|a ∈ [−Am,− 1
2 (Q1 + Q2)},

such that |Q1 + a′| > |Q2 + a′|, and V(k+1)
α (Q1 + a′, ω′) > V(k+1)

α (Q2 + a′, ω′). Notice
that −Q1 − a′ ∈ ( 1

2 (Q2 − Q1), Am − Q1] and Q2 + a ∈ [−Am + Q2, Am + Q2], then

p−Q1−a′−Q2
V(k+1)

α (−Q1 − a′, ω) is a term in the summation f (k+1)
α (Q2, ω), namely

∑Am
a=−Am

paVα(Q + a, ω). Similarly, p−Q2−a′−Q1
V(k+1)

α (−Q2 − a′, ω) is a term in the

summation f (k+1)
α (Q1, ω). We further define A′′ = {a|a = −Q1 − Q2 − a′}, since

−Q1 −Q2 − a′ ∈
(
− 1

2 (Q1 + Q2), Am −Q1 −Q2

]
, then A′ ∩ A′′ = ∅.

Furthermore, the probability of the estimation error transferring from Q1 to −Q2 − a′,
i.e., p−Q2−a′−Q1

equals p−Q1−a′−Q2
, the probability of the estimation error transferring

from Q2 to −Q1 − a′. Since −a′ ∈ ( 1
2 (Q1 + Q2), Am], then |a′| > | − Q1 − Q2 − a′|.

According to our assumption of the increment, we can prove that for any a′ ∈ A′,
pa′ < p−Q1−Q2−a′ . Then, we can derive:

f (k+1)
α (Q1, ω)− f (k+1)

α (Q2, ω)

= ∑
a∈A′

paV(k+1)
α (Q1 + a, ω) + ∑

a∈A′′
paV(k+1)

α (Q1 + a, ω)

− ∑
a∈A′

paV(k+1)
α (Q2 + a, ω)− ∑

a∈A′′
paV(k+1)

α (Q2 + a, ω) + M(Q1, Q2)

= ∑
a∈A′

pa{V(k+1)
α (Q1 + a, ω)−V(k+1)

α (Q2 + a, ω)}

+ ∑
a∈A′

p−Q1−Q2−a{V(k+1)
α (Q2 + a, ω)−V(k+1)

α (Q1 + a, ω)}+ M(Q1, Q2)

= ∑
a∈A′

(
pa − p−Q1−Q2−a

)
{V(k+1)

α (Q1 + a, ω)−V(k+1)
α (Q2 + a, ω)}+ M(Q1, Q2) < 0, (18)

where M(Q1, Q2) = ∑a/∈A′∪A′′ pa

(
V(k+1)

α (Q1 + a, ω)−V(k+1)
α (Q2 + a, ω)

)
< 0.
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• When |Q2| > Am > |Q1|, since a′ ∈ [−Am,− 1
2 (Q1 + Q2)), we only need to consider

the case when Am > 1
2 (Q1 + Q2), in this case −Q1 − a′ > 1

2 (Q2 −Q1) > Q2 − Am.

Therefore, p−Q1−a′−Q2
V(k+1)

α (−Q1 − a′, ω) is a term in the summation f (k+1)
α (Q2, ω).

Similarly, we can also prove that f (k+1)
α (Q1, ω) < f (k+1)

α (Q2, ω)when |Q2| > Am > |Q1|.
According to Lemma 1, the conclusions above can be easily generalized to the cases

without the condition Q2 > Q1 > 0. Finally, by letting k→ ∞, V(k+1)
α (Q, ω)→ Vα(Q, ω),

therefore: f (k+1)
α (Q, ω)→ fα(Q, ω). Hence: fα(Q1, ω) < fα(Q2, ω).

Remark 1. Lemma 2 holds when fA(a), i.e., the PDF of increment A(t) satisfies the following
conditions:

• fA(a) = fA(−a), µ = 0;
• fA(a2) ≤ fA(a1), ∀a2 ≥ a1 ≥ 0.

Then, with Lemmas 1 and 2, we can prove the threshold structure of the optimal
stationary deterministic policy which minimizes Lπ

λ in (10).

Theorem 2. For a given λ, the optimal stationary deterministic policy which minimizes Lπ
λ in (10)

has a threshold structure when the context-aware weight is a first-order irreducible positive recurrent
Markov process.

Proof of Theorem 2. Let s∗α(Q, ω) denote the optimal action which minimizes the dis-
counted cost Vα(Q, ω) at state (Q, ω). If the optimal action s∗α(Q, ω) = 1, then the vehicle
will transmit its status update to the center at state (Q, ω) and ∆(Q, ω) ≥ 0. Thus, we have:

∆(Q, ω) = psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′

)
−Vα

(
a, ω′

)}
− λ ≥ 0. (19)

According to Lemma 2, for any |Q′| > |Q|, ∆(Q′, ω) can be lower bounded by

∆(Q′, ω) = psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q′ + a, ω′

)
−Vα

(
a, ω′

)}
− λ

≥ psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′

)
−Vα

(
a, ω′

)}
− λ ≥ 0. (20)

If ∆(Q, ω) > 0, then for any states with |Q′| > |Q|, the optimal policy is to transmit
the status to the center. If ∆(Q, ω) < 0, then for any states with |Q′| < |Q|, the optimal
action is not to transmit. In addition, the optimal policy will not be choosing to wait in all
the slots. Therefore, for each context-aware weight ω, there must be a threshold τω ≥ 0.
For any state (Q, ω) with |Q| > τω , the optimal choice is to transmit the status update. We
can then conclude that for a given weight ω, the optimal policy with a discount factor α
has a threshold structure.

Let {α1, α2, · · · , αk} denote a sequence of discount factors and αk converges to 1
when k → ∞. Then, the optimal deterministic policy for α = 1 will also converge to the
optimal policy with a discount factor which is less than 1 [35]. Similar derivation is also
applied in [12]. Therefore, we can prove the threshold structure of the optimal stationary
deterministic policy which minimizes Lπ

λ .

Similarly, when the context-aware weight is i.i.d. over time, we can obtain the follow-
ing theorem:

Theorem 3. For a given λ, the optimal stationary deterministic policy which minimizes Lπ
λ in (10)

has a threshold structure when the context-aware weight is i.i.d. over time. The thresholds are the
same for each state of the context-aware weight.
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Proof of Theorem 3. If the context-aware weight is i.i.d. over time, then we have:

∆(Q, ω) = psα ∑
ω′∈W

pω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′

)
−Vα

(
a, ω′

)}
− λ = ∆(Q), (21)

where pω is the probability of the value of the context-aware weight being in state ω.
Therefore, in this case, the state will be reduced to one dimension and the thresholds will
be the same for all the states of the context-aware weight.

According to Theorems 2 and 3, we proved the threshold structure of the two sta-
tionary deterministic policies that compose the UoI-optimal policy. Since the UoI-optimal
policy for problem (9) is a probabilistic combination of two deterministic policies with
threshold structures, we can finally draw the conclusion that the UoI-optimal policy also
has a threshold structure.

3.3. Numerical Solution of Optimal Strategy

Based on Theorem 2, we only need to consider the policy that chooses to update
with a probability of 1 in state (Q, ω), for ∀|Q| ≥ Qmax = maxω τω. Let µQ,ω denote the
probability that the state of the vehicle is (Q, ω). yQ,ω denotes the probability that the state
is (Q, ω) and the vehicle chooses to transmit an update. Therefore, we have:

Theorem 4. When the context-aware weight is a first-order irreducible positive recurrent Markov
process, the UoI-optimal policy can be derived by solving the following LP problem:

{µ∗Q,ω, y∗Q,ω} = arg min
{µQ,ω ,yQ,ω}

∑
ω∈W

Qmax

∑
Q=−Qmax

ωQ2µQ,ω, (22a)

s.t. ∑
ω∈W

Qmax

∑
Q=−Qmax

µQ,ω = 1, (22b)

∑
ω∈W

Qmax

∑
Q=−Qmax

yQ,ω ≤ ρ, (22c)

yQ,ω ≤ µQ,ω, ∀Q, ω, (22d)

0 ≤ yQ,ω ≤ 1, 0 ≤ µQ,ω ≤ 1, ∀Q, ω, (22e)

µQ,ω = ∑
ω′∈W

Qmax

∑
Q′=−Qmax

yQ′ ,ω′ ps pQ pωω′

+ ∑
ω′∈W

Qmax

∑
Q′=−Qmax

(µQ′ ,ω′ − yQ′ ,ω′ ps)pQ′−Q pωω′ . (22f)

Proof of Theorem 4. We first derive the average UoI C̄π as a function of µQ,ω and yQ,ω.
The vehicle is in state (Q, ω) and produces a cost of C(Q, ω, u) = ωQ2 with a probability
of µQ,ω. Therefore, the average UoI is:

∑
ω∈W

Qmax

∑
Q=−Qmax

ωQ2µQ,ω. (23)

As for the constraints, (22b) means that the sum of the probabilities of all the states
should be 1. To explain (22c), we note that yQ,ω is the probability of the vehicle being
in state (Q, ω) and choosing to transmit the update, then the expectation of a one-step
updating penalty for state (Q, ω) in (8) is µQ,ω . Therefore, the constraint on average update
frequency D̄π can be illustrated by
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∑
ω∈W

Qmax

∑
Q=−Qmax

µQ,ω ≤ ρ. (24)

Then, we introduce ξQ,ω ∈ [0, 1] to represent that the probability of the vehicle
choosing to transmit updates in state (Q, ω) and (22d) can be obtained by the fact that
yQ,ω = µQ,ωξQ,ω, while (22e) is derived by the nature of probability.

The right-hand side of (22f) can be viewed as two terms. The first term is the sum of
transition probability from all the states to state (Q, ω) when the vehicle chooses to update
and the transmission of status is successful. The second term is the sum of transition
probability from all the states to state (Q, ω) when the transmission is failed or the vehicle
chooses to wait. Therefore, we can prove that the optimal solution of problem (5) equals
the solution of the LP problem.

When ω(t) is i.i.d. over time, we can also obtain the UoI-optimal policy through the
LP problem proposed in Theorem 4 and only need to use pω′ as a replacement of pωω′ .

4. Scheduling in Unknown Contexts

To make decisions, the UoI-optimal updating policy obtained in Section 3 still needs
the distributions of the context-aware weight ω(t), the increment A(t) and the successful
transmission probability, which may not be available in advance or may change over time
in most practical systems. To solve this problem, we will assume that the distribution of the
context-aware weight is not pre-determined and the vehicle has to learn it. In this section,
we use the reinforcement learning (RL) algorithm to learn the dynamic of the context and
the characteristic of the wireless channel.

To solve this problem, we turn to the model-based RL framework proposed in [36].
We only consider the cases when the UoI-optimal policy has a threshold structure. This
assumption makes the optimal policy based on the truncated state space equal the optimal
policy of the original problem.

We use the 3-tuple (s, s′, U) to formulate the proposed RL-based updating policy. The
states in the current slot and next slot are denoted by s and s′, respectively. U denotes
the action chosen in the current slot. The settings of the discretized state space and the
action space are the same as the settings proposed in Section 3.1. The smaller the step size
used in the discretization is, the closer our results are to those in continuous state space.
In addition, the selection of the step size only affects the accuracy of the update threshold.
Therefore, the performance loss caused by discretization can be reduced by choosing a
smaller step size.

We display details about the proposed RL-based updating policy in Algorithm 1. At
the beginning of episode k, we randomly decide whether to explore or exploit. l ∈ [0, 1]
represents the trade-off between exploration and exploitation during the following episode.
A larger l means a higher frequency of exploration and vice versa. If the algorithm chooses
to explore during this episode, a random policy πrand(s) will be used, i.e., we randomly
choose to update or not in each state to find more valuable actions. If the algorithm chooses
to exploit, then we have to obtain the probability transfer functions p̃k(s′|s, U) for each
state transmission pair. In Algorithm 1, N(s, U) and N(s, U, s′) represent the number
of occurrences of state–action pair s, U and state transition from s to s′ given action U,
respectively. Based on the assumption that the optimal policy has a threshold structure, the
policy π(k) which can minimize the average UoI with the estimated probability transfer
functions, can be directly solved through the LP problem proposed in Theorem 4. Then,
the vehicle will use policy πk to derive state–action pairs and the state transitions in the
following dLke slots. Here, L > 0 is defined to control the number of state transitions
observed in each episode. At the end of each episode, the model will be updated according
to the state–action pairs and the state transitions observed during the episode. Finally,
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after K episodes, the algorithm will output the RL-based updating policy π?(s), which is
derived based on p̃K(s′|s, U).

Algorithm 1 RL-based Updating Policy
Input: l ∈ [0, 1], L > 0, K > 0
1: for episodes k = 1, 2, . . . , K do
2: Set Lk = L

√
k, εk = l/

√
k, uniformly draw α ∈ [0, 1].

3: if α < εk then
4: Set πk(s) = πrand(s),
5: else
6: for each state s, s′ ∈ S and U ∈ U do
7: if N(s, U) > 0 then
8: Let p̃k(s′|s, U) = N(s, U, s′)/N(s, u),
9: else

10: p̃k(s′|s, U) = 1/|S|.
11: end if
12: end for
13: obtain policy πk(s) by solving the estimated CMDP
14: end if
15: Randomly choose an initial state s(1).
16: for slots t = 1, 2, . . . , dLke − 1 do
17: Choose action U(t) as πk(s(t)).
18: Observe the next state s(t + 1).
19: N(s(t), U(t), s(t + 1)) = N(s(t), U(t), s(t + 1)) + 1.
20: N(s(t), U(t)) = N(s(t), U(t)) + 1.
21: s(t)← s(t + 1).
22: end for
23: end for
24: obtain policy π?(s) by solving the estimated CMDP based on p̃k(s′|s, U), s, s′ ∈ S, U ∈

U.
Output: output the RL-based updating policy π?(s)

5. Simulation Results and Discussion
5.1. Simulation Setup

To facilitate the simulation, we consider the case where the context-aware weight of
the vehicle only has two different states: the ’normal’ state and ’urgent’ state. The ’normal’
state means that the vehicle is in ordinary situations and the significance of accuracy of
status information is relatively low. We set ω(t) as 1 in ’normal’ state while ω(t) is set as a
constant much larger than 1, ωe, in ’urgent’ state to show that the vehicle is in emergencies.
Two different distributions of the context-aware weight are taken into consideration to
conform to the assumptions about ω(t) used in Section 3.1:

1. The context-aware weight ω(t) has the first-order Markov property. The state tran-
sition diagram of ω(t) is shown in Figure 2 and ω(t) is irreducible and positive
recurrent. p1 is the probability of the context-aware weight transferring from the
normal state to the urgent state, while p2 is the probability of the weight transferring
from the urgent state to the normal state;

2. The context-aware weight ω(t) is i.i.d. over time. The probability of the weight being
in the urgent state and the normal state are denoted by ph and pl , respectively.

As for the increment A(t), Amax is set to a large enough positive number to simplify
the simulations.
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Figure 2. The state transition diagram of ω(t).

5.2. Numerical Results

Figure 3 shows the structure of the UoI-optimal updating policy. For the discretization
of the estimation error, the step size used is 1. It can be seen that under the two different
distributions of the context-aware weight mentioned above, the optimal updating policies
all have threshold structures. Especially when the context-aware weight is i.i.d. over
time, Figure 3b shows that thresholds for all the states of the context-aware weight are
the same, which matches well with theoretical analysis. From Figure 3c, we can find that
the UoI-optimal policy also has threshold structure when increment A(t) obeys a uniform
distribution Uni f (−3, 3), which verifies Remark 1. We then simulate the UoI-optimal
policy under the contexts with more states to show the policy is generic. We consider a
three-state context-aware weight which takes value from ω1 = 1, ω2 = 50, ω3 = 100. The
state transition matrix P3 of the three-state context-aware weight is:

P3 =




0.997 0.002 0.001
0.02 0.97 0.01
0.2 0.1 0.7


, (25)

where the j-th element on the i-th row indicates the probability that the context transfers
from state ωi to state ωj. The numerical results (Figure 3d) show that when the context-
aware weight has more states, the UoI-optimal policy still has a threshold structure, which
verifies our theoretical results.
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Figure 3. Threshold structure of the UoI-optimal updating policy when: (a) the context-aware weight is a first-order
Markov process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, σ2 = 1, ωe = 100. (b) the context-aware weight is i.i.d
over time, ρ = 0.05, pl = 0.999, ph = 0.001, ps = 0.9, σ2 = 1, ωe = 100. (c) the context-aware weight is a first order
Markov process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, ωe = 100, increment of estimation error during one slot, i.e.
A(t) ∼ Uni f (−3, 3), for ∀t. (d) the context-aware weight is a 3-state first order Markov process, which takes value from
ω1 = 1, ω2 = 50, ω3 = 100 and evolves according to state transition matrix P3, ρ = 0.05, ps = 0.9, σ2 = 1.
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the UoI-optimal policy also has threshold structure when increment A(t) obeys a uniform
distribution Uni f (−3, 3), which verifies Remark 1. We then simulate the UoI-optimal
policy under the contexts with more states to show the policy is generic. We consider a
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Figure 3. Threshold structure of the UoI-optimal updating policy when: (a) the context-aware weight is a first-order
Markov process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, σ2 = 1, ωe = 100; (b) the context-aware weight is i.i.d. over
time, ρ = 0.05, pl = 0.999, ph = 0.001, ps = 0.9, σ2 = 1, ωe = 100; (c) the context-aware weight is a first order Markov
process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, ωe = 100, increment in the estimation error during one slot, i.e.,
A(t) ∼ Uni f (−3, 3), for ∀t; and (d) the context-aware weight is a three-state first-order Markov process, which takes value
from ω1 = 1, ω2 = 50, ω3 = 100 and evolves according to the state transition matrix P3, ρ = 0.05, ps = 0.9, σ2 = 1.



Entropy 2021, 23, 1084 14 of 21

Then, we will focus on the results obtained when the context-aware weight is a
first-order irreducible positive recurrent Markov process, as shown in Figure 2. Figure 4
shows the average UoI of the UoI-optimal policy, the AoI-optimal policy derived by CMDP,
the RL-based updating policy, and the update-index-based adaptive scheme [27]. In the
RL-based updating policy, L = 8000, l = 1 and K = 50. All the numerical results of the
RL-based policy are averaged over 100 runs.

First of all, the UoI-optimal policy can only be obtained based on advanced information
about the system dynamics. However, the RL-based policy achieves near-optimal without
knowing the system dynamics, which indicates that Algorithm 1 learns relatively accurate
probability transfer functions from the observed state–action pairs and state transitions
during the training.

Secondly, according to Figure 4, the AoI-optimal policy yields a much higher UoI than
the three UoI-based policies, namely the UoI-optimal policy, the RL-based updating policy,
and the update-index-based adaptive scheme. On the one hand, AoI is one special case
of UoI. When the context-aware weight ω(t) = 1, the increment A(t) = 1, and the cost
function δ(Q(t)) = Q(t), then UoI equals AoI. Therefore, the AoI-optimal policy ignores
the fact that different contexts have different requirements for information freshness. In
the proposed UoI-based updating policies, different contexts have different policies and
update thresholds, while the AoI-optimal updating policies for different contexts are the
same. On the other hand, Figure 5 reveals that the AoI-optimal policy leads to a much
higher estimation error, which results in worse performance in terms of UoI. The AoI-
optimal policy is an oblivious policy, which is independent of the monitored process. Since
AoI increases linearly with time, the AoI-optimal policy can only minimize the linear
performance degradation in terms of time. However, the UoI-based policies (the cost
function δ(Q(t)) = (Q(t))2) considered in this paper are process-dependent, which are
called non-oblivious policies, and can benefit from both age and process realization [37].
These policies can directly minimize the nonlinear impact exerted by information staleness
and the gap between the actual status and the estimated status.

Thirdly, our updating policies outperform the update-index-based adaptive
scheme [27] in terms of UoI. Under the adaptive scheme, the vehicle will derive an update
index as a function of the current estimation error and the context-aware weight for the next
slot. If the index is larger than the adaptive update threshold, then the vehicle is supposed
to transmit its status information to the center. If the vehicle transmits an update in slot t,
then the adaptive threshold will increase in the next slot; otherwise, the adaptive threshold
will decrease. The adaptive scheme will cause an overuse of the resource in ‘urgent’ states
and lead to the fact that the vehicles cannot receive resources in ‘normal’ states. However,
the UoI-optimal policy and the trained RL-updating policy are fixed schemes, which can
avoid the extremely unbalanced resource allocation between the two contexts and achieve
better performance.

Figure 6 shows the influence of the maximum average update frequency ρ and the
context weight for emergency, ωe, on update threshold of UoI-optimal policy. In order to
obtain more accurate results, the step size used here is 0.25. The solid curves show update
thresholds for the normal state while the dashed curves show update thresholds for the
urgent state. When the constraint on update resources is strict, the update thresholds fall
faster. Furthermore, a larger ωe results in a lower update threshold for the urgent state and
a higher threshold for the normal state. This phenomenon indicates that the value of ωe
means the tolerance of estimation error in the emergency. When ρ < 0.1, the influence of
ωe on the update threshold for the normal state is larger than the urgent state. For the cases
where the maximum average update frequency is relatively large, ωe has little effect on
update thresholds for both normal state and urgent state.

Figure 7 shows that the update thresholds also depend on the dynamic of context-
aware weight when the weight has first-order Markov property. When p2 is approaching
1− p1, the gap between update thresholds for the urgent state and the normal state becomes
smaller for the context-aware weight which tends to be i.i.d. over time. When p2 = 1, the
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update threshold for the urgent state exceeds the threshold for the normal state. Therefore,
the update threshold for the urgent state is not necessarily lower than the update threshold
for the normal state.
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Figure 4. Average UoI of the UoI-optimal updating policy, the RL-based updating policy, the
update-index-based adaptive scheme [27], and the AoI-optimal updating policy when p1 = 0.001,
p2 = 0.01, ps = 0.9, σ2 = 1, ωe = 100.
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Figure 5. Average squared estimation error of the UoI-optimal updating policy and the AoI-optimal
updating policy when p1 = 0.001, p2 = 0.01, σ2 = 1, ωe = 100.
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Figure 6. Update thresholds of the UoI-optimal updating policy with different values of ωe when
p1 = 0.001, p2 = 0.01, ps = 0.9, σ2 = 1.
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Figure 7. Update thresholds of the UoI-optimal updating policy with different values of p2 when
p1 = 0.01, ps = 0.9, σ2 = 1, ωe = 100.

Figure 8 shows the performance of the RL-based updating policy with different values
of L. According to Algorithm 1, the number of state transitions observed in episode
k is dL

√
ke. Therefore, L denotes the number of state transitions observed during the

whole learning process. Generally speaking, a larger L reduces the randomness of the
performance and achieves a better UoI. The performance of the RL-based updating policy
depends on the accuracy of the model obtained through training, namely whether the
estimated probability transfer function of the system is accurate. A larger L means that the
algorithm can collect more data or state transitions and obtain a more accurate model.

Figure 9 shows the influence of the number of episodes, i.e., K, on the performance
of the RL-based updating policy. A larger K leads to a lower average UoI and smaller
randomness over 100 runs. On the one hand, the more episodes and the more data
the algorithm observes, the more accurate the model obtained will be and the better the
performance of the updating policy will be. On the other hand, the value of K is the number
of iterations for the policy obtained through the estimated CMDP. The policy πk(s) used in
episode k is derived based on the state–action pairs and the state transitions observed in
the previous k− 1 episodes. Therefore, more frequent iterations of the updating policy can
obtain more valuable state–action pairs and better performance.
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6. Conclusions

In this work, we studied how to minimize the performance degradation caused by
outdated information in terms of UoI, which is a new metric jointly considering context and
information freshness. We proved that the UoI-optimal updating policy for the considered
single-user remote monitoring system has a single threshold structure. Then, the policy
was obtained through linear programming by assuming that the state transition probability
of the system is known in advance. In unknown contexts, we further used a reinforcement
learning algorithm to learn the dynamics of the system. Simulations verified the threshold
structure of the UoI-optimal policies and showed that the update thresholds decrease as
the maximum average update frequency increases. In addition, a larger context-aware
weight in emergencies resulted in a lower update threshold for urgent states. However,
since the state transition probability also influenced the update thresholds, the update
threshold for emergencies was not necessarily higher than the update threshold for normal
states, especially when the probability of transferring from urgent states to normal states
tended towards 1. Furthermore, the numerical results showed that the proposed RL-based
updating policy achieved a near-optimal performance without advanced knowledge of the
system model.
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In fact, determining the context-aware weight in practical systems, where the models
of the context are often very complicated and difficult to obtain in advance, remains open.
As for future work, we plan to use deep RL algorithms to learn the models of the context
variation. We believe that UoI can provide a new performance metric for information
timeliness measurement in the future V2X scenario. In addition, we believe the proposed
UoI metric and the context-aware scheduling policy can shed some light on low-latency
and ultra-reliable wireless communication in the future 5G/6G systems.
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Appendix A. Proof of Theorem 1

Given a state s = (Q, ω) ∈ S and a nonempty subset of the state space, G ⊂ S,
let R(s,G) denote the class of policies θ such that the probability Pθ(s(t) ∈ G for some
t ≥ 1|s(0) = s) = 1 and the expected time ms,G(θ) of the first passage from s to G under
policy θ is finite. Then, let R?(s,G) denote the class of policies θ such that the expected
average UoI cs,G(θ) and the expected transmission cost ds,G(θ) of the first passage from s to
G are finite and θ ∈ R(s,G). To prove Theorem 1, we then introduce Assumptions A1–A5
in [33]:

Assumption A1. For all b > 0, the set G(b) , {s| there exists an action U such that
C(s, U) + D(s, U) ≤ b} is finite.

Assumption A2. There exists a stationary deterministic policy π that induces a Markov chain
with the following properties: the state space consists of a single (nonempty) positive recurrent class
Rπ and a set Tπ of transient states such that π ∈ R?(s,Rπ), for any s ∈ Tπ , and both the average
UoI C̄π and the average transmission cost D̄π on Rπ are finite.
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Assumption A3. Given any two states s, s′ ∈ S and s 6= s′, there exists a policy π (a function of
s and s′) such that π ∈ R?(s, {s′}).

Assumption A4. If a stationary deterministic policy has at least one positive recurrent state, then
it has a single positive recurrent class, and this class contains the state (Q, ω) with Q = 0.

Assumption A5. There exists a policy π such that the average UoI C̄π < ∞ and average trans-
mission cost D̄π < ρ.

Furthermore, the problem (9) has the following property:

Lemma A1. Assumptions A1–A5 hold for problem (9).

Proof of Lemma A1. First of all, we focus on the cases where the context-aware weight is
assumed as a first-order irreducible positive recurrent Markov process:

• Assumption A1: In this problem, C(s, U) is the UoI at state s, namely C(Q, ω, U) =

ωQ2. D(s, U) is 1 if the vehicle chooses to transmit its status and D(s, U) is 0 otherwise,
namely D(Q, ω, U) = U. Therefore, Assumption A1 holds, for any b > 0, the number
of states (Q, ω) with ωQ2 ≤ b is finite.

• Assumption A2: Due to the current high-level wireless communication technology, we
reasonably assumed that the successful transmission probability ps is relatively close
to 1. Based on the assumptions mentioned above, the Markov chain of context-aware
weight obviously satisfies Assumption A2. Define the probability of the context-aware
weight transferring from ω to ω′ in k steps for the first time as Pω,ω′ ,k. Then, we
consider the policy π(Q, ω) = 1 for all (Q, ω) ∈ S, namely this policy chooses to
transmit in all the states.
Since the evolution of the context-aware weight is independent with the evolution
of the estimation error and the updating policy. Therefore, we first focused on the
estimation error, which can be formulated as a one-dimensional irreducible Markov
chain with state space Q = {0,±∆Q,±2∆Q, · · · ,±n∆Q, · · · }. We denote the set of
states which can transfer to state Q in a single step by ZQ. The probability of the
estimation error transferring from state Q to state Q′ at the k-th step without an arrival
to state Q = 0 is defined as P′Q,Q′ ,k. Obviously, ∑Q′∈Q P′Q,Q′ ,k < (1 − ps)k. Then,
the probability of the first passage from state Q(Q 6= 0) to 0 taking k + 1 steps is
∑Q′/∈Z0

P′Q,Q′ ,k ps + ∑Q′∈Z0
P′Q,Q′ ,k(ps + (1− ps)p0−Q′) < (1− ps)k, where p0−Q′ is the

probability that the increment in estimation error is −Q′. Therefore, the expected time
of the first passage from Q(Q 6= 0) to 0 is finite.
For state Q = 0, the estimation error will stay in this state in the next step with a
probability of ps + p0−0 and will first return to state Q = 0 in the second transition
with a probability smaller than (1− ps − p0−0). Then, starting from state Q = 0, the
estimation error will first return to state Q = 0 in the k + 1-th (k > 2) step will be
smaller than (1− ps − p0−0)(1− ps)k−1. Therefore, we can prove that state Q = 0 is a
positive recurrent state, and Rπ

Q = {Q = 0} is a positive recurrent class of the induced
Markov chain of the estimation error. Furthermore, for any states in Tπ

Q = Q\Rπ
Q, the

expected time of the first passage from the state in Tπ
Q to state Q = 0 under π is finite

and the probability of the states in Tπ
Q not getting to state Q = 0 in k steps is smaller

than (1− ps)k.
Define the probability of state Q transferring to state Q′ in k steps for the first time
as PQ,Q′ ,k. Then, the probability of state (Q, ω) transferring to state (Q′, ω′) in k steps
for the first time is PQ,Q′ ,kPω,ω′ ,k. Since ∑∞

k=1 PQ,Q′ ,kk < ∞ and ∑∞
k=1 Pω,ω′ ,kk < ∞, then

∑∞
k=1 PQ,Q′ ,kPω,ω′ ,kk < ∞. Therefore, the set of states Rπ = {(Q, ω)|Q ∈ Rπ

Q, ω ∈W}
is a positive recurrent class. Similarly, we can prove that Tπ = S\Rπ satisfies
Assumption A2. Finally, D̄π = 1 < ∞, C̄π = E[ω] 1

ps
σ2 < ∞.
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• Assumption A3: Define PQ,min = minQ′ pQ−Q′ , PQ,max = maxQ′ pQ−Q′ . Consider the
policy π′(Q, ω) = 0 for all states (Q, ω) ∈ S, notably that this policy chooses not to
transmit in any states. Similarly, we first focus on the Markov chain of estimation error.
Starting from state Q, the probability of transferring to state Q′ in k + 1-th (k ≥ 2)
steps for the first time is smaller than (1− pQ′−Q)PQ′ ,max(1− PQ′ ,min)

k−1. Then, the
expected time of the first passage from state Q to state Q′ under policy π′ is finite.
Similarly, since the Markov chain of context-aware weight is irreducible positive
recurrent and independent with the updating policy, we can therefore prove that the
expected time of the first passage from state (Q, ω) to state (Q′, ω′) under policy π′

is finite.
• Assumption A4: For the Markov chain of the estimation error, any state will return to

state Q = 0 if a successful transmission occurs. For the policy without transmission,
namely π′(Q, ω) = 0, state Q = 0 still exists in only one positive recurrent class. For
each positive recurrent class containing state Q = 0, we can prove that there is only
one positive recurrent class. Since the Markov chain of the context-aware weight is
irreducible positive recurrent, we can similarly prove Assumption A4 .

• Assumption A5: The policy πρ that updates the status with a probability of ρ − δ
satisfies Assumption A5. Here, δ is a small positive number. Under this policy,
D̄π = ρ− δ < ρ and C̄π = E[ω] 1

ps(ρ−δ)
σ2 < ∞.

Similarly, we can prove that Assumptions A1–A5 also holds for problem (9) when the
context-aware weight is i.i.d. over time.

Since Assumptions A1–A5 hold for problem (9), then according to Theorem 2.5 in [33],
there exists an optimal stationary randomized policy for problem (9). Meanwhile, the
optimal policy is a probabilistic combination of two stationary deterministic policies which
only differ on at most one state.

Furthermore, according to Lemma 3.9 in [33], the two stationary deterministic policies
each optimize the unconstrained cost in (10) with a different λ.

References
1. Talak, R.; Karaman, S.; Modiano, E. Speed limits in autonomous vehicular networks due to communication constraints.

In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016;
pp. 4998–5003.

2. Hou, I.H.; Naghsh, N.Z.; Paul, S.; Hu, Y.C.; Eryilmaz, A. Predictive Scheduling for Virtual Reality. In Proceedings of the IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1349–1358.

3. Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the 2012 Proceedings IEEE
INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735.

4. Sun, Y.; Polyanskiy, Y.; Uysal-Biyikoglu, E. Remote estimation of the Wiener process over a channel with random delay.
In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017;
pp. 321–325.

5. Sun, Y.; Polyanskiy, Y.; Uysal, E. Sampling of the wiener process for remote estimation over a channel with random delay.
IEEE Trans. Inf. Theory 2019, 66, 1118–1135. [CrossRef]

6. Jiang, Z.; Zhou, S. Status from a random field: How densely should one update? In Proceedings of the 2019 IEEE International
Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1037–1041.

7. Bedewy, A.M.; Sun, Y.; Singh, R.; Shroff, N.B. Optimizing information freshness using low-power status updates via sleep-wake
scheduling. In Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, New York, NY, USA, 11–14 October 2020; pp. 51–60.

8. Ceran, E.T.; Gündüz, D.; György, A. Average age of information with hybrid ARQ under a resource constraint. IEEE Trans.
Wirel. Commun. 2019, 18, 1900–1913. [CrossRef]

9. Sun, J.; Jiang, Z.; Krishnamachari, B.; Zhou, S.; Niu, Z. Closed-form Whittle’s index-enabled random access for timely status
update. IEEE Trans. Commun. 2019, 68, 1538–1551. [CrossRef]

10. Yates, R.D.; Kaul, S.K. Status updates over unreliable multiaccess channels. In Proceedings of the 2017 IEEE International
Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 331–335.

11. Sun, J.; Wang, L.; Jiang, Z.; Zhou, S.; Niu, Z. Age-Optimal Scheduling for Heterogeneous Traffic with Timely Throughput
Constraints. IEEE J. Sel. Areas Commun. 2021, 39, 1485–1498. [CrossRef]

12. Tang, H.; Wang, J.; Song, L.; Song, J. Minimizing age of information with power constraints: Multi-user opportunistic scheduling
in multi-state time-varying channels. IEEE J. Sel. Areas Commun. 2020, 38, 854–868. [CrossRef]

http://doi.org/10.1109/TIT.2019.2937336
http://dx.doi.org/10.1109/TWC.2019.2899303
http://dx.doi.org/10.1109/TCOMM.2019.2960346
http://dx.doi.org/10.1109/JSAC.2021.3065059
http://dx.doi.org/10.1109/JSAC.2020.2980911


Entropy 2021, 23, 1084 21 of 21

13. Abdel-Aziz, M.K.; Samarakoon, S.; Liu, C.F.; Bennis, M.; Saad, W. Optimized age of information tail for ultra-reliable low-latency
communications in vehicular networks. IEEE Trans. Commun. 2019, 68, 1911–1924. [CrossRef]

14. Devassy, R.; Durisi, G.; Ferrante, G.C.; Simeone, O.; Uysal-Biyikoglu, E. Delay and peak-age violation probability in short-packet
transmissions. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22
June 2018; pp. 2471–2475.

15. Inoue, Y.; Masuyama, H.; Takine, T.; Tanaka, T. A general formula for the stationary distribution of the age of information and its
application to single-server queues. IEEE Trans. Inf. Theory 2019, 65, 8305–8324. [CrossRef]

16. Sun, Y.; Uysal-Biyikoglu, E.; Yates, R.D.; Koksal, C.E.; Shroff, N.B. Update or wait: How to keep your data fresh. IEEE Trans.
Inf. Theory 2017, 63, 7492–7508. [CrossRef]

17. Zheng, X.; Zhou, S.; Jiang, Z.; Niu, Z. Closed-form analysis of non-linear age of information in status updates with an energy
harvesting transmitter. IEEE Trans. Wirel. Commun. 2019, 18, 4129–4142. [CrossRef]

18. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. Non-linear age of information in a discrete time queue: Stationary
distribution and average performance analysis. In Proceedings of the ICC 2020—2020 IEEE International Conference on
Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

19. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. The cost of delay in status updates and their value: Non-linear ageing.
IEEE Trans. Commun. 2020, 68, 4905–4918. [CrossRef]

20. Zhong, J.; Yates, R.D.; Soljanin, E. Two freshness metrics for local cache refresh. In Proceedings of the 2018 IEEE International
Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1924–1928.

21. Maatouk, A.; Kriouile, S.; Assaad, M.; Ephremides, A. The age of incorrect information: A new performance metric for status
updates. IEEE/ACM Trans. Netw. 2020, 28, 2215–2228. [CrossRef]

22. Kadota, I.; Sinha, A.; Uysal-Biyikoglu, E.; Singh, R.; Modiano, E. Scheduling policies for minimizing age of information in
broadcast wireless networks. IEEE/ACM Trans. Netw. 2018, 26, 2637–2650. [CrossRef]

23. Song, J.; Gunduz, D.; Choi, W. Optimal scheduling policy for minimizing age of information with a relay. arXiv 2020,
arXiv:2009.02716.

24. Sun, Y.; Cyr, B. Information aging through queues: A mutual information perspective. In Proceedings of the 2018 IEEE 19th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June
2018; pp. 1–5.

25. Kam, C.; Kompella, S.; Nguyen, G.D.; Wieselthier, J.E.; Ephremides, A. Towards an effective age of information: Remote
estimation of a markov source. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 367–372.

26. Zheng, X.; Zhou, S.; Niu, Z. Context-aware information lapse for timely status updates in remote control systems. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

27. Zheng, X.; Zhou, S.; Niu, Z. Beyond age: Urgency of information for timeliness guarantee in status update systems.
In Proceedings of the 2020 2nd IEEE 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5.

28. Zheng, X.; Zhou, S.; Niu, Z. Urgency of Information for Context-Aware Timely Status Updates in Remote Control Systems.
IEEE Trans. Wirel. Commun. 2020, 19, 7237–7250. [CrossRef]

29. Ioannidis, S.; Chaintreau, A.; Massoulié, L. Optimal and scalable distribution of content updates over a mobile social network.
In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1422–1430.

30. Wang, L.; Sun, J.; Zhou, S.; Niu, Z. Timely Status Update Based on Urgency of Information with Statistical Context. In Proceedings
of the 2020 32nd IEEE International Teletraffic Congress (ITC 32), Osaka, Japan, 22–24 September 2020; pp. 90–96.

31. Nayyar, A.; Başar, T.; Teneketzis, D.; Veeravalli, V.V. Optimal strategies for communication and remote estimation with an energy
harvesting sensor. IEEE Trans. Autom. Control 2013, 58, 2246–2260. [CrossRef]

32. Cika, A.; Badiu, M.A.; Coon, J.P. Quantifying link stability in Ad Hoc wireless networks subject to Ornstein-Uhlenbeck mobility.
In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019; pp. 1–6.

33. Sennott, L.I. Constrained average cost Markov decision chains. Probab. Eng. Inf. Sci. 1993, 7, 69–83. [CrossRef]
34. Bertsekas, D.P. Dynamic Programming and Optimal Control; Athena Scientific: Belmont, MA, USA, 2000.
35. Sennott, L.I. Average cost optimal stationary policies in infinite state Markov decision processes with unbounded costs. Oper. Res.

1989, 37, 626–633. [CrossRef]
36. Liu, B.; Xie, Q.; Modiano, E. Rl-qn: A reinforcement learning framework for optimal control of queueing systems. arXiv 2020,

arXiv:2011.07401.
37. Chen, X.; Liao, X.; Bidokhti, S.S. Real-time Sampling and Estimation on Random Access Channels: Age of Information and

Beyond. arXiv 2020, arXiv:2007.03652.

http://dx.doi.org/10.1109/TCOMM.2019.2961083
http://dx.doi.org/10.1109/TIT.2019.2938171
http://dx.doi.org/10.1109/TIT.2017.2735804
http://dx.doi.org/10.1109/TWC.2019.2921372
http://dx.doi.org/10.1109/TCOMM.2020.2988013
http://dx.doi.org/10.1109/TNET.2020.3005549
http://dx.doi.org/10.1109/TNET.2018.2873606
http://dx.doi.org/10.1109/TWC.2020.3009881
http://dx.doi.org/10.1109/TAC.2013.2254615
http://dx.doi.org/10.1017/S0269964800002795
http://dx.doi.org/10.1287/opre.37.4.626

	Introduction
	System Model and Problem Formulation
	Scheduling with CMDP-Based Approach
	Constrained Markov Decision Process Formulation
	Threshold Structure of the Optimal Policy
	Numerical Solution of Optimal Strategy

	Scheduling in Unknown Contexts
	Simulation Results and Discussion
	Simulation Setup
	Numerical Results

	Conclusions
	Proof of Theorem 1
	References

