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Abstract: This research article is dedicated to solving fractional-order parabolic equations using
an innovative analytical technique. The Adomian decomposition method is well supported by
natural transform to establish closed form solutions for targeted problems. The procedure is simple,
attractive and is preferred over other methods because it provides a closed form solution for the given
problems. The solution graphs are plotted for both integer and fractional-order, which shows that
the obtained results are in good contact with the exact solution of the problems. It is also observed
that the solution of fractional-order problems are convergent to the solution of integer-order problem.
In conclusion, the current technique is an accurate and straightforward approximate method that can
be applied to solve other fractional-order partial differential equations.

Keywords: natural transform decomposition method; fractional-order parabolic equations;
Caputo–Fabrizio operator

1. Introduction

The present research work is dedicated to studying the analytical solution of fractional-
order parabolic equations. In the literature, it is well recognized that a broad range of
problems in physics, engineering, nuclear physics, and mathematics can be defined as
unique boundary and initial value problems. A homogeneous beam’s transverse vibrations
are controlled by fractional single fourth-order parabolic partial differential equations
(PDEs). Such problem types occur in viscoelastic and inelastic flow mathematical modeling,
layer deflection theories, and beam deformation [1–8]. Analyses of these problems have
drawn the attention of several physicists and mathematicians.

The time fractional parabolic PDEs with variable coefficient:

∂γυ

∂ηγ
+ κ(ξ, φ, ψ)

∂4υ

∂ξ4 +
1
φ

µ(ξ, φ, ψ)
∂4υ

∂φ4 +
1
ψ

ρ(ξ, φ, ψ)
∂4υ

∂ψ4 = g(ξ, φ, ψ, η),

1 < γ ≤ 2, η ≥ 0,

where κ(ξ, φ, ψ), µ(ξ, φ, ψ) and ρ(ξ, φ, ψ) are positive, with initial condition

υ(ξ, φ, ψ, η) = f0(ξ, φ, ψ),

υη(ξ, φ, ψ, η) = k0(ξ, φ, ψ),
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with boundary conditions

υ(a, φ, ψ, η) = h0(φ, ψ, η), υ(b, φ, ψ, η) = h1(φ, ψ, η),

υ(ξ, a, ψ, η) = g0(φ, ψ, η), υ(ξ, b, ψ, η) = g1(φ, ψ, η),

υ(ξ, φ, a, η) = k0(φ, ψ, η), υ(ξ, φ, b, η) = k1(φ, ψ, η),

υξξ(a, φ, ψ, η) = h0(φ, ψ, η), υξξ(b, φ, ψ, η) = h1(φ, ψ, η),

υφφ(ξ, a, ψ, η) = g0(φ, ψ, η), υφφ(ξ, b, ψ, η) = g1(φ, ψ, η),

υψψ(ξ, φ, a, η) = k0(φ, ψ, η), υψψ(ξ, φ, b, η) = k1(φ, ψ, η).

for which h`, g`, k`, h`, g`, k` are continuous variables and ` differs between 0 and 1, which
is the beam’s flexural stiffness ratio [1] in its volume per unit mass, as mentioned in [1–7].
After being used for the first time in underwater acoustics, the parabolic equation has
undergone extensive development, including improvements in accuracy and implemen-
tation in the time domain. With the introduction of the wide-angle parabolic equation,
the phase errors of parabolic equation solutions, which approximate the solution of the
wave equation, were greatly reduced. While various generalisations of the wide-angle
parabolic equation have been considered, the parabolic equation’s aperture limitation
has remained a source of concern. The time-domain parabolic equation enables one to
calculate pulse propagation without using Fourier synthesis. The time-domain parabolic
equation has been expanded to account for interface conditions, nonlinear propagation,
density variations and sediment attenuation, as well as wide-angle diffraction and sediment
dispersion. Many researchers [9,10] have attempted to study the analytical solutions of
parabolic equations of the fourth order. Different techniques have been suggested recently,
such as the B-spline method [11], the decomposition method [12], the implicit scheme [13]
and the Spline method [14], to analyze the solution of the partial differential fourth-order
parabolic equation. Biazar and Ghazvini [15] used He’s iterative technique for the solution
of parabolic PDEs. The modified version of this method was introduced in [16] to solve
singular fourth-order parabolic PDEs. The fourth-order parabolic PDE analytical solution
was examined in [17]. The modified Laplace variational iteration technique was discussed
by [18] to solve singular fourth-order parabolic PDEs.

Rawashdeh and Maitama developed a new method, which was named the natural trans-
form decomposition method (NTDM) in 2014, to handle linear and non-linear PDEs and
ODEs that occur in several applications of mathematical engineering and physics [19]. NDM
is a combination of NTM [20] ADM [21]. The suggested method provides a series from a
solution which converges quickly to an exact solution in a closed form, see Belgacem and
Silambarasan [22]. The NTDM provides analytical results of fractional-order heat and wave
problems [23]. The NTDM provides an analytical solution by using fractional-order delay
PDEs [24]. Different linear and non-linear PDEs and ODEs, such as fractional diffusion equa-
tions, are solve by using NTDM [25], fractional non-linear systems of PDEs [26], fractional
telegraph equation [27], and time-fractional coupled Burger equations [28].

2. Preliminaries

Definition 1. The following transformation of f̄ (η) is called natural transformation and is
expressed as [29,30]

N+[ f̄ (η)] = Q1(s, u) =
1
u

∫ ∞

0
e
−sη

u f̄ (η)dη; s, u > 0,

where the transformation parameters are s and u.

Definition 2. The following transformation of f̄ (η) is called inverse natural transformation and
is expressed as

N−[Q1(s, u)] = f̄ (η) =
1

2πi

∫ p1+i∞

p1−i∞
e

sη
u Q1(s, u)ds,
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where s and u denote the transformation factors and s = p1 in the complex plane s = ξ1 + iφ1 is
taken as an integral.

Definition 3. The nth derivative in term of NT
The nth derivative in term of NT f̄ `(η) is the f̄ (η) and is defined as

N[ f̄ `(η)] = Q`(s, u) =
s`

u`
Q1(s, u)−

`−1

∑
k=0

s`−(k+1)

u`−k f̄ k(0), `≥1.

Theorem 1. If H1(s, u), L1(s, u) is the natural transformation of the corresponding functions
h1(η) and l1(η) are both set to A, then H1(s, u) is the natural transformation

N[h1 ∗ l1] = uH1(s, u)L1(s, u),

a where h1 ∗ l1 represents the convolution of h1 and l1.

Definition 4. The Riemann–Liouville fractional-order integral [31,32]

Iγ
ξ f̄ (ξ) =

{
f̄ (ξ) if γ = 0,

1
Γ(γ)

∫ ξ
0 (ξ − υ)γ−1 f̄ (υ)dυ if γ > 0,

where Γ is a function defined by

Γ(ω) =
∫ ∞

0
e−ξ ξω−1dξ ω ∈ C.

Definition 5. The Caputo fractional derivative operator with order γ is defined as [33]

Dγ f̄ (ξ) =
∂γ f̄ (ξ)

∂ηγ
=

I`−γ
[

∂γ f̄ (ξ)
∂ηγ

]
, if `− 1 < γ ≤ `, ` ∈ N.

∂γ f̄ (ξ)
∂ηγ .

where ` ∈ N, ξ > 0, f̄ ∈ Cη , η ≥ −1.

Definition 6. Natural transform of Dγ
η u(η) by means of Caputo–Fabrizio is defined as

N[Dγ
η ] =

1
1− γ + γ( u

s )

(
N[υ(η)]−

(
1
s

)
υ(0)

)
. (1)

3. Idea of FNTM

The general fractional-order PDEs are given as

CFDγυ(ξ, η) + Lυ(ξ, η) + Nυ(ξ, η) = q(ξ, η), ξ, η ≥ 0, m− 1 < γ < m, (2)

where Dγ = ∂γ

∂ηγ represents the fractional derivative in term of Caputo sense. Moreover,
L is the linear and N is the non-linear term in Equation (1).

The initial condition is

υ(ξ, 0) = k(ξ), 0 < γ ≤ 1, η > 0. (3)

Applying the natural transformation to Equation (1), we get

N+[Dγυ(ξ, η)] +N+[Lυ(ξ, η) + Nυ(ξ, η)] = N+[q(ξ, η)], (4)

Using the natural transform’s differentiation property, we get

N+[υ(ξ, η)] =
1
s

υ(ξ, 0) +
u(s− γ(s− u))

s4 N+[q(ξ, η)]− u(s− γ(s− u))
s4 N+[Lυ(ξ, η) + Nυ(ξ, η)].
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Now υ(ξ, 0) = k(ξ)

N+[υ(ξ, η)] =
k(ξ)

s
+

u(s− γ(s− u))
s4 N+[q(ξ, η)]− u(s− γ(s− u))

s4 N+[Lυ(ξ, η) + Nυ(ξ, η)]. (5)

The following infinite series represents the NTDM solution υ(ξ, η)

υ(ξ, η) =
∞

∑
j=0

υj(ξ, η), (6)

and Adomian polynomials as

Nυ(ξ, η) =
∞

∑
j=0

Aj, (7)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjυj)

]]
λ=0

, j = 0, 1, 2 . . . (8)

We get replacement Equations (5) and (6) in Equation (4).

N+

[
∞

∑
j=0

υj(ξ, η)

]
=

k(ξ)
s

+
u(s− γ(s− u))

s4 N+[q(ξ, η)]− u(s− γ(s− u))
s4 N+

[
L

∞

∑
j=0

υj(ξ, η) +
∞

∑
j=0

Aj

]
. (9)

Applying the natural transformation’s linearity,

N+[υ0(ξ, η)] =
k(ξ)

s
+

u(s− γ(s− u))
s4 N+[q(ξ, η)], (8a)

N+[υ1(ξ, η)] = −u(s− γ(s− u))
s4 N+[Lυ0(ξ, η) + A0].

We can generally write

N+
[
υj+1(ξ, η)

]
= −u(s− γ(s− u))

s4 N+
[
Lυj(ξ, η) + Aj

]
, j ≥ 1. (10)

Equations (9) and (10) implementing the inverse natural transformation

υ0(ξ, η) = k(ξ) +N−
[

u(s− γ(s− u))
s4 N+[q(ξ, η)]

]
,

υj+1(ξ, η) = −N−
[

u(s− γ(s− u))
s4 N+

[
Lυj(ξ, η) + Aj

]]
. (11)

4. Numerical Implementation

4.1. Problem
Consider fractional-order one-dimensional parabolic equation:

∂γ+1υ

∂ηγ+1 +

(
1
ξ
+

ξ4

120

)
∂4υ

∂ξ4 = 0, 0 < γ ≤ 1, η ≥ 0, (12)

with initial condition

υ(ξ, 0) = 0, υη(ξ, 0) = 1 +
ξ5

120
, (13)

with boundary conditions
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υ(
1
2

, η) =

(
1 +

( 1
2 )

5

120

)
sin(η), υ(1, η) =

121
120

sin(η),

∂2υ

∂ξ2

(
1
2

, η

)
=

1
6

(
1
2

)3
sin(η),

∂2υ

∂ξ2 (1, η) =
1
6

sin(η).

(14)

Concerning the natural transformation of (12), we get

υ(ξ, s, u) =
1
s
(0) +

u
s2

(
1 +

ξ5

120

)
− u(s− γ(s− u))

s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ

∂ξ4

]
.

Using the inverse natural transformation,

υ(ξ, η) = N−
[

u
s2

(
1 +

ξ5

120

)
− u(s− γ(s− u))

s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ

∂ξ4

]]
,

υ(ξ, η) =

(
1 +

ξ5

120

)
η −N−

[
u(s− γ(s− u))

s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ

∂ξ4

]]
. (15)

The Equation (15) correction function is provided by

∞

∑
`=0

υ`+1(ξ, η) =

(
1 +

ξ5

120

)
η −N−

[
u(s− γ(s− u))

s4 N+

[(
1
ξ
+

ξ4

120

) ∞

∑
`=0

∂4υ`
∂ξ4

]]
, (16)

The first term

υ0(ξ, η) =

(
1 +

ξ5

120

)
η, (17)

Then we got

υ`+1(ξ, η) = −N−
[

u(s− γ(s− u))
s4 N+

[(
1
ξ
+

ξ4

120

) ∞

∑
`=0

∂4υ`
∂ξ4

]]
, (18)

for j = 0

υ1(ξ, η) = −N−
[

u(s− γ(s− u))
s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ0

∂ξ4

]]
,

υ1(ξ, η) = −
(

1 +
ξ5

120

)
η2

3!
(3− 3γ + γη).

(19)

The following terms are

υ2(ξ, η) = −N−
[

u(s− γ(s− u))
s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ1

∂ξ4

]]
=

(
1 +

ξ5

120

)
η4

5!
(γη + 5− 5γ),

υ3(ξ, η) = −N−
[

u(s− γ(s− u))
s4 N+

[(
1
ξ
+

ξ4

120

)
∂4υ2

∂ξ4

]]
= −

(
1 +

ξ5

120

)
η6

7!
(γη + 7− 7γ) · · · ,

(20)

The series form the solution of Problems (4.1), such as:

υ(ξ, η) = υ0(ξ, η) + υ1(ξ, η) + υ2(ξ, η) + υ3(ξ, η) + υ4(ξ, η) · · · .

υ(ξ, η) =

(
1 +

ξ5

120

){
η − η2

3!
(3− 3γ + γη) +

η4

5!
(γη + 5− 5γ)− η6

7!
(γη + 7− 7γ) + · · ·

}
,

When γ = 1, the integer NDM solution is

υ(ξ, η) =

(
1 +

ξ5

120

){
η − η3

3!
+

η5

5!
− η7

7!
+

η9

9!
· · ·
}

. (21)
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The exact solution is

υ(ξ, η) =

(
1 +

ξ5

120

)
sin(η).

Figure 1, show that the exact and analytical solution graph of Problem 4.1. In Figure 2,
the obtained solutions of Problem 4.1 are plotted at various fractional orders of the deriva-
tives; it is confirmed that the exact and derived results are in close contact with each other.
Thus the proposed method provided an accurate solution for Problem 4.1.

Figure 1. Exact and NTDM solution for γ = 1 of Problem 4.1.

Figure 2. For different values of γ of Problem 4.1.

4.2. Problem
Consider fractional-order two-dimensional parabolic equation:

∂γ+1υ

∂ηγ+1 + 2
(

1
ξ2 +

ξ4

6!

)
∂4υ

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ

∂φ4 = 0, 0 < γ ≤ 1, η ≥ 0, (22)

with initial condition

υ(ξ, φ, 0) = 0, υη(ξ, φ, 0) = 2 +
ξ6

6!
+

φ6

6!
, (23)

with boundary conditions
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υ(
1
2

, φ, η) =

(
2 +

( 1
2 )

6

6!
+

φ6

6!

)
sin(η), υ

(
1
2

, φ, η

)
=

(
2 +

(1)6

6!
+

φ6

6!

)
sin(η),

υξξ(
1
2

, φ, η) =

(
( 1

2 )
4

4!

)
sin(η), υξξ(

1
2

, φ, η) =
1
24

sin(η),

υφφ(ξ,
1
2

, η) =
( 1

2 )
4

4!
sin(η), υφφ(ξ,

1
2

, η) =
1

24
sin(η).

(24)

Concerning the natural transformation of (22), we get

υ(ξ, φ, s, u) =
1
s
(0) +

u
s2

(
2 +

ξ6

6!
+

φ6

6!

)
− u(s− γ(s− u))

s4 N+

[
2
(

1
ξ2 +

ξ4

6!

)
∂4υ

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ

∂φ4

]
,

using inverse natural transformation.

υ(ξ, φ, η) = N−
[

u
s2

(
2 +

ξ6

6!
+

φ6

6!

)
− u(s− γ(s− u))

s4 N+

{
2
(

1
ξ2 +

ξ4

6!

)
∂4υ

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ

∂φ4

}]
,

υ(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

)
η −N−

[
u(s− γ(s− u))

s4 N+

{
2
(

1
ξ2 +

ξ4

6!

)
∂4υ

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ

∂φ4

}
(25)

The Equation (25) correction function is provided by

∑∞
`=0 υ`+1(ξ, φ, η) =

(
2 + ξ6

6! +
φ6

6!

)
η −N−

[
u(s−γ(s−u))

s4 N+
{

2
(

1
ξ2 +

ξ4

6!

)
∑∞
`=0

∂4υ`
∂ξ4 + 2

(
1

φ2 +
φ4

6!

)
∑∞
`=0

∂4υ`
∂φ4

}]
, (26)

The first term being

υ0(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

)
η, (27)

Then we get

υ`+1(ξ, φ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

1
ξ2 +

ξ4

6!

) ∞

∑
`=0

∂4υ`
∂ξ4 + 2

(
1

φ2 +
φ4

6!

) ∞

∑
`=0

∂4υ`
∂φ4

}]
, (28)

for j = 0

υ1(ξ, φ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

1
ξ2 +

ξ4

6!

)
∂4υ0

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ0

∂φ4

}]
,

υ1(ξ, η) = −
(

2 +
ξ6

6!
+

φ6

6!

)
η2

3!
(3− 3γ + γη).

(29)

The following terms are

υ2(ξ, φ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

1
ξ2 +

ξ4

6!

)
∂4υ1

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ1

∂φ4

}]
,

υ2(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

)
η4

5!
(γη + 5− 5γ)

υ3(ξ, φ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

1
ξ2 +

ξ4

6!

)
∂4υ2

∂ξ4 + 2
(

1
φ2 +

φ4

6!

)
∂4υ2

∂φ4

}]
,

υ3(ξ, φ, η) = −
(

2 +
ξ6

6!
+

φ6

6!

)
η6

7!
(γη + 7− 7γ) . . . ,

(30)

The series forms a solution to Problems (4.2), for example,

υ(ξ, φ, η) = υ0(ξ, φ, η) + υ1(ξ, φ, η) + υ2(ξ, φ, η) + υ3(ξ, φ, η) + υ4(ξ, φ, η) · · · .

υ(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

){
η − η2

3!
(3− 3γ + γη) +

η4

5!
(γη + 5− 5γ)− η6

7!
(γη + 7− 7γ) + · · ·

}
.
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Then γ = 1; the integer NDM results as

υ(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

){
η − η3

3!
+

η5

5!
− η7

7!
+

η9

9!
· · ·
}

, (31)

The exact solution is

υ(ξ, φ, η) =

(
2 +

ξ6

6!
+

φ6

6!

)
sin(η).

Figure 3 shows the exact and analytical solution grpah of Problem 4.2. In Figure 4, the
obtained solutions of Problem 4.2 are plotted at various fractional orders of the derivatives;
it is confirmed that the exact and derived results are in close contact with each other. Thus
the proposed method provided an accurate solution for Problem 4.2.

Figure 3. The exact and NTDM solution for γ = 1 of Problem 4.2.

Figure 4. For different value of γ of Problem 4.2.
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4.3. Problem
Consider fractional-order three-dimensional parabolic equation:

∂γ+1υ

∂ηγ+1 + 2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ

∂ψ4 = 0,

0 < γ ≤ 1, η ≥ 0,
(32)

with initial condition

υ(ξ, φ, ψ, 0) = ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ)),

υη(ξ, φ, ψ, 0) = (cos(ξ) + cos(φ) + cos(ψ))− (ξ + φ + ψ),
(33)

with boundary conditions

υ(0, φ, ψ, η) = (−1 + φ + ψ− cos(φ)− cos(ψ))e−η ,

υ(
π

3
, φ, ψ, η) =

(
2π − 3

6
+ φ + ψ− cos(φ)− cos(ψ)

)
e−η ,

υ(ξ, 0, ψ, η) = (−1 + ξ + ψ− cos(ξ)− cos(ψ))e−η ,

υ(ξ,
π

3
, ψ, η) =

(
2π − 3

6
+ ξ + ψ− cos(ξ)− cos(ψ)

)
e−η ,

υ(ξ, φ, 0, η) = (−1 + ξ + φ− cos(ξ)− cos(φ))e−η ,

υ(ξ, φ,
π

3
, η) =

(
2π − 3

6
+ ξ + φ− cos(ξ)− cos(φ)

)
e−η ,

υξ(0, φ, ψ, η) = υφ(ξ, 0, ψ, η) = υψ(ξ, φ, 0, η) = e−η ,

υξ(
π

3
, φ, ψ, η) = υφ(ξ,

π

3
, ψ, η) = υψ(ξ, φ,

π

3
, η) =

(√
3 + 2
2

)
e−η .

(34)

Concerning the natural transformation of (32), we get

υ(ξ, φ, ψ, s, u) =
1
s
{ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}+ u

s2 {(cos(ξ) + cos(φ) + cos(ψ))− (ξ + φ + ψ)}

− u(s− γ(s− u))
s4 N+

[
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ

∂ψ4

]
,

using the inverse natural transform.

υ(ξ, φ, ψ, η) = N−
[

1
s
{ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}+ u

s2 {(cos(ξ) + cos(φ) + cos(ψ))− (ξ + φ + ψ)}
]

−N−
[

u(s− γ(s− u))
s4 N+

[
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ

∂ψ4

]]
,

υ(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}(1− η)−N−
[

u(s− γ(s− u))
s4 N+

{
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ

∂ξ4

+2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ

∂ψ4

}]
,

(35)

The Equation (35) correction function is provided by

∞

∑
`=0

υ`+1(ξ, φ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}(1− η)−N−
[

u(s− γ(s− u))
s4

N+

{
2
(

φ + ψ

2 cos ξ
− 1
) ∞

∑
`=0

∂4υ`
∂ξ4 + 2

(
ξ + ψ

2 cos φ
− 1
) ∞

∑
`=0

∂4υ`
∂φ4 + 2

(
φ + ξ

2 cos ψ
− 1
) ∞

∑
`=0

∂4υ`
∂ψ4

}]
,

(36)
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The first term being

υ0(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}(1− η), (37)

Then we get

υ`+1(ξ, φ, ψ, η) =−N−
[

u(s− γ(s− u))
s4 N+

{
2
(

φ + ψ

2 cos ξ
− 1
) ∞

∑
`=0

∂4υ`
∂ξ4

+2
(

ξ + ψ

2 cos φ
− 1
) ∞

∑
`=0

∂4υ`
∂φ4 + 2

(
φ + ξ

2 cos ψ
− 1
) ∞

∑
`=0

∂4υ`
∂ψ4

}]
,

(38)

for j = 0

υ1(ξ, φ, ψ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ0

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ0

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ0

∂ψ4

}]
,

υ1(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}
(
(1− γ + γη)− η2

3!
(3− 3γ + γη)

)
.

(39)

The following terms are

υ2(ξ, φ, ψ, η) = −N−
[

u(s− γ(s− u))
s4 N+

{
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ1

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ1

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ1

∂ψ4

}]
,

υ2(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}
(

η3

4!
(4− 4γ + γη)− η4

5!
(γη + 5− 5γ)

)
,

υ3(ξ, φ, ψ, η) = N−
[

u(s− γ(s− u))
s4 N+

{
2
(

φ + ψ

2 cos ξ
− 1
)

∂4υ2

∂ξ4 + 2
(

ξ + ψ

2 cos φ
− 1
)

∂4υ2

∂φ4 + 2
(

φ + ξ

2 cos ψ
− 1
)

∂4υ2

∂ψ4

}]
,

υ3(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}
(

η5

6!
(6− 6γ + γη)− η6

7!
(γη + 7− 7γ)

)
· · · .

(40)

The series forms a solution to Problems (4.3), for example,

υ(ξ, φ, ψ, η) = υ0(ξ, φ, ψ, η) + υ1(ξ, φ, ψ, η) + υ2(ξ, φ, ψ, η) + υ3(ξ, φ, ψ, η) + υ4(ξ, φ, ψ, η) · · · .

υ(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}{1− η + (1− γ + γη)− η2

3!
(3− 3γ + γη)

+
η3

4!
(4− 4γ + γη)− η4

5!
(γη + 5− 5γ) +

η5

6!
(6− 6γ + γη)− η6

7!
(γη + 7− 7γ) · · · }.

Then γ = 1; the integer NDM results as

υ(ξ, φ, ψ, η) = {ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ))}{1− η +
η2

2!
− η3

3!

+
η4

4!
− η5

5!
+

η6

6!
− η7

7!
· · · }.

(41)

The exact solution is

υ(ξ, φ, ψ, η) = (ξ + φ + ψ− (cos(ξ) + cos(φ) + cos(ψ)))e−η .

Figure 5, show that the exact and analytical solution graph of Problem 4.3. In Figure 6,
the obtained solutions of Problem 4.3 are plotted at various fractional orders of the deriva-
tives; it is confirmed that the exact and derived results are in close contact with each other.
Thus, the proposed method provided an accurate solution for Problem 4.3.
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Figure 5. The exact and NTDM solution for γ = 1 of Problem 4.3.

Figure 6. For different values of γ of Problem 4.3.

5. Conclusions

In the present article, an efficient analytical technique is used to solve fractional-order
parabolic equations. The present method is the combinations of two well-known methods,
namely the natural transform and Adomian decomposition method. The natural transform
is applied to the given problem, which makes it easier. After this, we implemented the
Adomian decomposition method and then the inverse natural transform to get the closed
form analytical solutions for the given problems. The proposed method requires a small
number of calculation to attain closed form solutions and is therefore considered to be one
of the best analytical techniques to solve fractional-order partial differential equations.
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