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Abstract: The representation-based algorithm has raised a great interest in hyperspectral image
(HSI) classification. l1-minimization-based sparse representation (SR) attempts to select a few atoms
and cannot fully reflect within-class information, while l2-minimization-based collaborative rep-
resentation (CR) tries to use all of the atoms leading to mixed-class information. Considering the
above problems, we propose the pairwise elastic net representation-based classification (PENRC)
method. PENRC combines the l1-norm and l2-norm penalties and introduces a new penalty term,
including a similar matrix between dictionary atoms. This similar matrix enables the automatic
grouping selection of highly correlated data to estimate more robust weight coefficients for better
classification performance. To reduce computation cost and further improve classification accuracy,
we use part of the atoms as a local adaptive dictionary rather than the entire training atoms. Further-
more, we consider the neighbor information of each pixel and propose a joint pairwise elastic net
representation-based classification (J-PENRC) method. Experimental results on chosen hyperspectral
data sets confirm that our proposed algorithms outperform the other state-of-the-art algorithms.

Keywords: hyperspectral image (HSI) classification; sparse representation; collaborative representa-
tion; pairwise elastic net; neighbor information

1. Introduction

A hyperspectral image is a 3D remote sensing image containing hundreds of bands,
from visible to infrared spectra. Due to their abundant spectral information, HSIs have
become an actual application in the field of remote sensing, such as skin imaging [1],
ground elements identifying [2] and mineral exploration [3]. To date, many classification
algorithms for hyperspectral datasets have been proposed. Among the techniques, the
support vector machine (SVM) [4], Gaussian mixture-model (GMM) [5] and the Gaussian
maximum-likelihood classifier (MLC) [6] are all proved to be effective for solving HSI
classification problem. The most concerning research methods in recent years can be
roughly divided into two categories: representation-based algorithms and deep learning-
based algorithms. On the one hand, in order to make full use of the spectral and spatial
information of HSIs, some effective spectral–spatial feature extraction methods have been
combined with sparse models to improve the characterization capability of models, such
as [7–10]. On the other hand, since the deep convolutional neural network (CNN) with
deep architecture has been proven to be very effective in using image features, this type
of method using deep CNN for hyperspectral feature extraction has stimulated various
studies [11–14].

This paper is mainly focused on the HSI classification algorithm based on represen-
tation learning. The classification principle of the method is to assume that each testing
pixel can be reconstructed with labeled training pixels. Then, the abundance coefficients of
the testing pixel can be obtained with the penalty of l1-norm or l2-norm, which is named
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sparse representation classification (SRC) [15] and collaborative representation classifica-
tion (CRC) [16]. In [17], Chen et al. first introduced the sparsity model into hyperspectral
classification and proposed the joint sparse representation classification (JSRC) method
by incorporating the contextual information. In [18], considering that different atoms
have different importance for the reconstruction process, Li et al. proposed the nearest
regularized subspace (NRS) classifier with Tikhonov regularization. By wisely combing
SRC and KNN, in Ref. [19] a class-dependent sparse representation classifier (cdSRC) was
proposed. However, some research [18,20] shows that the collaboration of approximation
enhances classification results rather than competition. Therefore, in Ref. [21], a joint
within-class CRC was provided to solve the HSI classification tasks. In [22], the kernel
version of CRC was further considered and the Kernel-based CRC (KCRC) was proposed.
There are also some investigations dedicated to improving classification effectiveness. On
the one hand, some focus on the more simple and robust dictionary to reduce computation
costs. On the other hand, some take the neighborhood spatial information as an important
factor in improving classification accuracy. In Ref. [23], the nonlocal joint collaborative
representation (NJCRC) algorithm was proposed by utilizing a subdictionary whose atoms
are obtained by the k-nearest neighbor (K-NN) with testing samples rather than the whole
dictionary atoms. In [24], Fang et al. introduced the shape irregular neighbor region into
the joint SRC model and proposed the shape adaptive joint sparse representation (SAJSRC).

It is worth noting that both the SRC-based algorithms and CRC-based algorithms
have their limitations. In these representation-based classification models, the obtained
abundance coefficients reflect the importance of each training sample for reconstruction.
Accordingly, the primary concern of this type of method is the solution of the abundance
coefficient. Ideally, the test pixels should be linearly represented by atoms from the same
category. The nonzero terms of sparse coefficients should be located at the position of the
corresponding class. For SRC, it tends to select as few atoms as possible. The too sparse
property will lead to the deviation of the absolute reconstruction error, and the sparsity will
be weakened when the number of training atoms sets is small. For CRC, it tends to select
all the atoms for reconstruction, and the class discrimination will be weak when including
mixed-class information. Intuitively, SRC and CRC should be balanced to achieve better
classification performance is necessary.

To solve the above problem, in Ref. [25], the elastic net representation-based classifi-
cation (ENRC) method was proposed. The elastic net originally raised in [26] encourages
both sparsity and grouping by forming a convex combination of the CRC and SRC gov-
erned by a selectable parameter. Furthermore, the elastic net can yield a sparse estimate
with more than n nonzero weights. Based on these advantages, the ENRC improves of
HSI classification performance. However, the optimal balance factors are all obtained by
traversing the manufactured parameter space. This makes the algorithm time-consuming
and complex. Additionally, the pixelwise fusion algorithm cannot make full use of the
spatial information of the HSI.

Fortunately, the recent literature [27] has pointed out that the pairwise elastic net
(PEN) model using similarity measures between regressors can establish a local balance
between SRC and CRC. It can achieve more flexible grouping than ENRC. Moreover,
PEN allows the customization of the sparsity relationship between any two features.
Hence, in this work, we propose the pairwise elastic net representation-based classification
(PENRC) method to overcome the indigenous disadvantages of ENRC, SRC and CRC. It
can automatically achieve the balance between l1-norm and l2-norm so that more robust
weight coefficients can be estimated, and further realizing better between-class sparse and
intraclass collaborative classification performance.

Specifically, the main contribution of the proposed PENRC can be briefly summarized
as follows. First, considering the computation cost when using all the dictionaries, we
adopt the KNN to select the labeled atoms, which are more similar to the testing pixel as an
optimal sub-dictionary. Then, unlike the ENRC, which assigns only a single global tradeoff
between sparsity and collaboration, we introduce a similar matrix about sub-dictionary
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atoms in penalties, resulting in the local sparsity and collaboration tradeoff and be more
flexible than ENRC. After obtaining the abundance coefficients, we use the principle of
minimum reconstruction error to decide the final label. We also provide a further extension
of our algorithm by incorporating the neighbor information of each pixel.

In summary, it is expected that the abundance coefficients from PENRC reveal a more
powerful discriminant ability, thereby outperforming the original SRC, CRC and ENRC.

The remaining parts of the paper are organized as follows: Section 2 briefly introduces
the two classical SRC and CRC classifiers. Section 3 details the proposed PENRC mecha-
nism. Section 4 gives the experimental results on chosen two datasets. Finally, Section 5
concludes this paper.

2. Related Works

Denoting a testing pixel as y = [y1, . . . , yB] ∈ RB×1 and the dictionary composed of
training atoms with class order as X = [X1, . . . , XC] ∈ RB×N , where B is the number of
spectral bands, N = ∑C

c=1 Nc is the training atoms number and C is the total number of
categories. The sub-dictionary Xc ∈ RB×Nc is the set of training atoms in c-th class.

2.1. Sparse Representation for HSI Classification

The sparse model assumes that a testing pixel can be linearly approximated with
few dictionary atoms suitably [15]. Then, for a testing pixel y, the purpose of SRC model
is to obtain the corresponding abundance coefficients by minimizing the reconstruction
error

∥∥y− XαSRC
∥∥2

2 with the sparse constraint term
∥∥αSRC

∥∥
1. Mathematically, the object

function can be represent as follows:

α̂SRC = arg min ‖y− XαSRC‖2
2 + λ1

∥∥∥αSRC
∥∥∥

1
, (1)

where λ1 is the balancing parameter. The weight vector αSRC ∈ R
N×1

is sparse and only
have few nonzero terms. It can be obtained by solving Equation (1) with basis pursuit
(BP) or basis pursuit denoising (BPDN) algorithms [28,29]. When l2-norm is directly used,
Equation (1) can be solved by subspace pursuit (SP) and orthogonal matching pursuit
(OMP) algorithms [30].

After obtaining the weight vector αSRC, we can assign the final class label which
corresponding the mimimum reconstruction error to the testing pixel:

class(y) = arg min
c=1,...,C

‖y− ŷc‖
2
2

= arg min
c=1,...,C

∥∥∥y− Xcα̂SRC
c

∥∥∥2

2
, (2)

where αSRC
c is the subset of sparse vector αSRC which belongs to c-th class.

2.2. Collaborative Representation for HSI Classification

Unlike SRC model, the CRC assumes that a testing pixel can be linearly combined with
all the training set [21]. The CRC attempts to obtain abundance coefficients by minimizing
the reconstruction error

∥∥y− XαCRC
∥∥2

2 with the term
∥∥αCRC

∥∥
2. Thus, the CRC can be

expressed as:
α̂CRC = arg min ‖y− XαCRC‖2

2 + λ2

∥∥∥αCRC
∥∥∥

2
, (3)

where λ2 balances the influence of the reconstruction error and constraint term. Equation (3)
can be simply solved with a closed form. Assuming that the derivative of the above cost
function and is zero, we can obtain the optimal value of αCRC:

αCRC =
(

XTX + λ2I
)−1

XTy, (4)
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where I is an identity matrix with the size of N × N. After obtaining αCRC, the final class
label c of testing pixel can be determined with the minimm residual rule as introduced in
last section.

For the above representation-based classification methods, training atoms tend to be
“competitive” in SRC due to the sparse constraints. With l2-norm, all atoms participate in
the representation process equally. Thus, CRC tends to be “cooperative”. Researchers com-
pared the performance of SRC with CRC in literature [21,22]. Moreover, the experiments
showed that in some cases, SRC performances better than CRC while CRC performance
was better in other cases. For example, in remote sensing images, the SRC algorithm
gave rise to a more remarkable improvement with some mixed pixels [31]. Thus, it is an
effective way to combine SRC and CRC appropriately. In fact, in Ref. [25], FRC and ENRC
algorithms to combine SRC with CRC were proposed. However, the dictionary chosen
in [25] consists of all the training samples and brings a large computational burden. In
addition, the algorithms in [25] only set a global trade-off between SRC and CRC, leading
to the inflexible balance of different classes.

3. Proposed PENRC

The framework of our proposed PENRC algorithm is shown in Algorithm 1. First, we
built a local adaptive dictionary to reduce the amount of calculation. Given a test pixel, we
used the KNN algorithm to select the K pixels that are most similar to the local adaptive
dictionary set. Second, we constructed the PENRC model of the hyperspectral image. We
used the local adaptive dictionary to construct the PEN model and obtain the abundance
coefficients corresponding to the testing pixel. Then, we calculated the reconstruction error
of each class according to the abundance coefficients and used the minimum reconstruction
error to classify the testing pixels. In addition, in order to further improve the classification
performance, we also integrated the spatial information of the pixel neighborhood into the
model, named joint pairwise elastic net representation-based classification (J-PENRC).

Algorithm 1 the Proposed PEN Algorithm

Input: (1) X ∈ RB×N , the training set.
(2) K, λ.

Procedure:
Step 1: Obtain adaptive dictionary D by applying KNN.
Step 2: Obtain weight vector α̂ according to Equation (8):

for i = 1 : N
update α̂i by Equations (19) and (20) .

Step 3: Decide the final label class(y) by the minimum reconstruction error principle by
Equation (14).
Output:

class(y).

3.1. Local Adaptive Dictionary

In representation-based methods, dictionaries are usually composed of all labeled
training pixels [32,33]. In order to have a robust representation, it is necessary to ensure that
the dictionary is complete (that is, enough training samples are needed). However, training
samples are usually limited in practice. In addition, using all training pixels directly will
lead to a large amount of computation. Therefore, to solve the above problems, we utilize
the local adaptive dictionary to obtain a more robust representation.

For a testing pixel y, we utilize the KNN to construct a similar signal set D as the
adaptive dictionary. However, due to the high dimension of the hyperspectral image,
it is unreasonable to directly use Euclidean distance to measure the similarity of the
spectral vector. In order to increase the separability of data, LDA [34] algorithm is used to
project HSIs into low-dimensional space, which can find an optimal projection direction
to minimize the intraclass distance of samples and maximize the inter-class distance. Let
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Γ ∈ RB′×B indicate the LDA mapping matrix and B′ represent the reduced dimension.
Then, the similarity measure between the testing atom y and arbitrary training atoms xn
can be expressed as:

dn = ‖Γy− Γxn‖. (5)

Then, we sorted all the distance set [x1, x2, . . . , xN ] in descending order and obtained
the dictionary indices {ic}c=1,...C corresponding to the first K large distance values. The
adaptive dictionary can be denoted as:

D = X(:, ic), c = 1, . . . , C. (6)

3.2. Pairwise Elastic Net Representation Based Classification

First, we introduce the concept of correlation matrix. Consider the following two
matrices R1 and R2:

R1 =

1.0 0.5 0.5
0.5 1.0 0.5
0.5 0.5 1.0

 R2 =

1.0 0.9 0.0
0.9 1.0 0.3
0.0 0.3 1.0

. (7)

We can see that the three features in the R1 matrix have the same similarity values. At this
point, it is effective to set the global trade-off between l1-norm and l2-norm. Nevertheless,
for the matrix R2, feature 1 is very similar to feature 2 (regarding l2-norm), feature 1
is independent from feature 3 (regarding l1-norm) and feature 2 is slightly related to
feature 3 (regarding elastic net). Hence, we need a flexible trade-off scheme to match the
regularization term with the data structure.

Thus, the objective function of our proposed PENRC can be denoted as:

α̂ = arg min ‖y−Dα‖2
2 + λ

(
‖α‖2

2 + ‖α‖
2
1 − |α|

TR|α|
)

, (8)

where R is the similarity matrix between atoms in the adaptive dictionary D ∈ RK×K.
Some frequently-used similarity measures are absolute atom correlation Rij =

∣∣DT
i Dj

∣∣ and

Gaussian kernel Rij = exp
(
−
∥∥Di −Dj

∥∥2/σ2
)

et al. Considering some basic results and
notation with abundance coefficients and similarity matrix:

‖α‖2
2 = |α|TI|α| (9)

‖α‖1 = |α|T1 = 1T |α| (10)

‖α‖2
1 = |α|T11T |α|, (11)

where I is the identity matrix and 1 is a vector of all ones. Then, the fourth term in
Equation (8) representing the trade-off between l1-norm and l2-norm can be explained
as follows. For the completely similar features, R = 11T . Equation (8) only left l2-norm,
reducing the impact of the l1 constraint. For the completely dissimilar features, R = I, and
Equation (8) reduces to SRC model with only l1 constraint. That is to say, when the two
features are similar, we take the CRC method; when the two features are dissimilar, we take
the SRC method; for the remaining cases, we take the ENRC method. Thus, the flexible
trade-off scheme can be realized though our proposed PENRC.

To further enhance the classification performance, we also incorporate the spatial
information of HSI pixel into the PENRC model. In [24], a shape adaptive (SA) region
is proposed for each pixel. In our work, we utilized the neighbor information with SA
and the chosen pixel can be represented by the average of all pixels in the SA window.
For an arbitrary pixel y in the HSI, the corresponding SA set matrix can be denoted as
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YSA = [y1, y2, . . . , yT ]. T is the number of chosen pixels in SA. Then, the pixel y introduced
into spatial information can be obtained by

ȳSA =
1
T

T

∑
t=1

yT , (12)

Then, the sparse coefficients αSA for ȳSA can be denoted as:

α̂SA = arg min ‖ȳSA − D̄SAαSA‖2
2

+ λ
(
‖αSA‖2

2 + ‖αSA‖2
1 − |αSA|TR|αSA|

)
,

(13)

Once the sparse coefficients αSA is obtained, the final label can be determined by the
category minimum reconstruction error:

class(y) = arg min
c=1,...,C

‖ȳSA − D̄cSA αcSA‖2, (14)

where,D̄cSA and αcSA represent the subset of D̄SA and αSA corresponding to c-th class,
respectively.

3.3. Coordinate Descent

To solve Equation (8), we rewrite it as following:

α̂ = arg min ‖y−Dα‖2
2 + λ|α|TP|α|, (15)

where P = I + 11T − R. As [27] proves, only if P has nonnegative entries and is a positive
semidefinite (PSD) matrix, the second term |α|TP|α| in above model is convex. However,
the matrix P in Equation (15) is not always a PSD matrix. We can consider the following
way as proved in [27]:

PS
θ = θI + (1− θ)P, (16)

where τ
τ+1 ≤ θ ≤ 1 and τ = −min{0, λmin(P)}.

Then, Equation (15) can be seen as a quadratic program (QP) problem and can be
solved by the QP solver. However, the QP solver does not meet the high-dimensional
data requirements. In order to obtain more exact results, we use the coordinate descent
method [35] in this paper. The approach can be summarized as: given a convex function
f (α), we calculate the derivative ∂f

∂αi
; update αi by holding all αj (where j 6= i) fixed with

the equation ∂f
∂αi

= 0; cyclic each αi iteratively until the termination condition is satisfied.
In PENRC, we have

f (α) = arg min ‖y−Dα‖2
2 + λ|α|TP|α|

= yTy− 2qTα + αTQα + λ ∑
i,j

Pi,j
∣∣αiαj

∣∣, (17)

where P is PSD and nonnegative, Q = DTD and q = XTy. Then, the derivative ∂f
∂αi

is

∂f
∂αi

= −2qi + 2QT
i α + 2λsgn(αi)

K

∑
j=1

Pi,j
∣∣αj
∣∣. (18)

If the derivative is 0, we update αi according to α−i = α{1:K}\i:

(Qii + Pii)αi + sgn(αi)λ ∑
j 6=i

Pij
∣∣αj
∣∣ = qi −∑

j 6=i
Qijαj. (19)
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Then, we define the scalars a, b and c. Let a = Qii + Pii, b = λ ∑j 6=i Pij
∣∣αj
∣∣ and c =

qi −∑j 6=i Qijαj. The update equation can be denoted as:

αi =


(c + b)/a c < −b

0 −b ≤ c ≤ b
(c− b)/a c > b.

(20)

4. Results

In this part, to validate the superiority of our proposed PENRC, we compare our proposed
PENRC (pixelwise) and PENRC with both the single pixel-based and spatial information-based
algorithms such as the KNN [36], SRC [15], CRC [16], fused representation-based classifica-
tion (FRC) method [25], elastic net representation-based classification (ENRC) method [25],
nearest regularized subspace (NRS) classifier [18], shape adaptive joint sparse representation
classification (SAJSRC) [24] and weighted joint nearest neighbor and sparse representation
(WINN-JSR) [37]. All the experiments are conducted using MATLAB R2014b on a 2.50 GHz
PC with 8.0 GB RAM.

4.1. Data Set

In this paper, we chose the three HSI data sets for experimental evaluation.
The first testing data set is Indian Pines dataset. The scene is obtained by AVIRIS sensor

over the Indian Pines test site in Northwest Indiana [38]. The size of the image is 145× 145
with 224 spectral reflectance bands whose wavelength ranging from 0.4 µm to 2.5 µm.
Removing the crops with less coverage, we choose 9 kinds of crops in the given ground truth
which are corn-notill, corn-mintill, grass-pasture, grass-trees, hay-windrowed, soybean-notill,
soybean-mintill, soybean-clean and woods. Figure 1a,b illustrate the corresponding false color
composition and ground truth map respectively.

Corn-notill 

Corn-mintill 

Grass-pasture 

Grass- trees

Hay-windrowed

Soybean-notill

Soybean-mintill

Soybean-clean

Woods

(a) (b) (c)

Figure 1. Indian Pines dataset. (a) composite color image. (b,c) ground truth.

The second data set is the Pavia Centre data set, which is acquired by the ROSIS sensor
during a flight campaign over Pavia. The geometric resolution is 1.3 m. The image size
is 1096× 715× 102. Due to the lack of information in the image, some samples do not
contain any information. Therefore, it must be discarded before analysis. For Pavia Centre,
we chose nine classes in the given ground truth: water, trees, asphalt, self-blocking bricks,
bitumen, tiles, shadows, meadow and bare soil. Figure 2a,b illustrate the corresponding false
color composition and ground truth map, respectively.

The third one is the Pavia University data set, also collected by the ROSIS sensor.
The spatial resolution is 610× 340, and it contains 103 spectral bands. The Pavia Univer-
sity dataset contains nine classes with the given ground truth: asphalt, meadows, gravel,
trees, paninted mental sheets, bare soil, bitumen, self-blocking bricks and shadows. Figure 3a,b
illustrate the corresponding false color composition and ground truth map, respectively.



Entropy 2021, 23, 956 8 of 14

Water

Trees

Meadow

Self-Blocking Bricks

Bare Soil

Asphalt

Bitumen

Tile 

Shadows

(a) (b) (c)

Figure 2. Pavia Center dataset. (a) Composite color image. (b,c) Ground truth.

Asphalt

Meadows

Gravel

Trees

Painted mental sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

(a) (b) (c)

Figure 3. Pavia University dataset. (a) Ccomposite color image. (b,c) Ground truth.

4.2. Parameter Analysis

During the experiment, we used three evaluation indicators to measure the classifica-
tion performance: OA, AA and Kappa [39]. OA represents the proportion of all correctly
classified atoms to the total number of testing atoms, while AA is the average value of OAs
in each class. Kappa indicates the percentage of classified testing pixels corrected by the
number of agreements that would be expected by chance. Detailed definitions for each
indicator can be referred to [40].

There are two main parameters (the number of adaptive dictionary atoms K and
balancing parameter λ) that have a significant impact on classification results in our
proposed PENRC. In this section, we analyze the impact of the two parameters by carrying
out the sweep of the chosen parameter space and find the optimal parameters according
to Figure 2. For Indian Pines, we chose 10% pixels per class as training samples. For
Pavia Center, we chose 100 pixels per class as training samples and the same number
for the Pavia University dataset. From Figure 4, we can see that OA increases first and
then decreases with the K value increasing. Few adaptive dictionary atoms lack enough
locality information, and too many dictionary atoms may introduce redundant category
information. Then, we fixed the value of K, and the classification can be locally maximum
with the appropriate value of λ. Then, from the maximum OA shown in Figure 4, we set K
to 20 and λ to 1 × 10−3, 1 × 10−2 and 1 × 10−4 for Indian Pines, Pavia Center and Pavia
University, respectively.
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(a) (b) (c)

Figure 4. Effects of the number of adaptive dictionary atoms K and balancing parameter λ. (a) Indian Pines dataset, (b)
Pavia Center dataset and (c) Pavia University dataset.

4.3. Comparisons with Other Approaches

To avoid any bias, we repeated the experiments five times and reported the average
classification accuracy.

For Indian Pines, we employ 10% labeled samples per class as training set and others
as testing set. The detailed partition strategy is illustrated in Table 1. From Table 2, we
can see the classification performance of our proposed PENRC and J-PENRC as well
as chosen compared algorithms, and the optimal results for each class are indicated in
bold. For certain classes, such as grass-pasture, grass-trees, hay-windrowed and woods, the
classification accuracies of our proposed PENRC and J-PENRC can be above 98%, specially
for hay-windrowed, which can be up to 100%. For category soybean-clean, our algorithm
improves the classification accuracy by 19.08% relative to the chosen optimal comparison
algorithm ENRC. Furthermore, from Table 1, we can clearly see that our algorithms are
optimal in terms of OA, AA and Kappa. In order to prove the effectiveness of our algorithm
more comprehensively, we also compare the OAs, which are calculated under the different
number of training samples. The classification results are shown in Figure 4. The abscissa
represents the number of training samples per class, and the ordinate represents the
classification accuracy. The dashed line represents OAs of the pixelwise algorithms, and the
solid line represents OAs of the algorithms based on spatial information. From Figure 4, we
can see that even in the case of insufficient training samples, our algorithm can achieve an
ideal classification result. Furthermore, our algorithm have always been optimal compared
to the same kind of contrast algorithms.

Table 1. List of the number of samples involved in training and testing for each class in Indian Pines, Pavia Center and
Pavia University datasets.

Indian Pines Pavia Center Pavia University

No. Name of Class Traning Testing Name of Class Traning Testing Name of Class Traning Testing

1 Corn-notill 142 1286 Water 100 2500 Asphalt 100 800
2 Corn-mintill 83 747 Trees 100 2500 Meadows 100 800
3 Grass-pasture 49 434 Meadow 100 2500 Gravel 100 800
4 Grass-trees 73 657 Self-Blocking Bricks 100 2500 Trees 100 800
5 Hay-windrowed 48 430 Bare Soil 100 2500 Painted mental sheets 100 800
6 Soybean-notill 98 874 Asphalt 100 2500 Bare Soil 100 800
7 Soybean-mintill 246 2209 Bitumen 100 2500 Bitumen 100 800
8 Soybean-clean 60 533 Tile 100 2500 Self-Blocking Bricks 100 800
9 Woods 127 1138 Shadows 100 2500 Shadows 100 800
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Table 2. Classification results of Indian Pines by pixelwise algorithms (KNN, SRC, CRC, FRC, ENRC, NRS and PENRC)
and spatial-based algorithms (SA-JSR, WJNN-JSR and J-PENRC). Bold indicates the best result.

No. KNN SRC CRC FRC ENRC NRS PENRC SA-JSR WJNN-JSR J-PENRC

1 58.44 59.48 66.49 64.03 57.69 88.99 78.44 91.60 94.16 96.75
2 54.69 62.28 63.39 64.73 67.38 89.60 78.12 86.75 92.50 97.10
3 95.00 90.38 96.54 97.96 93.09 63.78 98.46 94.01 99.77 100
4 96.70 98.97 96.70 93.91 99.46 89.96 98.98 100 100 100
5 100 98.44 99.22 99.22 98.18 98.62 100 100 100 100
6 62.68 65.33 38.10 52.87 70.16 70.30 75.62 93.59 94.17 97.90
7 79.20 78.21 90.42 90.65 82.11 69.57 90.79 95.25 95.97 97.44
8 51.72 51.72 41.38 52.66 59.60 58.45 78.68 91.18 92.32 95.92
9 93.41 94.00 98.83 95.46 96.60 98.05 99.56 97.89 98.33 99.82

OA (%) 75.55 76.31 78.06 80.25 79.16 86.09 87.70 94.40 96.00 98.05
AA (%) 76.90 77.65 77.65 79.80 80.62 80.93 88.57 94.47 96.36 98.33
Kappa 71.27 72.14 72.14 76.54 75.57 82.39 85.44 93.42 95.31 97.71

For Pavia Center, we employ 100 labeled samples per class as a training set and
2500 per class as a testing set.The detailed partition strategy is illustrated in Table 1. Table 3
illustrates the classification performance of our proposed PENRC and J-PENRC compared
to other chosen algorithms, and the optimal results for each class are indicated in bold. For
meadow, the classification accuracies of our proposed PENRC can be above 99.6%. For some
classes, such as asphalt and tile, the classification accuracies of our J-PENRC can be above
99%. Especially for water, the classification accuracy of both PENRC and J-PENRC can be
up to 100%. Furthermore, Table 3 illustrates that our proposed algorithms are optimal in
terms of OA, AA and Kappa compared to other chosen algorithms. In order to further
prove the effectiveness of our algorithm, we also compare the OAs of chosen algorithms
under the different number of training samples. The classification results are shown in
Figure 5. The number of training samples is selected from 50 samples per class to 300
samples per class. It can be seen from Figure 5 that compared with similar algorithms, our
algorithm always has the best classification effect.

Table 3. Classification results of Pavia Center by pixelwise algorithms (KNN, SRC, CRC, FRC, ENRC, NRS and PENRC)
and spatial-based algorithms (SA-JSR, WJNN-JSR and J-PENRC). Bold indicates the best result.

No. KNN SRC CRC FRC ENRC NRS PENRC SA-JSR WJNN-JSR J-PENRC

1 99.11 99.67 99.67 100 99.81 100 100 100 100 100
2 89.56 76.37 82.33 84.17 79.67 91.85 89.17 93.67 87.11 94.67
3 87.89 90.21 88.00 86.31 92.33 87.67 99.67 98.72 95.51 99.33
4 84.33 79.32 24.56 87.42 80.17 76.29 93.16 99.82 96.60 97.31
5 88.89 89.50 67.50 84.50 89.67 85.26 96.09 99.00 81.83 93.08
6 88.11 77.83 97.67 79.67 76.85 97.31 80.73 68.67 97.52 99.41
7 86.44 88.81 86.10 84.43 88.23 83.83 94.25 96.83 85.14 97.28
8 95.33 97.01 99.03 97.21 98.15 99.50 99.50 95.04 96.83 99.60
9 100 93.00 82.33 93.42 95.50 99.50 94.62 99.71 100 100

OA(%) 91.07 87.06 80.19 88.56 88.93 91.24 94.11 94.83 92.97 97.78
AA(%) 91.07 87.06 80.19 88.56 88.93 91.24 94.11 94.83 92.97 97.78
Kappa 89.96 86.46 78.15 87.13 87.54 90.51 93.38 94.19 92.14 97.50

With regard to the Pavia University dataset, we randomly selected 100 labeled samples
per class as a training set and 800 per class in the rest as a testing set (such as the shaows class,
which only contains 947 labeled samples). The detailed partition strategy is illustrated in
Table 1. Table 4 presents the classification result of our proposed PENRC and J-PENRC with
other comparison algorithms, and the optimal results for each class are denoted in bold.
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For bitumen, the classification accuracy of our proposed PENRC reached 99.17%. For some
classes, such as gravel and bair coil, the classification accuracy of our J-PENRC can be above
97%. Especially for meadows, painted mental sheets and shadows, the classification accuracy
of J-PENRC can be up to 100%. In addition, in terms of OA, AA and Kappa, Table 3 also
illustrates that our proposed algorithms are optimal compared to other chosen algorithms.
In order to further prove the effectiveness of our algorithm, we also compared the OAs
of the chosen algorithms with different numbers of training samples. The classification
results are shown in Figure 5. The number of training samples is selected from 50 samples
per class to 300 samples per class. It is evident that our algorithm always gains the most
extraordinary performance.

Table 4. Classification results of Pavia University by pixelwise algorithms (KNN, SRC, CRC, FRC, ENRC, NRS and PENRC)
and spatial-based algorithms (SA-JSR, WJNN-JSR and J-PENRC). Bold indicates the best result.

No. KNN SRC CRC FRC ENRC NRS PENRC SA-JSR WJNN-JSR J-PENRC

1 70.83 57.67 36.00 56.83 60.67 91.17 72.00 94.16 70.00 87.00
2 70.33 78.00 75.00 80.17 68.50 71.00 97.33 92.50 81.33 100
3 69.67 72.83 92.67 67.33 73.33 77.50 97.00 98.59 82.00 98.67
4 88.67 89.50 96.67 94.33 92.00 95.33 93.83 100 96.73 97.13
5 98.50 99.50 100 99.83 99.27 99.17 99.67 100 99.83 100
6 66.33 65.17 57.33 64.00 68.33 83.00 95.83 94.17 85.83 97.00
7 85.50 87.00 92.17 85.83 87.00 86.50 99.17 95.97 95.00 99.00
8 66.83 67.83 20.17 72.00 69.00 64.50 86.83 92.32 80.17 94.33
9 100 94.95 93.33 97.33 98.17 99.67 97.83 98.33 99.83 100

OA(%) 79.63 79.14 73.70 79.74 79.57 85.31 93.28 96.00 87.81 96.69
AA(%) 79.63 79.14 73.70 79.74 79.57 85.31 93.28 96.00 87.81 96.69
Kappa 77.08 76.31 70.42 77.21 77.02 83.48 92.44 95.31 86.29 96.17

(a) (b) (c)

Figure 5. Classification performance for different numbers of training samples per class. (a) Indian Pines dataset, (b) Pavia
Center dataset and (c) Pavia University dataset.

4.4. Computational Complexity

In this section, we compare the computational complexity for each classifier with the
Indian Pines, Pavia University and Pavia Centre datasets. All above experiments were
executed five times to avoid any bias. Table 5 illustrates the total time of algorithm execution
and verification of the three datasets. All experimental settings and the parameters were
set to be the same as described above. As can be seen from Table 5, ENRC has a lower
time complexity than PENRC. There are two reasons for this. First, ENRC uses artificial
prior information to set a fixed weight parameter to combine l1-norm and l2-norm, while
PENRC automatically learns this weight parameter through the similarity matrix. Second,
the time complexity consumed by the solution approximation algorithm used by the two
methods is not the same due to the difference in the math models. On the other hand,
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Table 5 also lists the time complexity comparison with or without LAD. Obviously, the use
of LAD substantially reduces the computational complexity of PENRC and yields a better
classification performance.

Table 5. Computational complexity comparison in Indian Pines dataset.

With/Without LAD Running Time (s) Overall Accuracy

ENRC - 32.53 79.16

PENRC # 3472.68 85.44
! 72.35 87.70

5. Conclusions

In this paper, we proposed a hyperspectral image classification algorithm named
PENRC. The local constrained dictionary was first constructed to reduce the computation
costs. Then, by introducing a correlation matrix, the PENRC was constructed to realize
the group sparsity with self-balancing between l1-norm and l2-norm. The pairwise elastic
net model was proven to be capable of the grouping selection of highly correlated data
via establishing local, or pairwise, tradeoffs of similarity between correlation matrices,
thereby rendering more robust weight coefficients. To further improve the classification
performance, we also introduced spatial information and proposed the J-PENRC model.
The experimental results of real hyperspectral images verified that the proposed algorithms
could outperform the existing representation-based classifiers. Compared to the existing
pixelwise and spatial-based algorithm, experiments on our chosen Indian Pines verified the
effectiveness of our proposed PENRC and J-PENRC in quantitative and qualitative terms.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral Image
SR Sparse Representation
CR Collaborative Representation
PENRC Pairwise Elastic Bet Representation Based Classification
J-PENRC Joint-Pairwise Elastic Bet Representation Based Classification
SVM Support Vector Machine
GMM Gaussian Mixture-Model
MLC Maximum-Likelihood Classifier
SRC Sparse Representation Classification
CRC Collaborative Representation Classification
JSRC Joint Sparse Representation Classification
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NRS Nearest Regularized Subspace
cdSRC Class-dependent Sparse
KCRC Kernel-Based CRC
NJCRC Nonlocal Joint Collaborative Representation
K-NN K-Nearest Neighbor
SAJSRC Shape Adaptive Joint Sparse Representation
FRC Fused Representation-Based Classification
ENRC Elastic Net Representation Based Classification
PEN Pairwise Elastic Net
SA Shape Adaptive
QP Quadratic Program
WINN-JSR Joint Nearest Neighbor and Sparse Representation
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