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Abstract: The problem of local fault (unknown input) reconstruction for interconnected systems is
addressed in this paper. This contribution consists of a geometric method which solves the fault
reconstruction (FR) problem via observer based and a differential algebraic concept. The fault
diagnosis (FD) problem is tackled using the concept of the differential transcendence degree of a
differential field extension and the algebraic observability. The goal is to examine whether the fault
occurring in the low-level subsystem can be reconstructed correctly by the output at the high-level
subsystem under given initial states. By introducing the fault as an additional state of the low
subsystem, an observer based approached is proposed to estimate this new state. Particularly, the
output of the lower subsystem is assumed unknown, and is considered as auxiliary outputs. Then,
the auxiliary outputs are estimated by a sliding mode observer which is generated by using global
outputs and inverse techniques. After this, the estimated auxiliary outputs are employed as virtual
sensors of the system to generate a reduced-order observer, which is caplable of estimating the fault
variable asymptotically. Thus, the purpose of multi-level fault reconstruction is achieved. Numerical
simulations on an intensified heat exchanger are presented to illustrate the effectiveness of the
proposed approach.

Keywords: local unknown input; interconnected system; local reconstrucability; global reconstruca-
bility; reduce-order uncertain observer

1. Introduction

Increasing developments in modern technologies have led to a high complexity of
control systems. Thus, either due to physical or analytical purpose, modern control systems
are frequently tackled as interconnected systems. Potential faults in interconnected systems
have also become inevitable and increasingly complex since faults of the interconnected
system can be represented at either the local subsystem level, or at the global system level
with the whole system in view, considering faults such as unknown external disturbance,
or parameter variations. Faults at either level may not only cause the decline of the
performance of both the global system or the local subsystem, but also may trigger a
series of fault subsystems. Compared with residual fault diagnosis methodologies, fault
reconstruction is capable of identifying the size, location, and dynamics of the fault. In
addition, the fault can usually be regarded as an unknown input to the system. The
problem of reconstructing the inaccessible inputs from the available measurements is
therefore motivated and has attracted remarkable interest in the last decades. Particularly,
reconstruction of unknown or inaccessible inputs from noise or indirect measures is very
common in many real industrial situations.

In the case of fault diagnosis and unknown input reconstruction for interconnected
systems, centralized structure-based fault reconstruction approaches are well investigated,
e.g., in Refs. [1–19]. A significant approach of FD and FR for dynamic systems are the
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observer based methodologies [1–7], with differential geometry-based techniques also
representing another attractive method [8–13]. Investigations aimed at solving problems
of FD and FR of nonlinear dynamic systems via algebraic and differential techniques can
be found in studies such as Refs. [12–17]. These approaches are normally applications of
dynamic inversion to achieve the purpose of FD and FR, just as the familiar idea of dynamic
inversion is used in the control problem of dynamic systems. Basic notions of this kind of
analysis method include the concepts of input reconfigurability [12], left invertibility of
dynamic system [9], relative degree of dynamic system and zero dynamics [16].

However, the application of individual system-based methodologies is mainly limited.
First, the identification of internal dynamics at local level is incomplete; second, it lacks the
dynamics information of the global system. In real applications, it is rather difficult to utilize
a centralized scheme to solve the problem of fault reconfiguration in interconnected systems.
Luckily, due to advances in computing and communications, it is becoming increasingly
popular to directly adopt hierarchical, decentralized, and distributed schemes to deal with
fault reconfiguration [20]. In fact, naturally, the architecture of the underlying subsystem is
decentralized or distributed, which means that it is necessary to develop distributed FD
and FR frameworks. In other words, local fault diagnosis and reconstruction should be
performed [21–39]. However, since the interconnected systems are becoming increasingly
complex, the problem of system fault reconstruction has also become increasingly difficult,
especially problems related to fault propagation, due to the fact that faults occurring in
one subsystem influence adjacent subsystems. Therefore, in order to better understand
the fault propagation problems, there is research concerning both local and global systems
such as in Refs. [20–37]. An important method is to propose a local observer for individual
subsystems using its own input and output measurements. All local observers work
together to achieve the purpose of estimation and diagnosis of the global system. In this
way, the intensive traditional observer design method, based on a single dynamic system,
can be employed, such as the high gain observer in Ref. [24], sliding mode observer in
Ref. [32], adaptive observer in Ref. [23], etc.

However, the operation of distributed FD and FR approaches greatly relies on reliable
information about the full measurement of all subsystems. Such a dependence makes
theses methodologies much more challenging, since online measurements available for
each subsystem are either difficult to obtain or are inaccurate and or expensive. The
matching conditions may be truly too harsh to be satisfied for many physical systems,
which makes these methods for unknown input reconstruction not available.

Therefore, it is of great importance to solve the above-mentioned difficulties when
analyzing the interconnected systems, which has also motivated us to carry out this
research. In this work, system inversion and observer design techniques are combined and
extended, aimed at tackling multi-level faults (unknown input) reconstruction problems
of the interconnected system. A distributed fault reconstruction scheme is developed
and the propagation of the fault effects among interconnected subsystems is investigated.
The initial objective is to recognize unknown inputs at the low-level subsystem by using
information provided at the global level. A remarkable benefit is that it is capable of
reconstructing the system state and local fault signals simultaneously, including incipient
faults, for which the fault is considered as an unknown input uncertainty. By introducing
the fault as an additional state of the low subsystem, an extended reduced-order observer
is developed to produce an estimation of this state. In particular, the output of the lower
subsystem is assumed unknown, and is considered as auxiliary output. An inverse-
based high order sliding mode observer is developed, aimed at estimating the auxiliary
output and its derivatives via measurements of global system. By using this estimation
information of auxiliary output, an extended reduced-order observer is generated, aimed at
reconstructing the unknown inputs locally. The applicable system categories of this method
include systems that depend on polynomial input and its time derivatives. Encouraging
numerical simulation results confirm the effectiveness of the proposed multi-level fault
reconstruction approach.
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The rest of this article is organized as follows: in Section 2, condition of fault re-
constructability both locally and globally is given, while in Section 3, a multi-level fault
reconstruction scheme for an interconnected system is proposed. First, at the local level, by
introducing an auxiliary output to replace its inaccessible output, an extended reduce-order
observer is designed to estimate both the states and the fault signals. Second, in order to
give an estimation of the auxiliary output and its derivatives, a high order sliding mode
observer is introduced. Finally, by gathering all the estimates from both observers, the local
fault reconstruction via global information is achieved. In Section 4, the effectiveness of the
proposed approach is illustrated by numerical simulations implemented on an intensified
heat exchanger. Conclusions and further works are discussed in Section 5.

2. Model Description and Problem Formulation

Analytically, the system can be decomposed into several subsystems, and different
control or supervision algorithms can then be developed from both local and global
viewpoints, as shown in Figure 1.
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Figure 1. Interconnected system structure.

The important aspect is to develop models of individual subsystems that can describe
causeω2(t) and effect y(t) relationships between the 1st and 2nd subsystems. In this case,
estimation technologies on states and parameters are capable.

It is supposed that the 1st subsystem can be described with the following state affine
form by (1):

∑
1st

:
{ .

x1 = f1(x1) + g1(x1)u1
y = h1(x1, u1)

(1)

where x1 ∈ <n ∈ M is the state of the 1st subsystem, u1 ∈ <m is the input of 1st subsystem,
which represents elements such as the control input, reference signal, etc., and is also
the output of the 2nd subsystem; y ∈ <p is output of the 1st subsystem, as well as the
overall system. f1, g1 are smooth vector fields on M. x1(t0) = x10 is the initial condition.
In addition, it is assumed that u1 is inaccessible and can be recovered through available
measures of the global system.

Consider the following nonlinear systems for the 2nd subsystem subject to either
actuator or sensor faultsω2 by (2):

∑
2nd

:
{ .

x2 = f2(x2, u,ω2)
u1 = h2(x2, u,ω2)

(2)

where the state is represented by x2 ∈ Rn; u ∈ Rl is the input of the 2nd subsystem,
as well as the overall system; is the output; ω2 = (ω21,ω22, . . . , ω2k) ∈ Rk represents
the either actuator or sensor faults of the system. f2, h2 are assumed to be analytical
vector functions. Specifically, each fault is related to the variables of a specific device and
subcomponent. Each of these faults implies an abnormal physical change, such as sticking,
leakage or actuator blockage.

In this way, the studied interconnected system is composed of the two local sub-
systems ∑1st and ∑2nd; for the global system, the vector u and y represent its input and
output, respectively.
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For the interconnected systems described by (1) and (2), the main purpose of the
study is to reconstruct fault vector ω2 at the local level using information at the global
level; meanwhile, performance supervision of the global system, as well as individual
subsystems, is obliged. A significant objective is to examine whether the unknown inputs
ω2 at local 2nd subsystem can be reconstructed uniquely by output of the 1st subsystem
at a global level, given initial states. The initial task is to propose conditions under which
both the unknown input and initial state of a known model can be determined from
output measurements. For that, the concept of the differential transcendence degree of
a differential field extension and the algebraic observability concept of the variable are
employed. An interconnected observer based scheme is then developed and analyzed
to perform local fault variables reconstruction. A reduced-order uncertainty observer
combined with a high order sliding mode observer is developed to achieve this purpose.
Finally, the performance of a traditional distributed UIO approach and the proposed
multi-level FR approach are compared in detail through numerical simulations, which are
presented in an intensified heat exchanger.

3. On Condition of Fault Reconstructability Locally and Globally

In this section, the assumptions and main results on condition of fault reconstructabil-
ity locally and globally are discussed. An initial task is to prove that the fault vector ω2
at local level and output vector y at the global are implicitly causal. Moreover, it is also
necessary to provide condition to guarantee that local fault impacts on global information
are distinguishable. Basic notions are introduced first, and related concepts can be found
in Refs. [16,30].

3.1. Fault Reconstructability Condition

To cope with the problem, faults are regarded as local unknown inputs of the inter-
connected system. Thus, local faults’ reconstructability can be treated equivalent with the
capability of reconstructing unknown inputs at the local level. In solving the problem of
input reconstruction, the primary task is to evaluate the observability of input, so as to
distinguish whether the change of input of dynamic systems can be reflected in the change
of the output. In order to ensure that the local unknown input can be reconstructed from
the global outputs by means of a finite number of ordinary differential equations, there are
conditions involving observability and reconstructionability to be met.

From Ref. [30], if any unknown variable x in a dynamic satisfies a differential algebraic
equation, the coefficients κ of the equation are greater than in the components of u and y,
and the number of its derivatives is finite, then the x is algebraically observable with respect
to κ(u1,ω2). Any dynamic with output y is said to be algebraically observable if, and
only if, any variable has this property. In addition, a fault (unknown input) is defined as a
transcendent element over κ(u), in which case a faulty system can be viewed as extension
of differential transcendence with both fault (unknown input) and its time derivatives.
Motivated by this, fault observability of an interconnected system can be defined from
multi-level viewpoints:

Definition 1. (Local Algebraic observability). For subsystem (2), a fault element ω2 ∈
κ(u, ω2) is said to be locally algebraically observable if ω2 satisfies a differential algebraic equation
with coefficients over κ(u, u1, ω2).

Definition 2. (Global Algebraic observability). For interconnected systems depicted by (1)
and (2), a fault element ω2 ∈ κ(u, ω2) is said to be globally algebraically observable if ω2 satisfies
a differential algebraic equation with coefficients over κ(u, y, ω2).

Typically, the problem of observability and left invertibility of dynamic system can
be equivalently tackled, while the property of left over invertibility usually means a
recontructability of the system input from the output. From Refs. [16,30], if invertibility
of the interconnected system, denoted by (1) and (2), can be insured, then it is capable of
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obtaining the fault elementω2i(i = 1, . . . , k) globally from information of overall system
output y. Equivalently, if subsystems depicted by (1) and (2) are invertible, respectively,
then their inputs and unknown inputs vectors u1 andω2 can be expressed locally by their
corresponding local measured outputs y and u1. To accomplish the aims, the central issue
is to provide conditions which can guarantee invertibility of both individual systems and
the interconnected system. Luckily, this has been discussed in previous paper in Ref. [30].
It can be seen that a differential output rank is defined to determine invertibility of single
dynamic system, while invertibility of all the subsystems are the necessary and sufficient
condition for ensuring invertibility of the interconnected system.

Definition 3. (Local reconstructability). For system (2), it is said to be locally reconstructable
if the system is invertible. In this way, it is capable of estimating the unknown input ω2 from local
system information u and u1.

For the concept of algebraic observability, it is required that each fault component can
be written as the solution of the polynomial equation inω2i and the finite number of time
derivatives of u and u1 with coefficients in k.

H
(
ω2i, u,

.
u, . . . , u1,

.
u1, . . .

)
= 0 (3)

Definition 4. (Global reconstructability). For the interconnected nonlinear system described
by (1) and (2), it is said to be globally reconstructable if the interconnected system is invertible, in
this way, it is capable of estimating the unknown input ω2 from global system information u and y.

In other words, it is required that the local unknown input vector can be expressed as
a solution of a polynomial equation inω2i and the finite number of time derivatives of u
and y with coefficients in k.

H
(
ω2i, u,

.
u, . . . , y,

.
y, . . .

)
= 0 (4)

As mentioned before, requirements of health measurement of all the subsystems
increases the difficulty the procedure. In this work, u1 is supposed to be inaccessible.
Therefore, it is also critical for estimating a reliable u1 and to ensure that reconstructed u1
has a one-to-one relationship with fault vector ω2i. If it can prove that the reconstructed û1
is converged to u1 with acceptable accuracy, then by substituting u1 as its estimates û1 in
(3), the fault vector (ω2i, i = 1, . . . , k) is capable of obtaining by a solution of a polynomial
equation inω2i and the finite number of time derivatives of u and û1, with coefficients in k.

H
(
ω2i, u,

.
u, . . . , û1,

.
û1, . . .

)
= 0 (5)

In summary, ifω2 is algebraically observable with respect to u and y, thenω2 is said
to be reconstructable. If, and only if, the interconnected system is invertible both locally
and globally, the task of reconstruction of the local unknown input vectorω2 from global
measures, y can be achieved. That is, if the overall interconnected system is invertible, then
the impacts of the unknown inputω2 on the global system, output y is distinguished.

3.2. Minimum Number of Measurements and Reconstructable Unknown Inputs

In this work, accessible measurements are of great importance when implementing
the proposed FR method. Therefore, the minimum number of measurements is an essential
prerequisite for determining whether a fault in the dynamic system is reconstructable or
not. This problem is also related to the problem of invertibility of the dynamic system.
According to [16], in order to insure invertibility of the system, the differential output rank
of the system should equal to the number of the fault candidates. The differential output
rank is also defined as the maximum number of outputs associated with differential poly-
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nomial equations with coefficients over K (independent of x). It means that the available
measurable outputs of the system must be greater than or equal to the possible faults.

Remark 1. For a subsystem described by (1), invertibility cannot be guaranteed if the available
outputs are less than the inputs. Conversely, if there are more outputs than inputs, then the
redundant outputs are unneeded.

Remark 2. For subsystem in failure mode depicted in (2), invertibility of the system cannot be
guaranteed if the available outputs is less than the possible faults.

Proposition 1. From remarks 1 and 2, the simultaneous reconstructable failure number (ω2i, i =
1, . . . , k) depends on the number of the measurable outputs.

Remark 3. For interconnected system depicted in (1) and (2), the minimum number of available
measurements predetermined the reconstructable unknown inputs, thus, equal dimensions of both
subsystems and the whole interconnected system is more meaningful.

4. Observer Design for Unknown Input Reconstruction

As mentioned before, existing observers for fault reconstruction are mainly focused
on individual systems. Although there is some research concerning both local and global
subsystems, the associated match criteria are usually overly strict to be satisfied in real
industrial applications. In order to cope with this difficulty, this work is concerned with the
challenges by deriving a fault reconstruction method based on some auxiliary outputs. The
architecture of the proposed multi-level fault reconstruction method is shown in Figure 2.
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The main idea is based on distributed observer design, since distribution resources
of dynamic systems are said to be particularly effective for estimation of interconnected
systems, due to the fact that they can update internal states using local measurement
outputs. However, the significant challenge here is the inaccessible of the interconnection,
which is the input of the first subsystem and the output of second subsystem. To cope with
this difficulty, first, in order to reconstruct local unknown fault of the first subsystem, the
interconnection is extended as an additional state of the first subsystem, an asymptotic
reduced-order observer is proposed for the first subsystem, using local input and output
measurement information. Then, it is considered the problem that local output is not
available directly. An inverse and sliding mode observer based estimator for the second
subsystem is then designed to generate an estimation of the local output, and the estimated
auxiliary output is applied to the reduced-order observer to replace its measured output.
A kind of multi-level fault reconstruction is achieved by gathering estimation of these
two observers.
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4.1. Asymptotic Reduced-Order Observer Design with Auxiliary Output

Considered system (2), the unknown fault vector ω2(t) is assimilated as an extra
state of the system with uncertain dynamics. It is expressed according to the states, the
unknown inputs (faults) and the known inputs of the system. The dynamics of this new
state are unknown. The original system is then converted into an extended system where
the dynamics of the extra state are unknown, and it is assumed to be bounded. The original
problem is then an observation problem, where the aim is to observe this extra state of
the system.

The new extended system is given by:
.
x2 = f2(x2, u,ω2).
ω2 = ψ(x2, u,ω2)
u1 = h2(x2, u,ω2)

(6)

where ψ(x2, u,ω2) is a bounded uncertain function, ω2(t) is algebraically observable
over κ(u, u1). It should be noted that a typical structure observer, similarly to a classic
Luenberger observer, is not available in the literature because the term ψ(x2, u,ω2) is
unknown. Therefore, in order to estimate the unknown input variableω2, a proportional
reduced-order uncertainty observer using differential algebraic techniques is applied to
the fault estimation is constructed to overcome the above problem.

An asymptotic reduced-order observer with a corresponding quadratic-type Lyapunov
function can be constructed for system (6):

.
ω2i = Ki(ω2i − ω̂2i), 1 ≤ i ≤ ε (7)

where ω̂2 denotes the estimate of the unknown input vector ω2(t) and the convergence of
the observer is determined by Ki.

Normally, time derivatives of the output are included in the algebraic equation of the
unknown input vector, which may enhance computation burden and cause significant com-
putation error even under minor measurement noise, then it is practical and worthwhile to
employ an auxiliary variable rather than the computations of the time derivatives.

If the unknown fault vector is algebraically observable and can be written in the
following form:

ω2i = αi
.
u1 + βi(u, u1) (8)

where αi is a constant vector and βi(u, u1) is a bounded function.
If a C1 real-valued function γ exists, such that a proportional asymptotic reduced-order

unknown input observer exists, for system (6) it can be written as:

Theorem 1. Supposed that the auxiliary output vector u1 is available for measurement, then
the system { .

γi = −Kiγi + Kiβi(u, u1)−K2
i αiu1.

ω2i = γi + Kiαiu1
(9)

is a proportional asymptotic reduced-order unknown input observer for system (6).

The observer (9) can be implemented under assumption that u1 is measured. However,
in our design u1 is assumed to be unavailable, it is therefore obliged to produce an estimate
of the auxiliary output to substitute the measured one.

Remark 4. By optimizing the observer gain, the optimum tradeoff between the speed of state
reconstruction and the robustness to model uncertainty is realized. In this way, the designed
observer is not only capable of recovering the system state but also of minimizing the impacts of the
measurement noise.
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Remark 5. It is worth noting that better robustness can be achieved by adding integral action to the
proportional asymptotically reduced-order fault observer during the implementation of the observer.

4.2. Auxiliary Output Estimation

The premise of implementation of Theorem 1 is that the auxiliary output u1 is measur-
able. It is therefore first required to reconstruct a smooth function of this auxiliary output
together with its derivatives from the output data records. To deal with the actual situa-
tion, a system inverse-based high order sliding mode observer is considered to accurately
estimate the auxiliary output vector u1 and the derivative in the subsystem (1). If this
estimation can be well achieved, then the estimated u1 in (9) and its derivatives can be
utilized to substitute u1 in (1) to complete the purpose of unknown input reconstruction.
In order to achieve this purpose, we first need to construct a dynamic system, which is
indeed the realization of the inverse of the original system.

Specifically, for an invertible nonlinear system with the form of (1), a finite relative
degree of the output ri, i = 1, . . . , m is first defined as the smallest integer as follows:

Lg1
Lri−1

f1
hi(x1) =

[
Lg11

Lri−1
f1

hi(x1)Lg12
Lri−1

f1
hi(x1) . . . Lg1m

Lri−1
f1

hi(x1)
]
6= [0, 0, . . . , 0]

Then, by calculating expressions for their derivatives, one gets:
y(r1)

1
...

y(rm)
m

 =


Lr1

f1
h11(x1)

...
Lrm

f1
h1m(x1)

+
 Lg11

Lr1−1
f1

h11(x1) . . . Lg1m
Lr1−1

f1
h11(x1)

. . . . . . . . .
Lg11

Lrm−1
f1

h1m(x1) . . . Lg1m
Lrm−1

f1
h1m(x1)

u1 (10)

Although the algebraic polynomial (10) is based on a system inversion, and has already
been able to compute u1, the requirements of calculating of the successive derivative of
the output may burden the reconstruction process. In practical applications especially, the
measurements often subject to noise, it may result in large overshoot, even failure. An
inverse-based high order sliding mode observer is then generated to tackle this problem.

Define the following change of the coordinates:

ξi =
[
ξ1

i , ξ2
i , . . . , ξri

i

]T
=
[
φ1

i (x1), φ2
i (x1), . . . ,φri

i (x1)
]T
=
[
h1i(x1), Lf1h1i(x), . . . , Lri−1

f1 h1i(x)
]T

i = 1, . . . , m

Next, to construct:

yi = ξ1
i

.
ξ

j
i= ξ

j+1
i ; 1 ≤ j ≤ ri − 1

.
ξ

ri
i = Lri

f1h1i(Φ−1(ξ,η)+∑m
j = 1 Lg1i

Lri−1
f1 h1i

(
Φ−1(ξ,η)

)
u1j; j = ri

The expression of input vector u1 is then issued:

u1 = A
(

Φ−1(ξ,η)
)−1



ξ
(r1)
1
...

ξ
(rm)
m

 −

 Lr1
f1h11(Φ−1(ξ,η)

...
Lrm

f1 h1m(Φ−1(ξ,η)


 (11)

The inversed based sliding mode observer can then be designed as follows:

ŷi = ξ̂
1
i

.
ξ̂

j

i= ξ̂
j+1
i + λ

j
i|ŷi − yi|

1/2sgn(ŷi − yi); 1 ≤ j ≤ ri − 1
.
ξ̂

ri

i = λ
ri
i |ŷi − yi|

1
2 sgn(ŷi − yI); j = ri

(12)

Finally, estimation of ξi is achieved finitely:

ξ̂i =
[
ξ̂

1
i , ξ̂2

i , . . . , ξ̂ri
i

]T
=
[
φ̂

1
i (x1), φ̂

2
i (x1), . . . , φ̂ri

i (x1)
]T

i = 1, . . . , m

ξ̂ =
[
ξ̂1, ξ̂2, . . . , ξ̂m

]
=
[
φ̂1(x1), φ̂2(x1), . . . , φ̂m(x1)

] (13)
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4.3. Reconstruction of the Unknown Inputs by Asymptotic Reduced-Order Observer with
Auxiliary Output

Now that the estimation of auxiliary output vector u1 and its derivatives has been
achieved, then the unknown input can be reconstructed by this information. The û1 is
the exact estimate of the auxiliary output vector u1 in a finite time obtained from the high
order sliding mode observer.

Proposition 2. If it can be insured that reconstructed û1 is correctly converged, the conclusion can
be obtained that the fault vector ω2 and û1 has one-to-one correspondence.

Since estimation of the auxiliary output vector is now possible with acceptable accu-
racy, observer (7) can then be extended in the following form in (14).

Theorem 2. Supposed that the auxiliary output vector û1 is obtained, then an asymptotical
reduced-order observer in accordance with the original system (2) can be generated as follows:{ .

γi = −Kiγi + Kiβi(u, û1)−K2
i αiû1.

ω2i = γi + Kiαiû1
(14)

system (14) is capable of asymptotically reconstructing local unknown input vector finitely.

Proof. Subtracting the first equation of (14) from the first one of original system (2), error
dynamic of the observer can be reached. �

While it has been proven that the estimated û1 is the accurate estimation of the
auxiliary output vector u1 in a finite time, the convergence of (14) is straightforward
because the error dynamic system is not corrupted.

5. Numerical Simulation Implementation on a Pilot Intensified Heat Exchanger

In this section, the effectiveness of our proposed methods is illustrated on a pilot
intensified heat exchanger which can be found in Ref. [31] for physical details. Here, the
heat exchanger system is regarded as an interconnected system, in which the heat exchanger
itself is a subsystem, and the actuator is regarded as the other subsystem cascaded with the
heat exchanger. The purpose of the simulation is to prove that the unknown local internal
signals of the actuator, like unknown air pressure change, can be recovered by measuring
the outlet temperature of the heat exchanger.

5.1. Interconnected System Modelling

Define measured outlet temperatures Tp, Tu of both fluids as two states x11, x12 of the
heat exchanger subsystem, flow rates Fp, Fu of the two fluids are defined as two inputs
u11, u12, which are also the interconnection of the interconnected system, outputs y1, y2 are
specified as x11, x12,

The state space form of heat exchanger subsystem can then be written as:
.
x11 = u11

Vp

(
Tpi − x11

)
+

hpA
ρpCppVp

(x12 − x11)
.
x12 = u12

Vu
(Tci − x12) +

huA
ρuCpuVu

(x11 − x12)
(15)

The actuators in this process are two pneumatic control valves, it is to define the stem dis-
placement X1, X2 and their derivatives dX1

dt , dX2
dt as four states x2

T =
[

x21 x22 x23 x24
]

of the actuator subsystem, two local inputs vT =
[

v1 v2
]

are defined as the pneumatic
pressure of two valves u1

T =
[

F1 F2
]
, two fluid flow rate F1 F2 are outputs of the

subsystem, which correspond to inputs Fp, Fu in the heat exchanger subsystem, and are
assumed unmeasured in this subsystem.
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The state space form of actuator subsystem can then be written as:
.
x2 =


0 1 0 0
− k1

m −µ1
m 0 0

0 0 0 1
0 0 − k2

m −µ2
m

x2 +


Aa
m 0
0 0
0 Aa

m
0 0

v +


0
ω21

0
ω22


u1=

[
Cv

√
∆P1
sg 0 Cv

√
∆P2
sg 0

]
x2

(16)

ω21 ω22 are defined as two local fault variables. Each one of these faults represents
a variation in the respective control valve gain, which can be originated by an electronic
component malfunction, leakage, or an obstruction in the control valve.

5.2. Observer Design for Unknown Input Reconstruction
5.2.1. Reduce-Order Observer Design

By calculating output differential rank, it is obvious that both subsystem and the
overall system are invertible. Then, it is necessary to verify the condition provided by 3.1
and to construct an algebraic equation for each component of the unknown inputs with
coefficients in Π(v, u1).

By obtaining a second time derivative of u1, it is possible to obtain a differential
algebraic polynomial for the unknown inputs whose coefficients are in Π(v, u1).{

ω21 =
.
x22 +

µ1
m x22 +

k1
m u11 − Aa

m v1

ω22 =
.
x24 +

µ2
m x24 +

k2
m u12 − Aa

m v2
(17)

Obviously, the time derivates of outputs and the states appear in the algebraic equation
of the unknown input, then, according to (13), an auxiliary variable is used to avoid
using them.

5.2.2. System Inversion Based Interconnection Reconstruction

The input of the first subsystem can also be represented by means of the output and
its derivatives.

Differential all two outputs in (15), and one can obtain:
.
y1 =

hpA
ρpCppVp

(y2 − y1) +
u11
Vp

(
Tpi − y1

)
.
y2 = huA

ρuCpuVu
(y1 − y2) +

u12
Vu

(Tui − y2)
(18)

Denoted estimates of the two inputs of the heat exchanger subsystem as
ũ1 =

[
ũ11 ũ12

]
, the following expression can be achieved by using above results: ũ11 =

Vp
Tpi−y1

( .
y1 −

hpA
ρpCppVp

y2 +
hpA

ρpCppVp
y1

)
ũ12 = Vu

Tui−y2

( .
y2 −

huA
ρuCpuVu

y1 +
huA

ρuCpuVu
y2

) (19)

Obviously, successive derivatives of outputs y1 and y2 are required to develop
an inversed based second order sliding mode observer to produce exact estimates of
them finitely.

Construct new ordinates as:

y1 = Tp = ξ1
1 y2 = Tu = ξ1

2 (20)

The sliding observer of Formula (10) is obtained. Then, the estimated ũ11 andũ12 can
be used to obtain observer of (21).
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By construction: {
γ1 = ω̂21 + K1x22
γ2 = ω̂24 + K2x24

(21)

The following reduce-order observer are obtained:
.
γ̂1 = −K1γ1 + K1

(
µ1
m x22 +

k1
m ũ11 − Aa

m v1

)
−K2

1x22
.
γ̂2 = −K2γ2 + K2

(
µ2
m x24 +

k2
m ũ12 − Aa

m v2

)
−K2

2x24
(22)

Then, an asymptotic observer is constituted.

5.3. Simulation Results and Discussion

Aimed at illustrating the effectiveness of the proposed multi-level fault reconstruction
method, two numerical simulations are carried out in this section. Two kinds of faults are
considered, containing sudden changes and incipient variations. In addition, a simulation
comparison between the well-known UIO proposed in [30] and the proposed FR is also
provided. Detailed values of the variables used for the simulation can be found in [30].

Case 1. Abrupt fault situation.

In this simulation, the fault variables are considered to be abrupt ones. The simulation
is implemented with initial conditions γ1 = γ2 = 0, and the observer gains are given by
K1 = K2 = 5. Two unknown inputsω21, ω22 are considered. Dynamics ofω21 remains
zero from the beginning, and at t = 50 s, it changes to 10 and never comes back. The value
of ω22 jump to 60 at 120 s and drops back down at 160 s. Simulation results are reported in
Figures 3–8.
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The measured global outputs, temperature of both fluid Tp and Tu, are shown in
Figures 3 and 4. It can be seen that both temperature curves change abruptly at 50 s, 120 s
and 160 s. Interestingly, these changes coincide with the changes of two unknown inputs.
The measured information is fed to the inverse-based sliding mode observer to correctly
estimate the interconnection of the two subsystems, which are also the auxiliary outputs of
the low subsystem.

As shown in Figures 5 and 6, the computed fluid flowrates are denoted by the black
solid lines, and the dash green lines represent the estimated values. The two figures verify
the tracking capacities of designed sliding mode observer. It can be seen that after a short
transient time, the estimated curves converge to the computed lines with ready accuracy.
From Figure 5, at t = 50 s, the process fluid flowrate Fp increases suddenly and stables at a
new level after a short transient time again, which is in accordance with the assumption.
Figure 6 shows the computed and estimated result of utility fluid flow rate Fu. It is obvious
that the value of computed Fu and its estimated value F̂u converged adequately after a
relatively short transient period. Then, at 120 s, it jumps abruptly and drops to the original
value at 160 s, and the estimated dash line tracks the computed solid line again after
about 2 s. These variations are influenced by variation of unknown inputω22. Since both
estimated fluid flowrates give accurate estimation values to the computed values, they can
be used as auxiliary outputs to reduce-order observer to recover the local fault variables.

Dynamics of the fault (unknown inputs) are shown in Figures 7 and 8. The real
simulated values are denoted by the black solid lines, and the dash lines and dash-dot lines
represent the reconstructed values by a traditional unknown UIO and the proposed FR,
respectively, where local measures are available for UIO. From Figures 7 and 8, it is clear
that both reconstructed unknown inputs follow closely their corresponding true values.
After a short transient time, the reconstructed unknown inputsω21 andω22 in both dash
lines and dash-dot lines give accurate estimation values to the simulated real values in
solid line. From Figure 7, at 50 s, the estimated ω21 unexpectedly increase, and finally
it stabilizes at a new level, and an increase of 10 is observed. These changes satisfy the
assumption of the unknown inputs ω21 correctly. It is also obvious that the traditional
UIO method converges quickly than the proposed FR. The similar result is obtained in the
estimated ω22 of unknown input in Figure 8. At time 120 s, as expected, both simulated
and reconstructed curves of the unknown inputs ω22 jump with corresponding to the
assumption, an increase of 60 is observed, then another drop happens at t = 160 s and
it returns to zero with a −60 reduction. It also proves that the reconstructed value in
dash line and dash-dot line track well the real simulated value in the solid line. Again,
they demonstrate that traditional UIO has better rapidity for fault reconstruction than
the proposed FR, and they have the same accuracy as fault reconstruction. However,
the proposed FR is more suitable for real engineering world since it does not need local
output measures.

The simulation curves indicate that the proposed observer is proper for reconstruct-
ing the dynamics of the local unknown inputs with acceptable accuracy, using global
measurements.

Case 2. Incipient fault situation.

The safe and reliable operation of dynamic systems through the early detection of a
small fault before it becomes a serious failure is a crucial component of the overall system’s
performance and sustainability. In this case, an incipient variation is considered on individ-
ual unknown inputs. The simulation is implemented with initial conditions γ1 = γ2 = 0,
and the observer gains are given by K1 = 10, K2 = 5. Two unknown inputs ω21, ω22
are considered. The dynamics ofω21 is generated by 10

[
1 + sin

(
0.2te−0.05t)]. Dynamics of

ω22 is generated by 3
[
1 + sin

(
0.5te−0.1t)]. Simulation results are reported in Figures 9–14.
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Figure 14. Simulated and reconstructed unknown inputω22.

The measured global outputs, temperature of both fluid Tp and Tu, are shown in
Figures 9 and 10. It can be seen that both temperature curves change irregularly and
incipiently, with these changes coinciding with the changes of two unknown inputs. This
measured information are fed to the sliding mode observer to estimate the interconnection
of the two subsystems, which are also the auxiliary outputs of the low subsystem.

As shown in Figures 11 and 12, the computed fluid flowrates are denoted by the black
solid lines, and the dash lines represent the estimated values. The two figures verify the
tracking capacities of designed sliding mode observer. It can be seen that after a short
transient time, the estimated curves converge to the computed lines with ready accuracy.
Both estimated fluid flowrates give accurate estimation values to the computed values, they
can be used as auxiliary outputs to reduce-order observer to recover the unknown inputs.

Dynamics of the unknown inputs are shown in Figures 13 and 14. The real simulated
values are denoted by the black solid lines, and the dash lines represent the reconstructed
values. From Figures 13 and 14, it is clear that the reconstructed unknown input follows
closely their corresponding true values. After a short transient period, the reconstructed
unknown inputs ω21 andω22 in dash lines produce an accurate estimation value to the
simulated real values indicated by the solid line. It can also illustrate that the reconstructed
value in dash line tracks well the real simulated value as shown by the solid line.

The obtained results clearly put forward the following features. The results demon-
strate that traditional UIO has a faster speed of fault reconstruction than the proposed FR,
and both methods can obtain high accuracy in incipient fault reconstruction procedure.
Therefore, the proposed multi-level local fault (unknown input) reconstruction approach is
effective for an interconnected system with unmeasured information.

6. Conclusions and Discussion

This paper addresses the multi-level local fault (unknown input reconstruction) prob-
lem of interconnected nonlinear systems. By introducing the local fault as an additional
state and auxiliary outputs of the low subsystem, then the extended states, the auxiliary
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outputs and their derivatives are then accurately estimated by combining functions of
an asymptotical reduce-order observer and an inverse-based second order sliding mode
observer. Effectiveness of the proposed schemes is verified by using simulations on an
intensified heat exchanger system, and the satisfactory performances are validated by
good simulation results. However, large bias and computation errors are observed when
significant measured output noise is involved. The applicable system categories of this
method include systems that depend on polynomial input and its time derivatives. In
addition, the results of this work can easily explore the application scenarios, such as fault
detection and fault reconstruction.

In this paper, model uncertainty and external disturbances are not taken into consid-
eration during the FR designing process. Therefore, enhancing the robustness to model
uncertainty and external disturbance is a meaningful direction for further research, and
relevant investigation has already been started. Moreover, the reconstructed information
by the proposed FR could be used in active fault tolerant control of dynamic system for
better achieving its effectiveness, and could be another focus of further research.
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38. Bartyś, M.; Patton, R.; Syfert, M.; Heras, S.D.L.; Quevedo, J. Introduction to the DAMADICS actuator FDI benchmark study.
Control Eng. Pract. 2006, 14, 577–596. [CrossRef]

39. Djeziri, M.A.; Toubakh, H.; Ouladsine, M. Fault prognosis based on fault reconstruction: Application to a mechatronic system. In
Proceedings of the 3rd International Conference on Systems and Control, Algiers, Algeria, 29–31 October 2013; pp. 383–388.

http://doi.org/10.1016/j.jfranklin.2020.06.021
http://doi.org/10.1016/j.automatica.2006.07.014
http://doi.org/10.1002/rnc.1198
http://doi.org/10.1016/j.sysconle.2014.12.003
http://doi.org/10.1016/j.cnsns.2014.05.016
http://doi.org/10.3390/app10227966
http://doi.org/10.1109/TIE.2012.2206355
http://doi.org/10.1080/00207179.2015.1007395
http://doi.org/10.3182/20140824-6-ZA-1003.02640
http://doi.org/10.1007/s12652-018-1130-7
http://doi.org/10.1080/00207179.2011.582156
http://doi.org/10.3390/app11020596
http://doi.org/10.3166/ejc.17.603-620
http://doi.org/10.1504/IJMIC.2017.084723
http://doi.org/10.1016/j.automatica.2012.02.005
http://doi.org/10.1016/j.engappai.2007.05.002
http://doi.org/10.1109/TCSII.2016.2626199
http://doi.org/10.1016/j.conengprac.2005.06.015

	Introduction 
	Model Description and Problem Formulation 
	On Condition of Fault Reconstructability Locally and Globally 
	Fault Reconstructability Condition 
	Minimum Number of Measurements and Reconstructable Unknown Inputs 

	Observer Design for Unknown Input Reconstruction 
	Asymptotic Reduced-Order Observer Design with Auxiliary Output 
	Auxiliary Output Estimation 
	Reconstruction of the Unknown Inputs by Asymptotic Reduced-Order Observer with Auxiliary Output 

	Numerical Simulation Implementation on a Pilot Intensified Heat Exchanger 
	Interconnected System Modelling 
	Observer Design for Unknown Input Reconstruction 
	Reduce-Order Observer Design 
	System Inversion Based Interconnection Reconstruction 

	Simulation Results and Discussion 

	Conclusions and Discussion 
	References

