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Abstract: Graphs/networks have become a powerful analytical approach for data modeling. Besides,
with the advances in sensor technology, dynamic time-evolving data have become more common. In
this context, one point of interest is a better understanding of the information flow within and between
networks. Thus, we aim to infer Granger causality (G-causality) between networks’ time series. In
this case, the straightforward application of the well-established vector autoregressive model is
not feasible. Consequently, we require a theoretical framework for modeling time-varying graphs.
One possibility would be to consider a mathematical graph model with time-varying parameters
(assumed to be random variables) that generates the network. Suppose we identify G-causality
between the graph models’ parameters. In that case, we could use it to define a G-causality between
graphs. Here, we show that even if the model is unknown, the spectral radius is a reasonable estimate
of some random graph model parameters. We illustrate our proposal’s application to study the
relationship between brain hemispheres of controls and children diagnosed with Autism Spectrum
Disorder (ASD). We show that the G-causality intensity from the brain’s right to the left hemisphere
is different between ASD and controls.

Keywords: Granger causality; random graphs; spectral radius; brain connectivity; autism spec-
trum disorder

1. Introduction

Graphs have been extensively used to model high-dimensional systems with complex
dependence structures. Networks are ubiquitous, from genes [1,2] to social systems [3,4].
Besides, with the advances in sensor technology, dynamic, time-evolving data have become
more frequently available [5,6]. In this context, time-series analysis methods on dynamic
networks became relevant to understand how networks evolve and interact. For example,
we would like to infer the information flow between networks.

Clive Granger introduced a causality concept to analyze the relationships and in-
fluences among macroeconomic time series [7]. Granger causality consists of the idea
that a cause cannot ever occur after its effect. To identify Granger causality (G-causality)
between two time series, e.g., stock markets, we may use the vector autoregressive (VAR)
model [8]. It is a well-established method and widely used in economy [9,10] and biol-
ogy [11,12]. The VAR model has many variants. For example, the Dynamic VAR identifies
time-varying G-causality [13–15]. The Sparse VAR is helpful when the number of param-
eters is greater than the number of observations [16–18]. The Nonlinear VAR identifies
nonlinear G-causality [19,20] in contrast to the classic VAR that identifies only linear rela-
tionships. The Structural VAR allows an explicit structure of the contemporaneous effects
and constraints on the lagged effects [21–23]. There is also an approach based on the
canonical correlation analysis to identify G-causality between sets of time series [12,24].
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However, in cases in which we are interested in identifying G-causality between networks,
e.g., brain subnetworks, the straightforward application of a VAR model is not feasible.
Indeed, they are objects composed of vertices and edges. Thus, a possibility would be to
consider a mathematical model with parameters (assumed to be random variables) that
generate the network.

Suppose we identify G-causality between the graph models’ parameters. In that case,
we assume G-causality between two time series of graphs. However, in practice, the model
that generates the empirical networks is rarely known. Additionally, model selection in
complex and high-dimensional settings is difficult and comprises uncertainties.

Thus, the challenge consists of identifying a graph feature associated with the graph
model’s parameters. Fujita et al. [25] suggested that the spectral radius is highly associated
with the random graph model’s parameters (e.g., Erdös–Rényi, geometric, regular, Watts–
Strogatz, and Barabási–Albert). Besides, they used it as a feature to infer the correlation
between graphs. Based on this idea, we use the spectral radius to construct a VAR model
for graphs. First, we evaluate our proposal’s performance in simulated data. Then, we
illustrate its application to functional brain networks. We show that the Granger causality
from the brain’s right to the left hemisphere is different between controls and children in
Autism Spectrum Disorder.

2. Materials and Methods
2.1. Graph

A graph is an ordered pair G = (V, E), where V is a set of n vertices (v1, v2, . . . , vn)
and E is a set of m edges that connect two vertices of V. In this study, we will consider
the case of graphs with a non-empty set of nodes and edges solely. Any undirected graph
G with n vertices can be represented by its adjacency matrix AG with n× n elements AG

ij

(i, j = 1, . . . , n); its value is AG
ij = AG

ji = 1 if vertices vi and vj are connected and 0 otherwise.

The spectrum of graph G is the set of eigenvalues of its adjacency matrix AG. Since AG is
symmetric, an undirected graph with n vertices has n real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

2.2. Granger Causality between Graphs

Suppose we can predict the present and future values of yt better considering past
values of xt than considering only past values of yt. Then, we say that the time series xt
Granger causes the time series yt.

In this study, we want to identify Granger causality between two time series of graphs.
To this end, we assume that random graph models generate the graphs. Additionally, we
consider the parameters of the random graph models as random variables. We call the
parameters of the distribution of this random variable as the hyperparameters of the graph
models. Let Θ be the random variable that we will sample to generate the parameters of
random graphs. The parameters determining the distribution of Θ are the hyperparameters
of the random graphs. As an illustrative example, suppose that G1 and G2 are two Erdös–
Rényi random graphs [26]. An Erdös–Rényi random graph has n labeled vertices, and
we connect each pair of vertices by an edge with a given probability p. In this case, the
probability p is the parameter of graph G. We describe the two time series of Erdös–Rényi
random graphs as G1(p1t) and G2(p2t). Besides, we sample (p1t) and (p2t) from Θ1 and Θ2,
respectively. We say that the random graph G1 Granger causes G2 if the random variable
Θ1 Granger causes Θ2. Let

˜
θ1 = {θ11, θ12, . . . , θ1T} and

˜
θ2 = {θ21, θ21, . . . , θ2T} be two

time series of size T from the random variables Θ1 and Θ2, respectively, and
˜
G1(˜

θ1) =
{G11(θ11), G12(θ12), . . . , G1T(θ1T)} and

˜
G2(˜

θ2) = {G21(θ21), G22(θ22), . . . , G2T(θ2T)} be two
time series of random graphs constructed by using

˜
θ1 and

˜
θ2, respectively. We describe

the G-causality test between the random graphs G1 and G2, based on the samples
˜
G1(˜

θ1)
and

˜
G2(˜

θ2) as follows. Let the null hypothesis be H0: Θ1 does not Granger cause Θ2. Further,
let the alternative hypothesis be H1: Θ1 Granger causes Θ2. Suppose we know the graph
models. Then, a straightforward way of identifying G-causality between Θ1 and Θ2 consists
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of estimating the parameters of the random graph models and then testing the absence of
G-causality between them.

However, the graph model is rarely known for real-world graphs. Thus, the challenge
consists of detecting G-causality only by observing the random graphs (and not the pa-
rameters). In other words, it is necessary to identify a feature of the graph that is highly
associated with the parameters of the graph model. For several random graphs, we already
know that the spectral radius (the largest eigenvalue—λ1) is a function of the parameters
of the graph model. For example, for the Erdös–Rényi random graph model, let n and p
be the number of vertices and the probability that two vertices are connected by an edge,
respectively. Then, the spectral radius of an Erdös–Rényi random graph is np. Another
example is the regular random graphs. A regular random graph is a graph where each
vertex has the same number of adjacent vertices. Let deg be the number of adjacent vertices;
then, the spectral radius is deg.

Thus, considering that important structural and dynamical characteristics of a graph
are defined by the parameters of the generating model, we can perform statistical analysis
over graphs based solely on their spectral radii. Notably, ref. [25] already used the spectral
radius to construct a framework to identify correlation between vectors of graphs. Thus,
based on the same idea, we propose the use of the spectral radius to identify G-causality
between time series of graphs. For simplicity, we will denote the spectral radius λ1 just
as λ.

2.3. Vector Autoregressive Model for Graphs

We often identify G-causality by fitting vector autoregressive (VAR) models. Consider
the approach in which we represent the graphs by their spectral radii. Then, the extension
of the VAR model for identifying G-causality among graphs is straightforward. Let:

• k be the number of time series of graphs;
• p be the order of the model (number of time points in the past to be analyzed);
• T be the length of the time series;
• yi,t be the spectral radius of the ith time series of graphs; and
• εi,t be the vector of error terms for the ith graph, normally distributed, with zero mean

and covariance matrix

Σ =


σ2

1,1 σ2,1 . . . σk,1
σ1,2 σ2

2,2 . . . σk,2
...

...
. . .

...
σ1,k σ2,k . . . σ2

k,k

.

Note that the error terms εi,t are serially uncorrelated, but may be contemporaneously
correlated. In other words, Σ may not necessarily be an identity matrix.

Then, the equations system of a k-dimensional VAR model of order p is as follows:
y1,t = v1 + a1

1,1y1,t−1 + . . . + ap
1,1y1,t−p + . . . + a1

k,1yk,t−1 + . . . + ap
k,1yk,t−p + ε1,t

y2,t = v2 + a1
1,2y1,t−1 + . . . + ap

1,2y1,t−p + . . . + a1
k,2yk,t−1 + . . . + ap

k,2yk,t−p + ε2,t
...
yk,t = vk + a1

1,ky1,t−1 + . . . + ap
1,ky1,t−p + . . . + a1

k,kyk,t−1 + . . . + ap
k,kyk,t−p + εk,t

To simplify and facilitate the estimation of the coefficients of this model, we will
rewrite the equations system in a matrix form.

Let

Y =


y1,p+1 y2,p+1 . . . yk,p+1
y1,p+2 y2,p+2 . . . yk,p+2

...
...

. . .
...

y1,T y2,T . . . yk,T

,
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Z =


y1,p y1,p−1 . . . y1,1 . . . yk,p yk,p−1 . . . yk,1

y1,p+1 y1,p . . . y1,2 . . . yk,p+1 yk,p . . . yk,2
...

...
. . .

...
. . .

...
...

. . .
...

y1,T−1 y1,T−2 . . . y1,T−p . . . yk,T−1 yk,T−2 . . . yk,T−p

,

and

β =



a1
1,1 a1

1,2 . . . a1
1,k

...
...

. . .
...

ap
1,1 ap

1,2 . . . ap
1,k

...
...

. . .
...

a1
k,1 a1

k,2 . . . a1
k,k

...
...

. . .
...

ap
k,1 ap

k,2 . . . ap
k,k


.

Then, the VAR model can be written in a matrix form as:

Y = Zβ + u. (1)

The coefficients of the model, al
i,j, with i, j = 1, . . . , k and l = 1, . . . , p, can be estimated

by Ordinary Least Squares (OLS) as

β̂ = (Z′Z)−1Z′Y. (2)

The ((T − p)× k) matrix of residuals û can be obtained as

û = Y− Zβ̂, (3)

and the (k× k) covariance matrix Σ as

Σ̂ =
û′û

(T − p)− (kp)
. (4)

2.4. Statistical Tests

Assume that a graph time series is linearly associated with any lagged version of itself
and the other graph. Then, a necessary and sufficient condition for graph time series yi,t
being not Granger-causal for graph time series yj,t is that al

i,j = 0, for l = 1, . . . , p. Thus,

we may identify Granger non-causality by testing the significance of the entries al
i,j of the

matrix of autoregressive coefficients (β) of the VAR model.
The hypothesis test of connectivity significance β is H0 : Cβ = 0 versus H1 : Cβ 6= 0,

where C is a matrix of contrasts for the parameters we are interested in. We can achieve
this test by applying Wald’s test [27] (Section 2.4.1) or a parametric bootstrap procedure
(Section 2.4.2).

2.4.1. Wald’s Test

Suppose we are interested in testing whether yi,t Granger causes yj,t. Let c be a (1× k)
matrix with one in the ith position and zero in the other positions, and let 0 be a (1× k)
matrix of zeros. Then, we define the (p× (kp)) matrix of contrasts C as:
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C =


c 0 . . . 0
0 c . . . 0
...

...
. . .

...
0 0 . . . c

.

Let β̂ j = (â1
1,j, . . . , âp

1,j, . . . , â1
k,j, . . . , âp

k,j) be the kp× 1 vector with the estimates of the au-

toregressive coefficients for yj,t. Further, let Σ̂j,j be the jth column of the jth row of the
estimated covariance matrix Σ̂. Then, Wald’s test statistic is defined as follows:

W =
(Cβ̂j)

′(C(Z′Z)−1C′)−1(Cβ̂j)

Σ̂j,j
. (5)

Under the null hypothesis that Cβ j = 0, Wald’s test statistic W follows a χ2 distribution
with rank(C) degrees of freedom.

2.4.2. Bootstrap Procedure

When the time series length is limited, such as functional magnetic resonance imaging
(fMRI) data, Wald’s test assumption (T → ∞) does not hold anymore. Then, we suggest
the use of the following parametric bootstrap algorithm:

1. Fit the VAR model (Equation (1)).
2. Estimate both the VAR model coefficients (Equation (2)) and residuals (Equation (3)).
3. Resample with replacement the residuals obtained in step 2.
4. To test the G-causality from graph yi,t to graph yj,t, estimate Wald’s test statistic W

(Equation (5)). Then, construct a model under the null hypothesis, i.e., assume a
model where the VAR coefficients al

ij = 0 ∀l = 1, . . . , p. The other coefficients remain
as initially estimated in step 2.

5. Resample the residuals obtained in step 2 and use the model specified in step 4 to
simulate a bootstrap multivariate time series.

6. Estimate the coefficients al∗
i,j of the bootstrap time series obtained in step 5 and calculate

Wald’s test statistic W∗.
7. Go to step 3 until you obtain the desired number of bootstraps.
8. Estimate the p-value by calculating the fraction of replicates of W∗ on the bootstrap

dataset, which is at least as large as the observed statistic W on the original dataset.

2.5. Random Graph Models

Here we describe some examples of random graph models that we will use in our
simulation study.

2.5.1. Erdös–Rényi Random Graph

Erdös–Rényi random graphs [26] are one of the most studied random graphs. Erdös
and Rényi defined a random graph as n labeled vertices. We connect each pair of vertices
by an edge with a given probability p.

The spectral radius of an Erdös–Rényi random graph is np [28].
We used the function erdos.renyi.game of the R package igraph to generate Erdös–

Rényi random graphs. We downloaded the igraph package version 1.2.4 from the R website
(http://www.r-project.org, accessed on 13 February 2019).

2.5.2. Geometric Random Graph

A geometric random graph (GRG) is a spatial network. We construct an undirected
graph by randomly placing n vertices in some topological space Rd according to a probabil-
ity distribution (e.g., uniform distribution). Then, we connect two vertices by an edge if
their distance is smaller than a neighborhood radius r.

The spectral radius of a GRG converges almost surely to rd [29].

http://www.r-project.org
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We used the function grg.game of the R package igraph to generate geometric ran-
dom graphs.

2.5.3. Regular Random Graph

A regular random graph is a graph where each vertex has the same number of adjacent
vertices, i.e., every vertex has the same degree. A regular random graph with vertices of
degree deg is called a deg-regular graph or regular graph of degree deg [30].

Regular random graphs of degree deg = 0, 1, 2, 3 are well known:

• a 0-regular graph consists of disconnected vertices;
• a 1-regular graph consists of disconnected edges;
• a 2-regular graph consists of disconnected cycles and infinite chains;
• a 3-regular graph is known as a cubic graph.

The spectral radius of a deg-regular graph is deg [31].
We used the function k.regular.game of the R package igraph to generate regular

random graphs.

2.5.4. Watts–Strogatz Random Graph

The Watts–Strogatz random graph [32] presents small-world properties and a higher
clustering coefficient than Erdös–Rényi random graphs. redThe construction of a Watts–
Strogatz random graph depends on three parameters: the number of vertices n, the number
of neighbors (mean degree) nei, and the rewiring probability pw. We start by constructing
a ring with n vertices. Then, we connect every vertex to its first nei neighbors ( nei

2 on either
side. For each vertex in the ring, we reconnect with probability pw the edge that connects it
to its nearest neighbor to a vertex chosen uniformly at random over the entire ring. We
do this process moving clockwise around the ring until completing one lap. Next, we
consider the edges that connect the vertices to their second-nearest neighbors clockwise.
As in the previous step, we randomly rewire each edge with probability pw. We continue
this process circulating the ring and proceeding outward to more distant neighbors after
each lap until each edge in the original lattice has been considered once.

To the best of our knowledge, the spectral radius of a Watts–Strogatz random graph is
not analytically defined. However, there is empirical evidence that it is a function of pw
and nei [33].

We used the function watts.strogatz.game of the R package igraph to generate
Watts–Strogatz random graphs.

2.5.5. Barabási–Albert Random Graph

Barabási–Albert random graphs have a power-law degree distribution [34]. It is due to
the vertices’ preferential attachment, i.e., the more connected a vertex is, the more likely it is
to receive new edges [34]. proposed the following construction. Start with a small number
of (n0) vertices. At every time step, add a new vertex with (m1 ≤ n0) edges that connect
the new vertex to m1 different vertices already present in the system. When choosing the
vertices to which the new vertex connects, assume that the probability of connecting a new
vertex to the vertex vi is proportional to the degree of the vertex vi and the scaling exponent
ps (P(vi) ∼ deg(vi)

ps , where deg(vi) is the degree of the vertex vi in the current time step)
which indicates the proportionality order (ps = 1 linear; ps = 2 quadratic and so on).

Let k0 be the smallest degree. Then, the spectral radius of the Barabási–Albert random
graph is of the order of k1/2

0 n1/2(ps−1) [35].
We used the function barabasi.game of the R package igraph to generate Barabási–

Albert random graphs.

2.6. Simulation Study

We evaluated the performance of our proposal by simulation studies. Next, we
describe five different scenarios. The error terms εi,t are normal, centered at zero, and
weakly correlated, i.e., Cov(εi,t, ε j,t) = 0.1 if i 6= j, and 1 if i = j.
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Scenario 1: data were generated by the following model where y1,t and y2,t are not Granger
causally dependent: {

y1,t = 0.5 y1,t−1 + ε1,t
y2,t = 0.5 y2,t−1 + ε2,t

Scenario 2: data were generated by the following model involving a direct Granger causal
effect from y1,t to y2,t: {

y1,t = 0.5 y1,t−1 + ε1,t
y2,t = 0.5 y1,t−1 + ε2,t

Scenario 3: data were generated by the following model where y1,t Granger causes both
y2,t and y3,t: 

y1,t = ε1,t
y2,t = 0.5 y1,t−1 + ε2,t
y3,t = −0.5 y1,t−1 + ε3,t

Scenario 4: data were generated by a model involving direct and indirect Granger causal
effects (1) y1,t → y2,t; (2) y2,t → y3,t, (3) y1,t → y3,t, and (4) y3,t → y4,t, as
follows: 

y1,t = ε1,t
y2,t = 0.5 y1,t−1 + ε2,t
y3,t = −0.5 y1,t−2 + 0.5 y2,t−1 + ε3,t
y4,t = 0.5 y3,t−1 + ε4,t.

Scenario 5: data were generated by the following model with a feedback loop (y1,t →
y2,t → y3,t → y4,t → y2,t):

y1,t = ε1,t
y2,t = 0.5 y1,t−1 − 0.5 y4,t−1 + ε2,t
y3,t = −0.5 y2,t−2 + ε3,t
y4,t = 0.5 y3,t−1 + ε4,t.

We normalized the time series obtained in scenarios 1 to 5 to the interval [0; 1] using
the inverse-logit function. Then, we used them as parameters of the random graph models
as follows:

• Erdös-Rényi random graph: values corresponded to the probability p of two vertices
being connected.

• Random geometric graph: values corresponded to the neighborhood radius parameter,
r.

• Random regular graph: the integer part of the values after being multiplied by 10
corresponded to the deg.

• Watts–Strogatz random graph: values corresponded to the rewiring probability, pw.
• Barabási–Albert random graph: values, after being multiplied by two, corresponded

to the power of the preferential attachment.

For the Watts–Strogatz random graph model, we set the number of neighbors nei = 3.
For the Barabási–Albert random graph model, we set the number of edges to be included
at each iteration to one.

We simulated all graphs using the R package igraph. We considered different numbers
of vertices (n = 60, 90, 120, 150, 200, 300) and time series length (T = 25, 50, 75, 100). We
repeated each setting 1 000 times.

2.7. Application

The Autism Spectrum Disorder (ASD) etiology is complex and not completely under-
stood [36]. It involves several risk factors, such as genetic, environmental, psychological,
and neurobiological [37,38]. Thus, a multidisciplinary group composed of physicians
and psychologists usually diagnoses it through clinical interviews and tests. Then, they
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identify a combination of unusual behavioral characteristics, such as assessing deficits in
social communication, social reciprocity, and repetitive and stereotyped behaviors and
interests [39]. These symptoms frequently manifest during the first 3 years of life. They
usually come with developmental differences in brain anatomy, functioning, and functional
brain connectivity. Current studies suggest that ASD is a brain systems disorder [40–43].
Additionally, anatomical abnormalities are subtle but widespread over the brain [44]. Thus,
one straightforward approach to enhancing our comprehension of this disorder’s neural
substrates is to investigate differences in brain connectivity compared to controls. Most
studies focus on finding differences between region-to-region functional connectivity or
network centrality measures. Due to the lack of a suitable methodological framework,
investigations of how the structural organization in one brain sub-network is associated
with another are limited. Moreover, the description of these “networks of networks” in
clinical populations remains unexplored. Here we establish a novel framework to identify
how the information flow (Granger causality) between the left and right hemispheres of
the brain changes between controls and ASD.

2.7.1. ABIDE I Dataset

We downloaded 1112 individuals’ resting-state fMRI data from the ABIDE Consortium
website (http://fcon_1000.projects.nitrc.org/indi/abide/, accessed on 18 January 2018).
The ABIDE dataset was fully anonymized in compliance with the HIPAA Privacy Rules and
the 1000 Functional Connectomes Project/INDI protocols. Protected health information
was not included in this dataset. Further details are available at the ABIDE Consortium
website. We performed the pre-processing of the fMRI data using the Athena pipeline
(http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline, accessed
on January 18th, 2018). We defined the 116 regions of interest (ROIs) using the Anatomical
Automatic Labeling (AAL) brain atlas [45]. Then, we excluded 26 cerebellar ROIs. We
labeled the remaining 90 ROIs as part of the left or right hemisphere according to the side
containing the most number of voxels (Figure 1A). Then, we obtained 45 regions in each
hemisphere. In other words, we represented each hemisphere as a network composed of
45 vertices. We considered the average time series within the ROIs as the region’s repre-
sentatives (Figure 1B). To minimize head movement effects, we excluded subjects with
mean framewise displacement (FD) greater than 0.2. This process resulted in the inclusion
of 737 subjects (429 controls and 308 individuals diagnosed with ASD) for subsequent
analyses. Thus, the dataset used in this study comprises 429 controls (340 males, mean age
17.26± 7.62) and 308 ASD (270 males, 17.72± 8.24 years).

2.7.2. Granger Causality Analysis

A typical procedure for constructing functional brain networks (FBNs) is the Pearson
correlation. Since we are interested in the dynamics of the FBNs, we calculated a time-
varying Pearson correlation for each time point. The strategy is similar to the one described
by [14]. However, instead of using a wavelet-based approach, for simplicity, we used
splines. Thus, we obtained two undirected graphs per individual and per time point:
one for the left and another for the right hemispheres of the brain. The vertices represent
the ROIs. The edge weights represent the Pearson correlation coefficients among ROIs
(Figure 1C).

We hypothesize that the brain hemispheres interact differently between controls and
ASD. To test this hypothesis, first, we applied the proposed VAR method for graphs to
identify G-causality between the left and right brain hemispheres networks. This analysis
was performed separately for each sampled individual, using the same VAR’s order p,
estimated by AIC. To infer G-causality from the left to the right brain hemisphere, we
obtained Wald’s test statistics WLeft→Right associated with the null hypothesis that the
autoregressive coefficients al

Left,Right = 0, for l = 1, . . . , p. Similarly, to infer G-causality
from the right to the left brain hemisphere, we obtained Wald’s test statistics WRight→Left

http://fcon_1000.projects.nitrc.org/indi/abide/
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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associated with the null hypothesis that the autoregressive coefficients al
Right,Left = 0, for

l = 1, . . . , p. See Figure 1D.

(A) (B)

(C)(D)

Figure 1. Resting-state fMRI data preprocessing for assessing subject-specific G-causality between
the left and right brain hemispheres. (A) fMRI data segmented into 90 ROIs according to the AAL
atlas. (B) Separation of the ROIs as belonging to the left or right hemisphere. (C) Construction of
the functional brain networks time series for the left and right hemispheres. (D) Identification of
G-causality between the left and right hemispheres.

To determine whether the G-causality intensity between the brain hemispheres was
different in autistic subjects, we linearly regressed the Box–Cox transformed Wald’s test
statistics, previously computed for all sampled individuals, on the main effect of FD, and the
main and interaction effects of SEX (0: male, 1: female), AGE, and ASD diagnosis (0: control,
1: ASD). Since we had two Wald’s test statistics, one for each causality direction, we carried
out two independent linear regressions. The Box–Cox transformation made the distribution
of Wald’s test statistics approximately Gaussian. To control the site’s effects, we fitted a
linear mixed model with two components of variance: γSITE, for modeling the variability
between sites, and ε, for capturing the residual variability. We assumed both random effects
were independent and normally distributed. Specifically, let WRight→Left be Wald’s test
statistic obtained for assessing the causality from the right to the left brain hemisphere
and consider an appropriate value for the parameter κ of the Box–Cox transformation. For
example, one may consider the parameter κ that maximizes the model’s log-likelihood with
all covariates of interest. Additionally, let βFD, βSEX, βAGE, and βASD be the coefficients
for the main effects of FD, SEX, AGE, and ASD diagnosis, respectively. Furthermore, let
βSEX×AGE, βSEX×ASD, βAGE×ASD, and βSEX×AGE×ASD be the coefficients for the interaction
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effects involving SEX, AGE, and ASD diagnosis. Then, we considered the following linear
mixed model:

Wκ
Right→Left − 1

κ
= α + βFDFD + βSEXSEX + βAGEAGE + βASDASD+

βSEX×AGESEX×AGE + βAGE×ASDAGE×ASD + βSEX×ASDSEX×ASD+

βSEX×AGE×ASDSEX×AGE×ASD + γSITE + ε

(6)

We considered an analogous model for Wald’s test statistic for assessing the G-causality
from the left to the right brain hemisphere.

3. Results and Discussions
3.1. Simulation Study

To evaluate the control of the rate of false positives and the power of the proposed
method, we simulated scenarios 1 to 5 as described in Section 2.6. Then, we constructed
receiver operating characteristic (ROC) curves. We considered different times series lengths
(T = 25, 50, 75, 100) and graphs sizes (n = 60, 90, 120, 150, 200, 300). We repeated each
setting 1000 times. We set the number of bootstrap replicates to 1000.

Figure 2 shows the ROC curves for scenario 1 (under the null hypothesis, i.e., no
G-causality between the time series) using the Erdös–Rényi random graph model. Results
using other random graph models are similar. The x-axis represents the p-value threshold.
The y-axis represents the proportion of rejected null hypotheses given a p-value threshold.
Under the null hypothesis, we expected that the ROC curve lay at the diagonal. We
observed that the proposed method indeed controlled the type I error (all ROC curves
indeed lay at the diagonal).

To evaluate the method’s power, we carried out the simulations described in scenarios
2 to 5 (Section 2.6) using five random graph models, namely Erdös–Rényi, geometric,
regular, Watts–Strogatz, and Barabási–Albert. We set the p-value threshold to 0.05. We
summarize the results in the heatmaps of Figures 3–7 . The “greener” the heatmap is, the
greater was the proportion of rejected null hypotheses. In contrast, the “redder” it is, the
lower was the power.

First, it is possible to notice that the power of the test was more remarkable as the time
series length increased. Moreover, for the Watts–Strogatz and Barabási–Albert random
graph models, the power of the test was also higher as the number of vertices of the graph
increased. Therefore, we noticed that these two random graph models required greater
graph sizes to obtain better estimates of the spectral radii. In addition, we confirmed that
the method could identify G-causality in different structures, such as in the presence of a
mediator (Figure 6) and loop (Figure 7).

One may consider using another graph feature instead of the spectral radius, such
as one of the centrality measures (e.g., betweenness, closeness, eigenvector, and degree).
Thus, we repeated the analysis by using these other features. Figure 8 shows the heatmaps
describing the results of these simulations. By analyzing Figure 8, we notice that the power
of the proposed method based on the spectral radius was greater (or at least equivalent)
than when based on other features.

3.2. Application

We estimated the VAR order as five for all sampled individuals by using the Akaike
Information Criterion (AIC). Considering a significance level of 5%, the G-causality from
the left to the right brain hemispheres is not significantly different between ASD and
control groups. Additionally, all other effects were considered non-significant by fitting
the mixed model shown in Equation (6). However, as shown in Table 1, we identified
a differential G-causality from the right to the left brain hemispheres in ASD. By using
Equation (6), we identified a significant interaction effect between AGE and ASD diagnosis
(βAGE×ASD = −0.020, p = 0.022). Besides, we identified a significant interaction effect
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between AGE and SEX (βAGE×SEX = −0.029, p = 0.021). Figure 9 panels A and B illustrate
the interaction effect between AGE and ASD, separately for male and female subjects,
because of the significant interaction effect between AGE and SEX.
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1

(A)

(B) (C)

Figure 2. (A) Schema of scenario 1. Two time series of Erdös–Rényi random graphs (Y1 and Y2) without G-causality between
them. (B) ROC curve to evaluate the control of the type I error from Y1 to Y2. (C) ROC curve to evaluate the control of the
type I error from Y2 to Y1. The x-axis represents the p-value threshold. The y-axis represents the proportion of rejected
null hypotheses given a p-value threshold. n: the number of vertices. T: the time series length. Note that the proportion
of identified Granger causalities under the null hypothesis is as expected by the p-value threshold (ROC curves lie at the
diagonal). Therefore the proposed method indeed controls the type I error.
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Figure 3. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the left, we show
the direction of G-causality (direction of the edges) in Scenario 1. Heatmaps on the right side represent the proportion of
rejected null hypotheses highlighted in red in the left schema. The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert.
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Figure 4. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the left, we show
the direction of G-causality (direction of the edges) in Scenario 2. Heatmaps on the right side represent the proportion of
rejected null hypotheses highlighted in red in the left schema. The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert.
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Figure 5. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the left, we show
the direction of G-causality (direction of the edges) in Scenario 3. Heatmaps on the right side represent the proportion of
rejected null hypotheses highlighted in red in the left schema. The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert.

The loss of functional connectivity from the right to the left brain hemisphere as age
increased was significantly higher in subjects with autism. In other words, the G-causality
significantly decreased 0.012 (βAGE×ASD− βAGE = 0.020− 0.008) each year in autistic male
subjects. In contrast, we did not identify significant changes in male controls (βAGE = 0.008,
p = 0.261). We identified a a decrease of 0.041 (βAGE×ASD + βAGE×SEX − βAGE = 0.020 +
0.029− 0.008) in subjects with autism and 0.021 (βAGE×SEX − βAGE = 0.029− 0.008) each
year in controls by analyzing females.

Table 1. Results considering Wald’s test statistic as the response variable in Equation (6) for assessing
G-causality from the right to the left hemisphere. We considered the VAR model with order p = 5.

Parameter Estimate Std. Error t-Value p-Value

α 2.5270 0.2163 11.6795 <0.0001
βFD −0.9295 0.8893 −1.0452 0.2963
βSEX 0.5956 0.2291 2.5997 0.0095
βAGE 0.0082 0.0073 1.1229 0.2619
βASD 0.2945 0.1731 1.7013 0.0893

βAGE×ASD −0.0204 0.0089 −2.2948 0.0220
βSEX×AGE −0.0290 0.0126 −2.3036 0.0215
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Figure 6. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the left, we show
the direction of G-causality (direction of the edges) in Scenario 4. Heatmaps on the right side represent the proportion of
rejected null hypotheses highlighted in red in the left schema. The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert.
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Figure 7. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the left, we show
the direction of G-causality (direction of the edges) in Scenario 5. Heatmaps on the right side represent the proportion of
rejected null hypotheses highlighted in red in the left schema. The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert.
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Figure 8. Heatmaps represent the proportion of rejected null hypotheses at a p-value threshold of 0.05. At the top, the
direction of G-causality (direction of the edge) in Scenario 2. Each cell has varying colors from red to green representing
the statistical power (proportion of rejected null hypotheses). The four columns of each heatmap correspond to the results
obtained by varying the time series length T = 25, 50, 75, 100. The six rows correspond to the results obtained by varying
the sizes of the graphs (number of vertices) n = 60, 90, 120, 150, 200, 300. The “greener” the heatmap is, the greater is the
power of the test. In contrast, the “redder” it is, the lower is the proportion of rejected null hypotheses. We simulated five
random graph models, namely Erdös–Rényi, geometric, regular, Watts–Strogatz, and Barabási–Albert. We do not show the
heatmaps for Watts–Strogatz and Barabási–Albert random graph models because alterations in the parameter do not alter
the degree.
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Figure 9 panels A and B show that children in ASD had a higher G-causality from the
right to the left brain hemisphere than controls. This scenario changed at approximately 14
years old. Figure 10 shows the boxplots of the Box–Cox transformed Wald’s test statistic
obtained by the VAR method, separated by age range, ASD diagnosis status, and gender.
According to a Welch’s t-test, there was a differential G-causality from the right to the left
hemisphere in autistic subjects considering only females aged 6 to 13 years (p = 0.014) and
considering only males aged 16 to 60 years (p = 0.009).

To verify the robustness of our approach, we reanalyzed the data using VAR orders
four and six—the conclusions remain unchanged.

We also identified the ROIs in the right hemisphere associated with the differential
Granger causality between ASD and controls. To identify the ROIs, we did the following.
We removed the i-th ROI (i = 1, . . . , 45) and re-ran the entire analysis. Let tAGE×ASD be
the t-value associated with the coefficient βAGE×ASD in Equation (6) and t−i

AGE×ASD be the
t-value obtained in the analysis without the i-th ROI. Then, we could describe the effect
of the i-th ROI in the Granger causality as tAGE×ASD − t−i

AGE×ASD. In Table 1, we see that
tAGE×ASD = −2.2948. As a result, we identified two regions with the greatest impact on
the significance of AGE×ASD interaction coefficient: pars opercularis and superior parietal
gyrus (Figure 11).

Several studies [46] reported sex differences in ASD, which presents a greater preva-
lence in males and symptoms (repetitive and externalizing behaviors) [47]. Moreover, in
previous neuroimaging studies, ref. [48] evaluated the male/female differences in func-
tional connectivity during resting state to test whether they support the ‘neural masculin-
ization’ hypothesis. The authors concluded that results pointed toward ASD as a disorder
of sexual differentiation instead of masculinization in both genders. Moreover, ref. [49]
found gender differences on the structural connectomes in ASD regarding white matter
connectivity densities, suggesting that both structure and functions might be compromised.
Complementary, it is well-established that ASD is a complex neurodevelopmental con-
dition [50] with systems-level features evolving across the human lifespan [36]. In other
words, brain abnormalities manifested in children with ASD are not the same at other
developmental stages. Ref. [51] argue that there is current evidence from neuroimaging
studies that sex differences in ASD are age-dependent. The authors concluded that studies
should focus on large-sample studies and a lifespan perspective. In addition, Figure 11 de-
picts right pars opercularis as related to the AGE×ASD interaction effect, which is a novel
contribution to the field. The majority of studies report the left opercularis as involved in
language. Moreover, language functions are associated with both age and ASD. Thus, the
involvement of the contralateral region is exciting but not unexpected. Furthermore, the
involvement of the medial superior parietal gyrus is also of relevance because it is part
of the Default Mode Network. This network is implicated in social cognition, which is
impaired in ASD.

Future studies are necessary to understand the implications of these findings better.
The current study illustrated functional network-based modeling using both a large sample
and a lifespan approach. Remarkably, our findings are in line with previous studies high-
lighting differential sex and age-dependent effects of ASD on brain functioning compared
to typical development subjects. Specifically, the interaction effects between AGE × ASD
and AGE × SEX on interhemispheric functional connectivity is the main contribution of
this illustration. Notably, the direction of our findings points toward a decrease in ASD
effects with age and the latter with sex. The neurobiological mechanisms which explain
these effects are still unknown, and many conjectures could be raised. Age cumulative
environmental impacts from therapeutic interventions to coping strategies instruction may
have a complex interaction with subjects’ genetic and neurodevelopmental features.

Further studies are necessary to unveil these dynamic mechanisms. We believe the field
of systems biology may play a role. Thus, we advocate for developing novel analytical ap-
proaches to enhance our comprehension of these complex systems. For example, approaches
focused on time-varying functional connectivity would complement our approach. Notice
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that our framework identifies Granger causality among networks based on the entire time
series. In other words, it provides “an average” Granger causality from one network to
another. However, Stramaglia et al. [52] proposed a way to identify local Granger causality.
Their method offers a robust and computationally fast method to follow the information
transfer and the time history of linear stochastic processes and nonlinear complex systems
studied in the Gaussian approximation. They can identify Granger causality for each time
point. On the other hand, they do not identify Granger causality among networks. We could
combine their approach and ours to identify local Granger causality among networks time
series as future work. Besides the work of Stramaglia et al. [52], there are other methods for
time-varying connectivity inference. For a good review, refer to [53].
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Figure 9. Observed values of the Box–Cox transformed Wald’s test statistic WRight→Left obtained from
the VAR method with order five. (A) Male controls (blue dots) and male subjects with ASD (green
dots). (B) Female controls (violet dots) and female subjects with ASD (pink dots). We fitted the curves
considering Equation (6) with FD = 0 and ages from 0 to 60 years. Narrow shaded areas represent the
95% prediction intervals considering only the standard deviation of the random effect γSITE. The broad
shaded areas represent the 95% prediction intervals considering the standard deviation of the error ε.
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Figure 10. Boxplots of the Box–Cox transformed Wald’s test statistic WRight→Left obtained from the
VAR method for graphs, separated by age range, ASD diagnosis status, and gender.

L R
-1.20 -0.80 0.450.00

Figure 11. Heatmap describing the influence of the ROIs of the right brain on the significance of the
interaction effect between AGE and ASD diagnosis (βAGE×ASD) in Equation (6). The more negative
is the value (the effect of the ith ROI in the Granger causality as tAGE×ASD − t−i

AGE×ASD), the greater
is the ROI’s influence. Notice that the pars opercularis and superior parietal gyrus are the ROIs that
contribute the most to AGE × ASD.

4. Conclusions

The development of novel analytical approaches is crucial to enhance our compre-
hension of Systems Biology. In the current study, we defined G-causality between graphs
and proposed a framework to identify it, based on the combination of the concepts of



Entropy 2021, 23, 1204 20 of 21

spectral radius, random graphs, and the vector autoregressive model. Our computational
simulations suggest that the proposed statistical test is adequate. In other words, we
control the type I error while maintaining a considerable statistical power. Moreover, the
illustration of our approach using the ABIDE I dataset provided new insights on brain
connectivity disruptions in ASD patients and their relation to neurodevelopment and sex.
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