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Abstract: Aiming at recognizing small proportion, blurred and complex traffic sign in natural scenes,
a traffic sign detection method based on RetinaNet-NeXt is proposed. First, to ensure the quality
of dataset, the data were cleaned and enhanced to denoise. Secondly, a novel backbone network
ResNeXt was employed to improve the detection accuracy and effection of RetinaNet. Finally, transfer
learning and group normalization were adopted to accelerate our network training. Experimental
results show that the precision, recall and mAP of our method, compared with the original RetinaNet,
are improved by 9.08%, 9.09% and 7.32%, respectively. Our method can be effectively applied to
traffic sign detection.
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1. Introduction

Traffic sign recognition is an important technology for environment perception in
autonomous driving and high-definition map (HD Map), which can offer road information
judgments for safe vehicle driving and provide real-time security warning, ensuring driver
safety. However, the result of traffic sign recognition is still limited by many factors due to
diverse road conditions and the natural environment [1]. When the illumination changes,
the occluder is covered, and the sign information is blurred, it is difficult to detect and
recognize target signs.

For the object detection task, the popular detection frameworks are Faster RCNN [2],
YOLO [3], and SSD [4], etc. YOLO and SSD are one-stage object detection algorithms
that may directly deliver object category and location information via regression, which is
considerably faster than the two-stage technique. However, its accuracy is poor and the
object recognition result may not achieve the optimal state. Faster RCNN is of two-stage
technique that has high accuracy but slow speed since it first utilizes regression to create a
series of anchors and then uses convolutional neural networks to categorize them. Face-
book Al research team produced good results by upgrading the loss function and therefore
proposed the RetinaNet [5], a detection framework to establish a combination between
accuracy and speed in detection tasks. Since the standard RetinaNet uses ResNet [6],
the current ResNeXt [7] network has fewer hyperparameters and simpler structure than
ResNet by using group convolution in the network layer with the same guaranteed pa-
rameters. So, it could assist increase the RetinaNet’s target detection performance, and
decrease the false and missed rate of tiny targets in challenging situations, and improve the
model’s robustness and reliability, as well as improving traffic sign detection. Therefore,
we propose the RetinaNet-NeXt framework, a detection framework for detecting traffic
signs in natural scenes. Our method recognizes traffic signs by using ResNeXt to extract
bottom-up features from the input image, a laterally connected FPN to fuse top-down,
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low-level, high-resolution info and high-level features with rich semantic information, and
a convolutional network to classify and predict. A lot of experiments are carried out on
the basis of Tsinghua-Tencent 100K [8] traffic sign dataset to verify the efficiency of the
proposed approach. The proposed method can effectively recognize traffic signs in natural
scenes and achieves better accuracy than the current RetinaNet with a higher mAP.

This paper is organized as follows: Section 2 reviews previous work on traffic sign
recognition. Section 3 presents our method. Section 4 presents the experiments and results,
and Section 5 is dedicated to the conclusions.

2. Related Work

Many researchers have attempted to increase the accuracy of traffic sign recognition
using a variety of methods [9-21]. In general, there are three categories of traffic signs in
China: indication, warning and prohibition, which are represented by blue, yellow and red,
respectively. It has a variety of shapes, such as circle, triangle, and rectangle. Color and
shape features are now used to detect traffic signs, with K-mean method used for color
grouping and a convolutional neural network used for detection [22]. Dai Xuerui et al. [23]
used different color thresholds, maximally stable extremal regions (MSER) to detect traffic
sign, combined with shape features to judge after discovering the region of interest, and
used support vector machine (SVM) and histogram of oriented gradient (HOG) features
to classify the area, but for different traffic signs, the threshold value must be re-adjusted.
Xin Wu et al. [24] fused the channels of traffic sign color information to achieve contrast
enhancement and background noise reduction, improving recognition accuracy and robust-
ness, but they fail to detect traffic signs with similar shapes and colors.

With the development of deep learning, Yanmei Jin et al. [25] improved the detection
of small and medium-sized targets through multi-feature fusion and enhancement by en-
hancing effective channel features and suppressing ineffective channel features to enhance
features, which are less effective in recognizing small targets and cannot achieve high
accuracy due to learning through lower-level features; Xu Jindong et al. [26] proposed a
reliability-based spatial context fuzzy c-means algorithm (RSFCM) for suppressing pretzel
and Gaussian noise in image segmentation based on spatial contextual information, im-
proving the performance of traffic sign images on the clustering algorithm, and achieving
effective retention of image edge information. Prakash et al. [27] used Gabor filter and
Adam optimizer for feature extraction of LeNet to improve the processing capabilities of
the model in image recognition and achieved high classification results on GTSRB [28]
dataset, overcoming the drawbacks of traditional traffic sign recognition methods such as
higher computing complexity and lower detection accuracy. To improve the robustness of
traffic sign recognition, Haobo Lv et al. [29] utilized Yolov3, incorporated noise data, and
used soft NMS. Huan Zhu et al. [30] adopted Focal Loss to solve the problem of difficult
distinction between positive and negative samples in the GTSDB [31] dataset of German
traffic signs, and achieved 88.23% mAP. Zhilong He et al. [32] built a lightweight convo-
lutional neural network TS-CNN with a 10-layer architecture using simple convolution
and pooling operations, with a detection accuracy of 99.3%, but they lacked attention and
research on image recognition in natural scenes and complex weather conditions. Qiuyu
Zhang et al. [33] changed the network structure of VGG to six layers [34], introduced
high-level features and capture the contextual information of feature map by block-cross,
improving the real-time and accuracy of detection of smaller traffic signs. Zha, M. et al. [35]
used feature pyramid network and coordinate attention [36] for forestry pest detection,
and obtained 38.62% mAP on the COCO dataset based on MobileNetv2. Yang, L et al. [37]
proposed a vehicle multi-feature detection algorithm based on binocular cameras, com-
bined with feature pyramid network to realize the recognition of the three characteristics of
license plate, sign and light, improving the robustness of vehicle speed measurement.
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3. The Proposed Methods

As shown in Figure 1, in this study, the feature extraction network (ResNet) is replaced
with ResNeXt, and the feature pyramid network (FPN) is adopted to overcome the multi-
scale problem in object detection, and Group Normalization (GN) [38] is employed to
maintain training accuracy, and the loss function is Focal Loss.

Feature Class+Regression

Pyramid Net subnet
Class+Regression subnet
Class +Regression subnet
Class+Regression subnet
“f my—
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Figure 1. Structure of RetinaNet-NeXt network.

Figure 1 shows how the backbone network extracts bottom-up features from the
input image using ResNeXt. ResNeXt is divided into several subgroups for convolution,
in contrast to the common ResNet feature extraction network in the RetinaNet, and the
data for each channel is computed independently while performing the convolution. As
the number of hyperparameters is reduced, the validation error is reduced while more
subspaces are used. For the output of con3v, conv4 and conv5 layers, the residual block
output of ResNeXt is represented by {C3, C4, C5}. Then, five feature layers are extracted
from the network to construct the feature pyramid network FPN, and the feature layers
are represented by {P3, P4, P5, P6, P7}. Finally, two different Fully Convolution Network
(FCN) classification subnet and regression subnet, are connected as network outputs. The
classification subnet classifies the output and acquires the class label of the object, while the
regression subnet uses convolutional bounding box regression to determine the position.

3.1. Feature Extraction Network

To achieve more effective detection, ResNeXt is regarded as the backbone network for
feature extraction of the input image. ResNeXt is built on ResNet’s modular structure and
incorporates the high recognition performance of split-transform-merge in Inception. The
right side of Figure 2 shows the structure of each basic unit.

In Figure 2, ResNeXt uses multiple convolution modules to perform feature extraction
from bottom-up, and group convolution uses the same topology on different input channel
paths. By using cardinality as a super parameter, it’s able to achieve a more efficient network.
For a 256-dimensional input with cardinality of 32, the network encodes 256 channels into
4 channels, and the features are extracted in 32 different embedding spaces by 32 different
groups consisting of continuous 1 x 1 conv, 3 x 3 conv,and 1 x 1 conv.

3.2. Feature Pyramid Network

After the feature is extracted by using ResNeXt, the network laterally connects the
top-down feature pyramid network (FPN) to fuse with the bottom-up ResNeXt feature
layer. The FPN structure is shown in Figure 3.

In Figure 3, each basic unit in the feature pyramid network is fused with features
from the higher levels of upsampling by laterally connecting top-down feature extraction
layers of ResNeXt that have the same spatial size. The P3, P4 and P5 layers in the FPN are
obtained by laterally connecting the C3, C4 and C5 layers from feature extraction. P6 is
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obtained by convolving C5 with a 3 x 3 conv kernel and a step size of 2. P7 is obtained by
applying the Relu function to P6 of operation with a convolution kernel of 3 x 3 and a step
size of 2. Since the feature map from higher layers has a smaller size, it is more conducive
to feature expression and facilitates the detection of larger objects. the feature maps from
lower levels, P3, P4 and P5, are more suitable for the detection of small objects due to their
high resolution. Through the feature pyramid network, the model has stronger ability and
better result in feature expression, while the amount of computation for object detection
remains the same.
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Figure 2. Backbone Network (ResNeXt).
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Figure 3. Structure of Feature Pyramid Network.

3.3. Classification and Regression Subnets

The classification subnet and regression subnet are fully convolutional networks (FCN)
connected to each FPN level. Classification subnet is used to predict the probability of
each anchor and K-class object appearing in each spatial position. Similarly, the regression
subnet is used to regress the offset of the bounding box, but the parameters are not shared.
If positive samples can be detected, the object position relative to the anchor will be output.
Figure 4 shows the classification and regression network structure.
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Figure 4. Structure of classification and regression subnet.

In Figure 4, the classification subnet consists of four 3 x 3 conv layers with 256 filters,
each of which is activated by the Relu function. The other 3 x 3 conv layers consist of
K x A filters, each activation using a sigmoid function. The classification subnet has
shared parameters across all levels, the shape of the output feature map is (W, H, K, A),
and the size is W x H x K x A. W and H are proportional to the width and height of
the input feature map, and the object class and anchor numbers are denoted by K and A,
respectively. The design of the regression subnet is similar to that of the classified subnet,
except that the number of output channels is 4A. It adjusts the bounding box by calculating
the offset between the ground truth and the anchor, and the final conv layer is a 3 x 3 conv
composed of 4 filters. Therefore, the output feature map has the shape (W, H, 4, A) and a
sizeof W x H x 4 x A.

3.4. Group Normalization

The images are input to the training network with the image shape [N, C, H, W]
in the network, where N represents the batch size, C denotes the number of channels,
H indicates the image height, and W means the image width. Affected by the network
characteristics of RetinaNet, Batch Normalization (BN) [39] depends on the batchsize, for
general GPUs, the batch size can often only be very small values such as 2, 4 and 8, and the
error calculated by a smaller batch size is larger, and the model’s error rate is easier to rise,
and the training network is worse at object detection [40]. To solve the problem, we adopt
Group Normalization (GN) in network training, replacing BN in the standard ResNeXt.
The group normalization operation is implemented by calculating the mean and variance
of each group, which divides the channels into 32 groups to speed up the training of the
whole network while reducing the error loss, avoiding the effect of batch size on the model.
The method for calculating group normalization is shown in (1).

_ _X—E()
Y= / Var(x)+e

here x is the feature computed by a layer; E(x) is the mean; Var(x) is the variance; y and 3
are scaling and panning factors, respectively; y takes values in the range of (0, 1), and 3
is set to 0 by default. Setting affine = True activates weight (y) and bias (3), which can be
panned and scaled when calculating the normalized results in the specific implementation.

Xy +B, 1)

3.5. Focal Loss

Focal Loss is a cross-entropy loss function that reduces the proportion of negative
samples in the sample data during the training process to address the loss of network
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accuracy caused by the imbalance of positive and negative samples in the target detection
task. The cross entropy could be calculate from Equation (2).

_{ —log(p) ify =1
CE(p.y) = { —log(1—p), else ’ )

where p is the probability that the predicted model belongs to the class y = 1.
Thus, p is calculated as follows:

_Jpifty=1
pt{lp,else’ ®)

There may be a large number of iterative processes of simple samples in Equations (2)
and (3) that cannot be optimized to the optimum, which has a significant impact on the
detector. Hence, the first step in improving Focal Loss is to add vy to the original basis to
reduce the loss of easy samples and balance the hard and easy samples, as shown in (4).

—(1—y)"logy, y=1
Ly = ) 4
f { —y7log(1—y'), y=0 @

Meanwhile, a coefficient factor « is introduced to solve the problem of positive and
negative sample imbalance, please see Equation (5).

_ [ —a(l—y)logy, y=1
b= { ~(1-a)ylog(1—y), y=0 " ©)

Focal Loss can reduce the weights of a large number of simple negative samples by
adding a coefficient factor to the cross-entropy calculation, and thus effectively improve
the accuracy of the model.

4. Experiments and Results

On Tsinghua-Tencent 100K dataset, Experiments are conducted to verify the effec-
tiveness of the improved RetinaNet method. The setup of the experiment is as follows.
Software environment: operating system, Ubuntu 20.04; programming language, Python
3.7, deep learning framework, PyTorch 1.8. Hardware environment: CPU, Intel i7-4790
(Intel, Mountain View, CA, USA); GPU, NVIDIA GTX TITAN X (video memory, 12 G)
(NVIDIA, Santa Clara, CA, USA); RAM, 32 G.

4.1. Dataset and Augmentation Methods

Tsinghua_Tencent 100K is a traffic sign dataset made public by Tsinghua University
and Tencent in 2016. Tsinghua_Tencent_100K dataset, in contrast with the GTSDB for detec-
tion task and the GTSRB dataset for classification task proposed in Germany, more closely
resembles natural scenes and the effects of real-life traffic sign views. The dataset contains
about 100,000 panoramic images of natural scenes in various lighting and environments,
with about 10,000 images contain 30,000 traffic signs. The dataset contains a total of 3 major
categories of sign information, which are instruction signs, prohibition signs and warning
signs. Figure 5 illustrates the types of images for this study, and the number of images in
dataset is shown in Table 1.

Table 1. The number of images in TT100k dataset.

Type Size Total

Train 7196
Test 2048 x 2048 3071
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Figure 5. The types of traffic signs in the public dataset TT100K. (a) instruction; (b) prohibition;
(c) warning. It is mainly used in this work.

As shown in Table 1, the total number of images for training is 7196, and the number
of images for testing is 3071.

Please note that, for some cases in the dataset where the number of samples is too
small, the traffic sign classes that take less than 100 occurrences are omitted. Finally, there
are 42 sub-classes in our dataset.

We also apply data augmentation strategies into expanding the dataset via size crop-
ping and color changes in order to improve the model’s prediction performance. After
data augmentation, the final training dataset contains 37,212 images. Figure 6 depicts some
classical image augmentation results.

Figure 6. Data augmentation results of traffic sign image: (a) Original image; (b) Size cropping;
(c) Color change.

In Figure 6, the original image is scaled and cropped to 512 x 512 pixels at random.
Following the crop, the illumination interface of TensorLayer’s tl.prepro toolbox is em-
ployed to process the image’s lighting information, primarily involving image brightness,
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saturation, and contrast changes, while taking into account the effects of different lighting
conditions on the image such as dimness and blur. The brightness, saturation, and contrast
optimization parameters for illumination were set to (0.5, 1.5), and a random combination
of variations was utilized to generate multiple resultant image data.

4.2. Evaluation Metrics

Precision, recall, PR curve (precision-recall, PR), F1-Score, average precision (AP), and
mean average precision (mAP) are adopted as evaluation metrics of the results for model
evaluation in order to evaluate the effectiveness of the proposed method for traffic sign
recognition. The precision indicates how many of the model’s detected objects are target,
and the recall indicates how many of all true targets are detected by the model, which are
calculated from Equations (6) and (7).

precision = L, 6)
(TP + FP)
TP
recall = (TP + FN)’ )

where, TP denotes the number of correctly predicted items; FP means the number of
incorrectly identified items; and FN denotes the number of identified items.

As shown in Equation (8), the F; score is an evaluation metric that measures the
accuracy of a classification model by calculating the average of precision and recall.

precision X recall
X

Fl - 2 ') ’
precision + recall

®)

By averaging the precision, AP is used to assess the model’s strengths and weaknesses
in each class. The area enclosed by precision and recall is known as the PR curve. As a
result, the calculation is carried out using integration, as shown in Equation (9).

1
AP(n) = [ p(ra)dr, ©)

where 1 denotes a class, r, means the recall belonging to a class n, and p(rn) denotes the
precision corresponding to a class n in the PR curve.

mAP is the average of AP classes, which is used to show the model’s advantages and
disadvantages across all classes A the calculation is as follows:

1 N
mAP = Nn; AP(n), (10)

where, N represents all classes.

4.3. Effectiveness Experiments

We take RetinaNet for detection framework, ResNeXt for the feature extraction net-
work, group normalization for the normalization strategy, ResNeXt-50 for the pre-training
model based on ImageNet, and one NVIDIA GTX TITAN X GPU for training. Since the
image size in Tsinghua-Tecent 100K dataset is 2048 x 2048 pixels, which is not conducive to
training, so it is resized to 512 x 512 pixels. The size of the anchor is set to (0, 512] due to the
presence of many smaller traffic signs in the images, and aspect ratios are 0.8, 1, and 1.15 for
adjusting the aspect ratio. Scale_ratios are 0.7, 1, and 1.42 for adjusting the area size of the
anchor. The batch size is 8; momentum is 0.9; weight decay is 2 x 10~%, and learning rate is
1 x 10~° during the training process. Figure 7 shows the variation in network training loss.
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Figure 7. Training loss curve.

The average loss, classification loss, and regression loss of the training model are
shown in Figure 7. The cross-entropy loss function is used for classification, while the
smooth L1 loss function is used for regression. After several iterations of training processing
with ResNeXt and group normalization strategy, the training network’s classification and
regression loss decline curves flatten out and the model tends to converge.

Some classical traffic sign recognition results of our method are demonstrated in Figure 8.

As shown in Figure 8, our method correctly detects a majority of the targets. The
recognized signs are marked by red rectangular boxes highlighting the sign areas in the
image and predict the sign classes, which include a variety of sign types such as instructions,
warnings, and prohibitions. Various roads, neighborhoods, and highways are featured in
the test scenes from various perspectives. Signs vary in size and visibility depending on
observation distance. As a result, a more detailed anchor division can maintain sensitivity
to small targets, allowing the network to focus on them during feature extraction. At
the same time, detection is difficult under the influence of factors such as illumination
and target visibility, especially when the target object scale is small. The adopted data
preprocessing and balancing strategies can decrease the sample detection error caused by
external environment changes, which improves the classification effect greatly. In a word,
our target detection method is effective in recognizing signs with multi-scales, observation
angles, and color changes.

The accuracy of traffic sign recognition under various anchors is given using the
ResNeXt model. All detection frames with an IOU < 0.5 are discarded when IOU = 0.5 is
used as the threshold, and the accuracy and recall of different anchors are given in Table 2.

The precision and recall for various anchor sizes are shown in Table 2. To improve
the ability to predict multiple classes while adjusting the threshold, each anchor has a
K-dimensional vector and a 4-dimensional regression vector. The ground truth is matched
through the anchor in the K-dimensional label, the exact label is set to 1, and the other is
set to 0. When the IOU of an anchor with ground truth is greater than 0.5, it is recorded as
a positive sample, and when the IOU is [0, 0.4], the anchor will be ignored in the training
process. When the anchor size is (32, 96], the algorithm achieves the highest precision of
90.79% for traffic sign recognition and also the highest value of 86.22% for recall, indicating
that the algorithm is the best for the recognition of anchors of size (32, 96], and the size of
the detected target object with aspect ratio is closer to the size of the anchor. For smaller
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or larger anchors, only one anchor can be assigned per object when the IOU of all the
anchor’s objects is less than 0.5. When the offset is large, the final regression is inaccurate,
the number of positive samples is insufficient, and the detection is worse, resulting in a
reduction in the precision and recall of the model.

pl100 180 piB0_ il60

!‘
EYSEd ]

Figure 8. Traffic sign recognition results.

Table 2. Precision and recall of different anchor.

10U Size Precision (%) Recall (%)
0.5 (0, 32] 83.39 73.88
0.5 (32, 96] 90.79 86.22
0.5 (96, 512] 90.29 71.90

0.5 (0,512] 87.45 79.65
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In addition, to further explore the effectiveness of the training model intuitively, the
ground truth of the dataset and the prediction distribution of the model were analyzed, as
shown in Figure 9.

The distribution of box size in prediction
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Figure 9. Distribution of ground truth and prediction: (a) The distribution of box size in ground
truth; (b) The distribution of box size in prediction.

As shown in Figure 9, the ground truth and prediction have similar distributions.
Anchor is primarily distributed in the range of (0, 200), with the largest number in the
range of (0, 100), confirming the previous discussion that anchor is more evenly distributed
between (0, 32] and (32, 96]. Simultaneously, the distribution results show that small target
objects account for a larger proportion of traffic signs, and whether a suitable processing
method can be adopted for them will have direct impact on the model’s performance
and the final results, so small target detection recognition should be paid attention to
and optimized.

4.4. Comparison and Analysis of Different Detection Frameworks

As well as the RetinaNet, Faster RCNN and YOLOVS5 are chosen for comparison
experiments based on the TT100K dataset. Faster RCNN's training setup is as follows:
Network is ResNet101, and epoch is 20. YOLOVS5 training configuration is as follows:
CSPdarknet is network, and Adam is chosen as the optimizer, and the learning rate is
1 x 1074, weight decay is 1 x 1075, and the epoch is 30. Table 3 shows the results of these
related method.

Table 3. Comparison of different detection frameworks.

Frameworks Precision (%) Recall (%) F1-Score (%) mAP (%)
Faster RCNN [2] 74.32 55.08 63.26 74.02
YOLOV5 [41] 78.80 75.00 76.85 81.70
RetinaNet [5] 78.37 70.56 78.37 79.39
RetinaNet-NeXt (Ours) 87.45 79.65 83.37 86.71

Compared with the related methods, the proposed RetinaNet-NeXt achieves better
results in precision, recall, F1-Score and mAP, reaching 87.45%, 79.65%, 83.37% and 86.71%,
respectively, which is higher than the accuracy of standard RetinaNet, YOLOvV5 and Faster
RCNN in traffic sign detection and recognition.

Furthermore, the recognition result of traffic signs in natural scenes using the above
detection framework is shown in Figure 10.
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Figure 10. Comparison of recognition results of different detection frameworks: (a) Faster RCNN;
(b) YOLOVS5; (c) RetinaNet; (d) RetinaNet-NeXt.

From Figure 10, we can see that, compared with YOLOv5, RetinaNet is able to solve
these problems of omission, fall-out and poor object recognition accuracy, and even achieves
the same results as the Faster RCNN, two-stage detection algorithm in the recognition of
traffic signs in natural scenes, more importantly, we further improve the network model
based on the standard RetinaNet. Subsequently, the group convolution strategy and group
normalization ensure our network parameters and training loss are as few as possible.
Therefore, the extraction and learning ability of our network for target features extraction is
strong enough, and our network’s generalization ability is strong too, thus improving the



Entropy 2022, 24,112

13 of 17

traffic sign detection algorithm’s recognition result under diverse natural scene conditions
to the greatest extend.

4.5. Comparison and Analysis of Different Models

Furthermore, the performance of various ResNet50, ResNet101 and ResNet152 models
with ResNeXt was evaluated by using the RetinaNet based on the TT100K dataset to
compare the upgraded network models for the object detection task. Table 4 shows the
precision, recall and mAP of these models.

Table 4. Comparison of different models.

Backbone Precision (%) Recall (%) mAP (%)
ResNet50 78.37 70.56 79.39
ResNet101 89.95 88.22 92.02
ResNet152 90.54 89.29 92.80
ResNeXt50 87.45 79.65 86.71

From Table 4, it can be concluded that the feature extraction network was upgraded
from ResNet50 to ResNeXt50 based on the original RetinaNet, and the model precision,
recall and mAP reached 87.45%, 79.65% and 86.71%, respectively, while keeping the param-
eters, and the recognition accuracy was improved by 9.08%, 9.09% and 7.32%. Meanwhile,
we also tested the performance of RetinaNet under deeper networks such as ResNet101
and ResNet152. The accuracy of the ResNeXt50 model was nearly close to the performance
of both, with only difference of 2.55% and 3.09%. Although there is somewhat difference
of about 9% in recall, and about 6% in mAP. Compared with the ResNet residual block,
ResNeXt changes the original 3 x 3 convolution to group convolution, reducing the input
channels overall. The original 128-channel convolution becomes a group of 32 different
convolution kernels, and the input and output channels of each convolution are changed
from 128 to 4 (128/32 = 4). The total number of output channels remaining the same as
the final output will be operated by connection, reducing the network parameters and
changing the intermediate channels from 64 to 128 to achieve an increase in network width.
With the same parameters, ResNeXt achieves better results than ResNet. That is to say, our
group strategy is effective. As the training model converges, the ResNeXt50 model is able
to approximate the performance of ResNet101 and ResNet152 at a much faster rate. For
large-scale data and model training, the group convolution feature of ResNeXt allows it
to effectively reduce the occurrence of overfitting in the dataset and obtain good network
performance while keeping the number of parameters constant. All of this results in that
the processing and generalization ability of our method can be improved.

4.6. PR Curves and Analysis of Different Models under the Effect of Anchor

Combining different network models and anchor sizes, ResNet50, ResNet101, ResNet152,
and ResNeXt50 were used to study the impact of anchor size on the accuracy of the model
in the range of (0, 32], (32, 96], (96, 512], and (0, 512], respectively, as shown in Table 5.

In Table 5, only using ResNeXt50 as the backbone network of RetinaNet has a greater
improvement in the recognition result than ResNet50. For small targets with anchors in
the range of (0, 32] and (32, 96], the precision and recall are Compared with the latter, the
rate increased by an average of 9.8% and 10.0%. For large targets in the range of (96, 512],
the network model is able to achieve the detection precision of 90.29%, which exceeds
the 88.94% precision value of ResNet50 and is close to the 90.49% recognition precision
of ResNet101 and 90.58% of ResNet152, but the recall is relatively low. This is because
precision and recall have a restricted connection, especially for large-scale data, and both
of them need to be used optimally for the target task according to the actual situation,
which is why the goodness of the target task is always evaluated on various scales using
multiple metrics.
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To further evaluate the network model, the PR curve corresponding to different models
is given in conjunction with the anchor, as illustrated in Figure 11.
Table 5. Comparison of different models under the effect of anchor.
Backbone Precision (%) Anchor
Recall (%) (0, 32] (32, 96] (96, 512] (0, 512]
ResNet50 Precision (%) 68.73 85.85 88.94 78.37
esive Recall (%) 60.22 79.83 75.81 70.56
Precision (%) 86.32 93.37 90.49 89.95
ResNet101 Recall (%) 85.14 92.58 77.62 88.22
Precision (%) 86.85 94.09 90.58 90.54
ResNet152 Recall (%) 86.53 93.50 77.53 89.29
Precision (%) 83.39 90.79 90.29 87.45
ResNeXt50  pocall (%) 73.88 86.22 71.64 79.63
size: (0,32] size: (32,96]
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Figure 11. PR curves of different models under the effect of anchor: (a) The anchor size is (0, 32]

(d)

(b) The anchor size is (32, 96]; (c) The anchor size is (96, 512]; (d) The anchor size is (0, 512].
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In Figure 11, the PR curve can clearly reflect the effect of anchor on the model, and
then can determine whether the dataset contains hard and wrong samples. Since different
anchor sizes correspond to different sample sizes, the data can be adjusted for different or
unbalanced training samples to optimize the model performance.

5. Conclusions

We proposed a RetinaNet-NeXt method for traffic sign detection in this paper. To
reduce data noise and improve the model’s robustness, the dataset’s images are cropped
and the data is augmented, and all of the training parameters and anchor sizes are care-
fully adjusted. Then, the backbone network was replaced with ResNeXt, and the batch
normalization was improved to group normalization in the network, eliminating the com-
putational bias caused by small batch normalization effectively. Finally, the validation set’s
test results are given as well as the model’s precision, recall, and mAP. The experimental
results show that our method can effectively detect traffic sign, especially has a consider-
able improvement in small target detection while reducing the computational cost. When
only using the ResNeXt50 model, our algorithm achieves 87.45% and 79.65% recognition
precision and recall, respectively, and 86.71% for mAP. However, there are still many cases
of small number of traffic signs and small target objects need to be collected, and how to
increase recognition accuracy from limited data, improve the efficiency of network training,
and how to implement the lightweight of our model, and how to support the intelligent
transportation are the topics that deserve us to study in future.
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