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Abstract: Extracting latent nonlinear dynamics from observed time-series data is important for
understanding a dynamic system against the background of the observed data. A state space model
is a probabilistic graphical model for time-series data, which describes the probabilistic dependence
between latent variables at subsequent times and between latent variables and observations. Since,
in many situations, the values of the parameters in the state space model are unknown, estimating
the parameters from observations is an important task. The particle marginal Metropolis–Hastings
(PMMH) method is a method for estimating the marginal posterior distribution of parameters ob-
tained by marginalization over the distribution of latent variables in the state space model. Although,
in principle, we can estimate the marginal posterior distribution of parameters by iterating this
method infinitely, the estimated result depends on the initial values for a finite number of times
in practice. In this paper, we propose a replica exchange particle marginal Metropolis–Hastings
(REPMMH) method as a method to improve this problem by combining the PMMH method with
the replica exchange method. By using the proposed method, we simultaneously realize a global
search at a high temperature and a local fine search at a low temperature. We evaluate the proposed
method using simulated data obtained from the Izhikevich neuron model and Lévy-driven stochastic
volatility model, and we show that the proposed REPMMH method improves the problem of the
initial value dependence in the PMMH method, and realizes efficient sampling of parameters in the
state space models compared with existing methods.

Keywords: state space model; probabilistic graphical model; replica exchange particle Metropolis–
Hastings method; replica exchange method; particle Metropolis–Hastings method; particle Markov
chain Monte Carlo method

1. Introduction

Extracting latent nonlinear dynamics from observed time-series data is important for
understanding the dynamic system against the background of the observed data. A state space
model is a probabilistic graphical model for time-series data that assumes the existence of latent
variables that cannot be observed directly [1–25]. State space models are used in various fields
to forecast observation values [7,15,22] and to estimate latent variables [11,20,21,26]. In many
cases, however, model parameters are unknown. Therefore, estimating the model parameters
from observations is an important task for the state space models.
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To estimate the parameters in the state space models from observations, a method
combining the sequential Monte Carlo (SMC) method [2,4,8–12,14,16–20,23–25,27] with the
expectation–maximization (EM) algorithm [8,28,29] has been proposed [9–11,14,20]. This
method is based on a maximum likelihood estimation framework, and it estimates parame-
ters by sequentially updating the parameters so that the likelihood increases. Although it is
guaranteed that a local optimum can be estimated by iteratively updating the parameters,
the global optimum may not be estimated depending on the initial values of parameters.
Furthermore, since the EM algorithm is a point estimation method, it is not possible to
identify whether converged values are local or global optima.

To estimate the distribution of parameters in a state space model, two kinds of particle
Markov chain Monte Carlo (PMCMC) methods have been proposed: the particle Gibbs
(PG) method and the particle marginal Metropolis–Hastings (PMMH) method [12]. Both
methods combine Markov chain Monte Carlo (MCMC) methods with the SMC method,
and the distribution of parameters is estimated by collecting samples. The PG method
combines the SMC method with Gibbs sampling [8,30], and the PG method samples latent
variables and parameters in a state space model from the joint posterior distribution of
latent variables and parameters alternately. In the PG method, the SMC method is employed
for sampling latent variables. The PMMH method, on the other hand, combines the SMC
method with the Metropolis–Hastings (MH) algorithm [8,25,31,32], and the PMMH method
samples parameters in a state space model from the marginal posterior distribution of
parameters. In the PMMH method, the SMC method is employed for calculating the
likelihood marginalized over the distribution of latent variables. Both the PG method and
the PMMH method have been widely applied (for example, the PG method [33,34], the
PMMH method [35–37]).

In recent years, some extended versions of PG methods have been proposed to improve
the sampling efficiency and initial value dependence, such as the particle Gibbs with
ancestor sampling (PGAS) method and the replica exchange particle Gibbs with ancestor
sampling (REPGAS) method [16,18,19,24]. Thus far, however, the existing methods for such
improvement have been proposed for only the PG method. Therefore, it is important to
improve the PMMH method for the accurate estimation of parameters since the PMMH
method may have the problem of the initial value dependence.

In this paper, we propose the replica exchange particle marginal Metropolis–Hastings
(REPMMH) method, which combines the PMMH method with the replica exchange
method [24,38–40] in order to improve the problem of initial value dependence in the
PMMH method. Combining the replica exchange method with the PMMH method makes
it possible to estimate the parameters governing the dynamics for very complex and non-
linear time-series data. We first describe the state space models and explain the PMMH
method as a conventional method. Then, after explaining our proposed method, we con-
duct experiments to compare the proposed method with the conventional methods, the
PMMH method and the REPGAS method.

2. Methods

In this section, we propose our replica exchange particle marginal Metropolis–Hastings
(REPMMH) method. First, we describe a state space model for time-series data using
a probabilistic graphical model. Next, we describe the conventional particle marginal
Metropolis–Hastings (PMMH) method to estimate the marginal posterior distribution
of parameters obtained by marginalization over the distribution of latent variables in a
state space model. After this, we propose the REPMMH method, which combines the
PMMH method with the replica exchange method to improve the problem of initial value
dependence in the PMMH method.

2.1. State Space Model

We show a state space model as a probabilistic graphical model in Figure 1. Note that
there are two type of variables, latent variables z1:N = {z1, z2, . . . , zN} and observations
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y1:N = {y1, y2, . . . , yN}, at the time steps {1, 2, . . . , N} in the state space model. The latent
variables z1:N cannot be observed directly and only the observations y1:N are observable.
At a time step n, the state space model is represented as follows:

zn ∼ f
(

zn

∣∣∣ zn−1, θ f

)
, (1)

yn ∼ g
(
yn
∣∣ zn, θg

)
, (2)

where f
(

zn

∣∣∣ zn−1, θ f

)
and g

(
yn
∣∣ zn, θg

)
are called a system model and an observation

model, respectively. θ f are the parameters of the system model, and θg are the parameters

of the observation model. The system model f
(

zn

∣∣∣ zn−1, θ f

)
represents the process of

updating the latent variables zn from the previous latent variables zn−1. Moreover, the
observation model g

(
yn
∣∣ zn, θg

)
represents the process of obtaining observations yn from

the latent variables zn.

𝒛!

𝒚!

𝒛"#!

𝒚"#!

𝒛"

𝒚"

𝒛$

𝒚$

・・・ ・・・

System model
𝑓 𝒛! 𝒛!"# ,𝜽$

Observation model
𝑔 𝒚! 𝒛! , 𝜽%

Figure 1. Probabilistic graphical model of a state space model. z1:N = {z1, z2, . . . , zN} and y1:N =

{y1, y2, . . . , yN}, respectively, represent latent variables and observations for time step n = 1, 2, . . . , N.
The arrow to the latent variables zn at the time step n from the latent variables zn−1 at the previous

time step n− 1 represents a system model f
(

zn

∣∣∣ zn−1, θ f

)
, and the arrow to the observations yn

at the time step n from the latent variables zn at the time step n represents an observation model

g
(
yn
∣∣ zn, θg

)
. Θ =

{
θ f , θg

}
are parameters to be estimated.

The goal of this paper is to estimate the posterior distribution of the parameters
p(Θ | y1:N) for the given observations y1:N , where Θ is represented as Θ =

{
θ f , θg

}
.

However, since the latent variables exist in the state space models, it is necessary to perform
marginalization with respect to the latent variables in order to obtain the marginal posterior
distribution p(Θ | y1:N). Because it is often difficult to calculate the marginal posterior
distribution p(Θ | y1:N) analytically, we propose a new method for estimating the marginal
posterior distribution p(Θ | y1:N) based on the PMMH method in this paper.

2.2. Particle Marginal Metropolis–Hastings Method

The PMMH method combines the sequential Monte Carlo (SMC)
method [2,4,8–12,14,16–20,23–25,27] with the Metropolis–Hastings (MH) algorithm [8,25,31,32].
The PMMH method was proposed to estimate the marginal posterior distribution of param-
eters p(Θ | y1:N) for time-series observations y1:N represented as a state space model [12].

In the PMMH method, the marginal likelihood p(y1:N | Θ) is used to evaluate the
appropriateness of parameters Θ. Here, the SMC method is used to calculate the marginal
likelihood p(y1:N | Θ) of the parameters Θ obtained by marginalization over the distri-

bution of latent variables z1:N . A new sample candidate of parameters Θ∗ =
{

θ∗f , θ∗g

}
is

proposed from an arbitrary proposal distribution q(Θ | Θ[k− 1]) given the sample one
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step before Θ[k− 1], where k is the sample number. Moreover, whether to accept or reject
the sample candidate Θ∗ is determined based on the following acceptance probability:

paccept = min
(

1,
p(y1:N | Θ∗)p(Θ∗)

p(y1:N | Θ[k− 1])p(Θ[k− 1])
q(Θ[k− 1] | Θ∗)

q(Θ∗ | Θ[k− 1])

)
, (3)

where p(Θ) represents the prior distribution of parameters. p(y1:N | Θ) is the marginal
likelihood obtained by marginalization over the distributions of latent variables z1:N
as follows:

p(y1:N | Θ) =
∫

p(y1:N , z1:N | Θ)dz1:N

=
∫

g
(
y1
∣∣ z1, θg

)
p(z1)

N

∏
n=2

g
(
yn
∣∣ zn, θg

)
f
(

zn

∣∣∣ zn−1, θ f

)
dz1:N , (4)

where p(z1) is the distribution of latent variables z1 at time step 1. Since it is difficult to
obtain the marginal likelihood p(y1:N | Θ) analytically, the SMC method is used in the
PMMH method to calculate the marginal likelihood p(y1:N | Θ) numerically.

The SMC method estimates the distribution of latent variables by approximating the
distribution with the density of the particles

{
z(1)1:N , z(2)1:N , . . . , z(M)

1:N

}
as follows:

p(z1:N | y1:N , Θ) ' 1
M

M

∑
m=1

δ
(

z1:N − z(m)
1:N

)
, (5)

where z(m)
1:N is the m-th particle and M is the number of particles. δ(z1:N) is the Dirac

delta distribution.
To obtain particles

{
z(1)n , z(2)n , . . . , z(M)

n

}
at a time step n, we sample the m-th particle

z(m)
n at the time step n from the m-th particle z(m)

n−1 at the previous time step n− 1 for each
m ∈ {1, 2, . . . , M} with the system model as follows:

z(m)
n ∼ f

(
zn

∣∣∣ z(m)
n−1, θ f

)
. (6)

Moreover, the obtained particles
{

z(1)n , z(2)n , . . . , z(M)
n

}
are resampled based on the normal-

ized weights
{

W(1)
n , W(2)

n , . . . , W(M)
n

}
obtained as follows:

W(m)
n =

w(m)
n

∑M
l=1 w(l)

n

, (7)

w(m)
n = g

(
yn

∣∣∣ z(m)
n , θg

)
. (8)

By iterating the above flow for time step n ∈ {1, 2, . . . , N}, particles that approximate
the distribution of latent variables z1:N can be obtained. Here, the marginal likelihood
p(y1:N | Θ) can be calculated approximately as follows:

p(y1:N | Θ) =
N

∏
n=1

p
(
yn
∣∣ y1:n−1, Θ

)
' 1

M

N

∏
n=1

M

∑
m=1

w(m)
n . (9)

By calculating the acceptance probability paccept in Equation (3) with the marginal likeli-
hood p(y1:N | Θ∗) for the sample candidate Θ∗ obtained by Equation (9), it is determined
whether to accept or reject the proposed sample candidate Θ∗. We show the flow of the
PMMH method described above in Algorithm 1.
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Algorithm 1 Particle Marginal Metropolis–Hastings (PMMH) Method.

1: initialize the parameters Θ[0]
2: for k = 1, . . . , K (K is the number of samples) do
3: draw the sample candidate of parameters Θ∗ ∼ q(Θ∗ | Θ[k− 1])
4: draw the initial particles z(m)

1 ∼ p(z1) for m = 1, . . . , M (m is the particle number of
the particle that is the source of resampling)

5: calculate the weights of particles
{

w(1)
1 , w(2)

1 , . . . , w(M)
1

}
with Equation (8)

6: normalize the weights of particles
{

W(1)
1 , W(2)

1 , . . . , W(M)
1

}
with Equation (7)

7: resample the particles
{

z(1)1 , z(2)1 , . . . , z(M)
1

}
according to the normalized weights{

W(1)
1 , W(2)

1 , . . . , W(M)
1

}
8: for n = 2, . . . , N do
9: draw the particles

{
z(1)n , z(2)n , . . . , z(M)

n

}
at time step n with Equation (6)

10: calculate the weights of particles
{

w(1)
n , w(2)

n , . . . , w(M)
n

}
with Equation (8)

11: normalize the weights of particles
{

W(1)
n , W(2)

n , . . . , W(M)
n

}
with Equation (7)

12: resample the particles
{

z(1)n , z(2)n , . . . , z(M)
n

}
according to the normalized weights{

W(1)
n , W(2)

n , . . . , W(M)
n

}
13: end for
14: calculate the marginal likelihood p(y1:N | Θ∗) with Equation (9)
15: calculate the acceptance probability paccept with Equation (3)
16: draw a uniform random number α ∼ U (0, 1) (U (a, b) is a uniform distribution with

range [a, b))
17: if α ≤ paccept then
18: set the sample of parameters Θ[k]← Θ∗

19: else
20: set the sample of parameters Θ[k]← Θ[k− 1]
21: end if
22: end for
23: return {Θ[k]}K

k=1

2.3. Proposed Method

In our study, we propose the REPMMH method, which combines the PMMH method
with the replica exchange method [24,38–40] to improve the problem of initial value de-
pendence in the PMMH method. By employing the REPMMH method, we estimate the
marginal posterior distribution of parameters from the time-series observations.

2.3.1. Brief Summary of Our Proposed Method

We show the schematic diagram of the REPMMH method in Figure 2. In our pro-
posed REPMMH method, we introduce multiple different replicas of parameters {Θ} ={

Θ(1), Θ(2), . . . , Θ(r), . . . , Θ(R)
}

at temperatures T =
[

T(1), T(2), . . . , T(r), . . . , T(R)
]

into
the PMMH method. As shown in the middle part of Figure 2, we employ the PMMH
method in parallel at each temperature. In the PMMH method at each temperature T(r),

we obtain the respective marginal likelihood p
(

y1:N

∣∣∣ Θ(r)∗
) 1

T(r) by employing the SMC

method (Figure 2c) with the respective sample candidate Θ(r)∗ proposed in the MH algo-
rithm (Figure 2b).

For each temperature T(r), the SMC method and the MH algorithm are conducted

as follows. In the SMC method (Figure 2c), the marginal likelihood p
(

y1:N

∣∣∣ Θ(r)∗
) 1

T(r) is
obtained by iterative procedures of predictions, likelihood calculations and resampling; the
latent variables zn of the current time step n are predicted and the likelihood is calculated
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for each particle, and resampling is performed according to the calculated likelihoods of
particles at each time step. In the MH algorithm (Figure 2b), the sample candidate Θ(r)∗

is determined to be accepted or rejected with the marginal likelihood p
(

y1:N

∣∣∣ Θ(r)∗
) 1

T(r) .
At this time, the target distribution becomes smooth as the temperature becomes high. As a
result, it becomes easier to obtain samples from a wide range. Furthermore, exchanges be-
tween the samples at different temperatures are conducted in order to realize the transitions
that are difficult depending on the initial values by the conventional PMMH method.

Sequential Monte Carlo method

𝑝 𝒚!:# 𝚯(%)∗
!

( !

𝚯 ())∗~𝑞 𝚯 𝚯 )

𝑝 𝒚!:# 𝚯(!)∗
!
( "

𝚯 (!)∗~𝑞 𝚯 𝚯 !

Metropolis-Hastings algorithm

High temperature

Low temperature

𝑝
𝚯

#
𝒚 $

:&

$
'
!

𝑝
𝚯

$
𝒚 $

:&

$
'
"

𝚯 )

𝚯 !

𝑝
𝚯
𝒚 !

:#

𝚯𝑛

𝒚 *

Observation data Posterior distribution

Replica exchange particle marginal Metropolis Hastings method

𝑛 ← 𝑛 +1

𝑛 ← 𝑛 +1

Marginal likelihood

Proposed parameter

Accept / Reject

Marginal likelihood

Proposed parameter

(a)

(b) (c)

(d)

Figure 2. Schematic diagrams of the proposed replica exchange particle marginal Metropolis–
Hastings (REPMMH) method. (a) The time-series observations y1:N as inputs. (b,c) The REPMMH
method consisting of (b) the Metropolis–Hastings (MH) algorithms and (c) the sequential Monte
Carlo (SMC) methods parallelly conducted at multiple temperatures. In the SMC method, the
sample candidate Θ(r)∗ proposed by the MH algorithm is used to obtain the marginal likelihood

p
(

y1:N

∣∣∣ Θ(r)∗
) 1

T(r) . By the SMC method, the marginalization over time-series of latent variables z1:N

is conducted iteratively for time steps n = 1, 2, . . . , N. In the MH algorithm, the marginal likelihood

p
(

y1:N

∣∣∣ Θ(r)∗
) 1

T(r) is used to determine whether to accept or reject the sample candidate. In the
REPMMH method, exchanges between samples at different temperatures are considered in order to
achieve the transitions that are difficult to achieve with the particle marginal Metropolis–Hastings
(PMMH) method. The transitions can be realized by passing through a high temperature due to
exchange between temperatures, as shown by the red arrows in the MH algorithm. (d) The estimated
posterior distributions of parameters Θ as the output.

2.3.2. Introducing the Replica Exchange Method into the PMMH Method

Here, we propose the REPMMH method to accurately estimate the distribution of pa-
rameters from observed data y1:N . In our proposed method, we introduce replicas of param-

eters {Θ} =
{

Θ(1), Θ(2), . . . , Θ(r), . . . , Θ(R)
}

at different temperatures

T =
[

T(1), T(2), . . . , T(r), . . . , T(R)
]

and consider the extended joint marginal posterior
distribution as follows:

πEX({Θ} | y1:N) =
R

∏
r=1

πT(r)

(
Θ(r)

∣∣∣ y1:N

)
, (10)
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where πT(r)

(
Θ(r)

∣∣∣ y1:N

)
expresses the marginal posterior distribution at temperature T(r),

which is expressed by using the original marginal posterior distribution p
(

Θ(r)
∣∣∣ y1:N

)
of

the parameter Θ(r) at the temperature T(1) = 1.0 as follows:

πT(r)

(
Θ(r)

∣∣∣ y1:N

)
=

1
z
(
T(r)

) p
(

Θ(r)
∣∣∣ y1:N

) 1
T(r) (r = 1, 2, . . . , R), (11)

where z
(

T(r)
)

is a partition function. Note that, as expressed in Equation (11), at sufficiently
high temperatures, the distribution of parameters becomes closer to a uniform distribution,
independent of the values of y1:N . The distribution with T(1) = 1.0 corresponds to the
original marginal posterior distribution p(Θ | y1:N) to be investigated.

The marginal posterior distribution at each temperature p
(

Θ(r)
∣∣∣ y1:N

)
is obtained

using Bayes’ theorem as follows:

p
(

Θ(r)
∣∣∣ y1:N

)
=

p
(

y1:N

∣∣∣ Θ(r)
)

p
(

Θ(r)
)

p(y1:N)
(r = 1, 2, . . . , R). (12)

Namely, the marginal posterior distribution p
(

Θ(r)
∣∣∣ y1:N

)
is proportional to a product of

a marginal likelihood p
(

y1:N

∣∣∣ Θ(r)
)

and a prior distribution p
(

Θ(r)
)

of parameters Θ(r).

To obtain the marginal likelihood p
(

y1:N

∣∣∣ Θ(r)
)

, marginalization of the joint distribution
at each temperature should be conducted as follows:

p
(

y1:N

∣∣∣ Θ(r)
)
=
∫

p
(

y1:N , z(r)1:N

∣∣∣ Θ(r)
)

dz(r)1:N (r = 1, 2, . . . , R), (13)

where z(r)1:N are the latent variables at the temperature T(r). By performing the SMC method
for all the time steps at each temperature, the marginalization is conducted numerically.

As shown in Figure 2b,c, in the proposed method, the SMC method and the MH
algorithm are conducted for each temperature. In the SMC method, the marginal likelihood
of parameters p

(
y1:N

∣∣∣ Θ(r)∗
)

is determined by the numerical marginalization using the

candidate of parameters Θ(r)∗ proposed in the MH algorithms.
In the MH algorithm, the candidate of parameters Θ(r)∗ is determined to be ac-

cepted or rejected at each temperature T(r) with the marginal posterior πT(r)

(
Θ(r)∗

∣∣∣ y1:N

)
(Figure 2b). Here, the acceptance probability p(r)accept at each temperature is calculated
as follows:

p(r)accept = min

1,
p
(

y1:N

∣∣∣ Θ(r)∗
)

p
(

Θ(r)∗
)

p
(

y1:N

∣∣∣ Θ(r)[k− 1]
)

p
(

Θ(r)[k− 1]
) q
(

Θ(r)[k− 1]
∣∣∣ Θ(r)∗

)
q
(

Θ(r)∗
∣∣∣ Θ(r)[k− 1]

)
. (14)

Moreover, we exchange samples between different temperatures T(r) and T(r+1) ac-
cording to the exchange probability as follows:

pEX
(
{Θ}, {Θ}∗

)
= min

(
1, REX

(
{Θ}, {Θ}∗

))
, (15)

REX
(
{Θ}, {Θ}∗

)
=

πEX
(
{Θ}∗

∣∣ y1:N
)

πEX({Θ} | y1:N)
, (16)

where {Θ}∗ is expressed as follows:

{Θ}∗ =
{

Θ(1), . . . , Θ(r+1), Θ(r), . . . , Θ(R)
}

. (17)
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Note that the exchange probability pEX
(
{Θ}, {Θ}∗

)
corresponds to the Metropolis criterion

for proposing to exchange the samples between different temperatures T(r) and T(r+1).
By deciding whether to accept or reject the proposed samples {Θ}∗ with the Metropolis
criterion of Equation (15), the transition probability W

(
{Θ} → {Θ}∗

)
for the exchange

process satisfies the detailed balance condition as follows:

πEX({Θ} | y1:N)W
(
{Θ} → {Θ}∗

)
= πEX({Θ} | y1:N)q

(
{Θ}∗|{Θ}

)
pEX
(
{Θ}, {Θ}∗

)
= min

(
πEX({Θ} | y1:N)q

(
{Θ}∗|{Θ}

)
, πEX

(
{Θ}∗

∣∣ y1:N
)
q
(
{Θ}∗|{Θ}

))
= πEX

(
{Θ}∗

∣∣ y1:N
)
q
(
{Θ}∗|{Θ}

)
min

(
πEX({Θ} | y1:N)

πEX
(
{Θ}∗

∣∣ y1:N
) , 1

)
= πEX

(
{Θ}∗

∣∣ y1:N
)
q
(
{Θ}∗|{Θ}

)
pEX
(
{Θ}∗, {Θ}

)
= πEX

(
{Θ}∗

∣∣ y1:N
)
q
(
{Θ}|{Θ}∗

)
pEX
(
{Θ}∗, {Θ}

)
= πEX

(
{Θ}∗

∣∣ y1:N
)
W
(
{Θ}∗ → {Θ}

)
,

where q
(
{Θ}∗|{Θ}

)
is the proposed probability for {Θ}∗ and the proposed probability

of the exchange process is symmetric q
(
{Θ}∗|{Θ}

)
= q

(
{Θ}|{Θ}∗

)
. Thus, since the

exchange process in the proposed method satisfies the detailed balance condition, the
proposed method can sample from the distribution πEX({Θ} | y1:N).

By this exchange process, the REPMMH method makes it possible to improve the
problem of initial value dependence in the PMMH method. The sampled distributions of the
replica πT(r)

(
Θ(r)

∣∣∣ y1:N

)
at higher temperatures become closer to a uniform distribution

ideally as follows:

lim
T(r)→∞

πT(r)

(
Θ(r)

∣∣∣ y1:N

)
= lim

T(r)→∞

1
z
(
T(r)

) p
(

Θ(r)
∣∣∣ y1:N

) 1
T(r) ∝ p

(
Θ(r)

∣∣∣ y1:N

)0
= const. (18)

Therefore, in practice, it becomes possible to escape from local optima at sufficiently high
temperatures (Figure 2b). Moreover, the samples may not stay in one local optimum since
each replica is exchanged between the high temperature and low temperature repeatedly,
and we can sample the parameters efficiently. We show the flow of our REPMMH method
described above in Algorithm 2.

2.3.3. Relations among Particle Markov Chain Monte Carlo Methods

We briefly summarize the differences among the conventional particle Markov chain
Monte Carlo (PMCMC) methods and our proposed REPMMH method that can estimate
parameters of a state space model in Table 1. The particle Gibbs (PG) method is another
PMCMC method, and it samples latent variables and parameters in a state space model
alternately by using Gibbs sampling [8,30]. The PMMH method combines the SMC method
with the MH algorithm, whereas the PG method combines the SMC method with Gibbs sam-
pling. While the SMC method is employed to calculate the marginal likelihood p(y1:N | Θ)
of parameters Θ in the PMMH method, the SMC method is employed to obtain samples
of latent variables z1:N in the PG method [12]. The PMMH method directly targets the
marginal posterior distribution p(Θ | y1:N), whereas the PG method targets the joint poste-
rior distribution p(z1:N , Θ | y1:N) [12]. Note that the SMC method used in the PG method
is called the conditional SMC method and uses the previous sample of latent variables
z1:N [k− 1] as a particle in the SMC method [12]. Furthermore, advanced versions of the
PG method have been proposed, such as the particle Gibbs with ancestor sampling (PGAS)
method for improving sampling efficiency and the replica exchange particle Gibbs with
ancestor sampling (REPGAS) method to improve the initial value dependence [16,18,19,24].
Samples obtained by employing the PMMH method also have a problem of initial value
dependence, similar to those obtained by employing the PG method, and it is considered
that combining the PMMH method with the replica exchange method would be effective.
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Algorithm 2 Replica Exchange Particle Marginal Metropolis–Hastings (REPMMH) Method.

1: initialize the parameters {Θ}[0]
2: for k = 1, . . . , K do
3: for r = 1, . . . , R do
4: draw the sample candidate of parameters Θ(r)∗ ∼ q

(
Θ(r)∗ | Θ(r)[k− 1]

)
5: calculate the marginal likelihood p

(
y1:N

∣∣∣ Θ(r)∗
)

by using the SMC method ac-
cording to Equation (13)

6: calculate the acceptance probability p(r)accept with Equation (14)
7: draw a uniform random number α ∼ U (0, 1) (U (a, b) is a uniform distribution

with range [a, b))
8: if α ≤ p(r)accept then

9: set the sample of parameters Θ(r)[k]← Θ(r)∗

10: else
11: set the sample of parameters Θ(r)[k]← Θ(r)[k− 1]
12: end if
13: end for
14: choose the replica number rEX ← 1 or rEX ← 2 for the exchange
15: repeat
16: calculate exchange probability pEX

(
{Θ}, {Θ}∗

)
with Equation (15) for replica

numbers rEX and rEX + 1
17: draw a uniform random number αEX ∼ U (0, 1)
18: if αEX ≤ pEX

(
{Θ}, {Θ}∗

)
then

19: exchange replicas
(

Θ(rEX)[k], Θ(rEX+1)[k]
)
←
(

Θ(rEX+1)[k], Θ(rEX)[k]
)

20: end if
21: set the replica number rEX ← rEX + 2 for the exchange
22: until rEX ≤ R− 1
23: end for
24: return {{Θ}[k]}K

k=1

Table 1. The PMCMC methods for estimating parameters in a state space model.

Method Target Distribution Overview

PG p(z1:N , Θ | y1:N)

Sample parameters Θ and latent variables z1:N
alternately with Gibbs sampling for targeting
the joint posterior distribution p(z1:N , Θ | y1:N).
Note that the SMC method is used for sampling
latent variables z1:N . The SMC method used in
the PG method is called the conditional SMC
method and uses the previous sample of latent
variables z1:N [k− 1] as a particle in the SMC
method [12].

PGAS p(z1:N , Θ | y1:N)
Sample latent variables z1:N not only in the
forward direction but also in the backward
direction in the PG method [16,18,19].

REPGAS p(z1:N , Θ | y1:N)
Improve the problem of initial value dependence
in the PGAS method by combining the replica
exchange method and the PGAS method [24].

PMMH p(Θ | y1:N)

Sample parameters Θ with the MH algorithm
for targeting directly the marginal posterior
distribution p(Θ | y1:N) obtained by
marginalization over the distribution of latent
variables z1:N . Note that the SMC method is
used to calculate the marginal likelihood
p(y1:N | Θ) [12].

REPMMH p(Θ | y1:N)
Improve the problem of initial value dependence
in the PMMH method by combining the replica
exchange method and the PMMH method.
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3. Results

In this section, we show that by employing our proposed replica exchange particle
marginal Metropolis–Hastings (REPMMH) method for the Izhikevich neuron model [41,42]
and Lévy-driven stochastic volatility model [12,43,44], the marginal posterior distribution
of parameters p(Θ | y1:N) can be estimated from observations y1:N , and we verify whether
the REPMMH method can overcome the problem of initial value dependence in the particle
marginal Metropolis–Hastings (PMMH) method. Moreover, we compare the sampling
efficiency of the REPMMH method with that of the conventional methods, the PMMH
method and the replica exchange particle Gibbs with ancestor sampling (REPGAS) method.

3.1. Izhikevich Neuron Model

To verify the effectiveness of our proposed method, we use the Izhikevich neuron
model. The Izhikevich neuron model is a computational model for the membrane potential
of a neuron [41,42]:

dv
dt

= 0.04v2 + 5v + 140− u + Iext + ξv(t), (19)

du
dt

= a(bv− u) + ξu(t), (20)

where v is the membrane potential and u is the membrane recovery variable. Iext is the
input current from outside the neuron, and a and b are parameters in the Izhikevich
neuron model that represent the characteristic of the neuron. In Equations (19) and (20),
we consider additive white Gaussian noise terms ξv(t) and ξu(t) (〈ξv(t)〉 = 〈ξu(t)〉 = 0,
〈ξv(t)ξv(s)〉 = σ2

v δ(t− s), 〈ξu(t)ξu(s)〉 = σ2
uδ(t− s) and 〈ξv(t)ξu(s)〉 = 0, where δ(t) is the

Dirac delta function). Here, standard deviations of the membrane potential and membrane
recovery variable are expressed by σv and σu, respectively. If the membrane potential v
exceeds the threshold value vth = 30, the membrane potential v and the membrane recovery
variable u are reset to c and u + d, respectively, as follows:

v ← c,

u ← u + d,

where c and d are parameters representing the characteristic of the neuron.
Here, we assume that the observations y1:N are the membrane potentials with Gaus-

sian observation noise, and we estimate the parameters Θ = {a, b, c, d} from only the
observations y1:N . We use the true parameters Θ = {a, b, c, d} = {0.02, 0.2,−65, 6} and the
number of data N = 5.0× 102 to generate data. In the system model, the means and the
variances of the Gaussian noise are

{
µv, σ2

v
}
= {0, 0.25} and

{
µu, σ2

u
}
=
{

0, 10−4}. In the

observation model, the mean and the variance of the Gaussian noise are
{

µy, σ2
y

}
= {0, 1}.

We show the generated data from the Izhikevich neuron model in Figure 3. In Figure 3,
complex spike activities with different inter-spike intervals and different peaks are seen
in response to external inputs. We assume that only one-dimensional time-series of ob-
served data yn and external inputs can be used, while the latent dynamics are governed by
two-dimensional nonlinear dynamical systems with four parameters Θ = {a, b, c, d}. We
employ our REPMMH method and the conventional methods, the PMMH method and the
REPGAS method, for the generated data in Figure 3 to estimate the posterior distribution of
the parameters Θ = {a, b, c, d}. In all methods, the initial values of the parameters Θ[0] are
{a, b, c, d} = {0.025, 0.15,−60, 5.5}, the number of samples K is 106, the number of burn-in
samples Kburn−in is 106, and the number of particles M is 50. In our REPMMH method and
the REPGAS method, the number of temperatures R is 64.
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Figure 3. Observations and external inputs used to evaluate the proposed method. Observed
membrane potential of the Izhikevich neuron model yn (top) in response to input current Iext,n

(bottom) is shown.

We show in Figure 4 the estimated posterior distribution of parameters p(Θ | y1:N)
obtained by employing the PMMH method. In each graph, the vertical axis expresses the
value of the probability density function, while the horizontal axis expresses the values of
parameters a, b, c and d. Furthermore, the solid lines represent the true values, the dashed
lines represent the initial values, and the histograms represent the estimated posterior
distributions of the parameters. From Figure 4, we find that a peak of the estimated
posterior distribution of parameter d, p(d | y1:N), is located around its true value d = 6.0.
However, the maximum values of the estimated posterior distribution of the other three
parameters, a, b and c, remain around their initial values (a = 0.025, b = 0.15, c = −60),
which are far from their true values (a = 0.020, b = 0.20, c = −65). Thus, the joint posterior
distribution of four parameters is found to be not adequately estimated. From this result,
the samples in the PMMH method are considered to remain in the local optimum since the
initial values are far from the true value.
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Figure 4. Estimated posterior distributions obtained by employing the PMMH method in the
Izhikevich neuron model. In each graph, the estimated probability density function of the parameter
(a, b, c and d) is shown by the blue histogram. The red solid and black dashed lines express the true
and initial values, respectively.
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We show in Figure 5 the estimated posterior distribution of parameters p(Θ | y1:N)
obtained by employing the REPMMH method. From Figure 5, we find that the maximum
values of the estimated posterior distribution of parameters are located around the true
values (a = 0.020, b = 0.20, c = −65, d = 6.0), even though the initial values of the
parameters (a = 0.025, b = 0.15, c = −60, d = 5.5) are set to be far from the true values.
This improvement in estimation accuracy would be induced by combination with the
replica exchange method. It is easier to obtain samples from a wider range since the replica
exchange method allows samples to pass through high temperatures. From these results,
we find that the problem of initial value dependence in the PMMH method is improved by
employing our proposed method.
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Figure 5. Estimated posterior distributions obtained by employing the REPMMH method in the
Izhikevich neuron model. See also the captions of the figure and subfigures for Figure 4.

Moreover, we show in Figure 6 the estimated posterior distribution of parameters
p(Θ | y1:N) obtained by employing the REPGAS method. As shown in this figure, the
distributions are estimated to be almost the same as those obtained by employing the
REPMMH method, which indicates that the true values are estimated properly.
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Figure 6. Estimated posterior distributions obtained by employing the replica exchange particle
Gibbs with ancestor sampling (REPGAS) method in the Izhikevich neuron model. See also the
captions of the figure and subfigures for Figure 4.
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In order to investigate the efficiency of sampling parameters in the proposed method
and existing methods, we show in Figure 7 the autocorrelation function results calculated
using the samples of the PMMH method, the REPGAS method and our proposed REPMMH
method. In all the parameters a, b, c and d, the decay of the autocorrelation in the REPMMH
samples is faster using the REPMMH samples than those calculated using the PMMH
samples and the REPGAS samples. The time constant of the autocorrelation function has a
strong influence on the convergence time of the PMCMC method. The time constants of
the autocorrelation functions for the REPMMH samples are around 20 for all parameters a,
b, c and d, while those of the autocorrelation functions for the PMMH samples are more
than 105, as shown in Figure 7. Since the computational cost of the exchange process
in the REPMMH method is very small compared to the computational cost of the SMC
method, the computational cost of the REPMMH method is approximately R = 64 times the
computational cost of the PMMH method. Nevertheless, the REPMMH method drastically
improves the sampling efficiency compared to the increase in the computational cost; the
REPMMH method is R = 64 times more computationally expensive than the PMMH
method, while the effective sample size of the REPMMH method is much larger (around
103 times larger) than that of the PMMH method.

When the same number of temperatures and particles is used, the REPGAS method is
more computationally expensive than the REPMMH method since the REPGAS method
requires the sampling of the latent variables z1:N and the ancestor sampling, which con-
siders sampling of the latent variables z1:N not only in the forward direction but also
in the backward direction in the conditional SMC method. Nevertheless, the REPMMH
method has high sampling efficiency compared to the REPGAS method. Thus, we find
that the sampling efficiency of our proposed REPMMH method is higher than that of the
conventional methods.

Figure 7. Autocorrelation as a function of the lag length for parameters a, b, c and d in the Izhikevich
neuron model. Results for the PMMH method (black dashed-dotted line), the REPGAS method (blue
dashed line) and the REPMMH method (red solid line) are shown. Each inset figure represents the
result when the horizontal axis is the logarithmic scale. In results obtained by the REPGAS method
and the REPMMH method, samples at T(1) = 1.0 were used.

Moreover, in order to evaluate the influence of the number of temperatures R and
the number of particles M on the estimated results, we compare the estimated results in
various settings. We show the estimated results with the numbers of temperatures R = 1,
4, 16 and 64 in Table 2. Table 2 shows the mode values of the estimated distributions, the
standard deviations (Std) of the estimated distributions and the values of autocorrelation
functions (ACF) with the lag length 30 for the numbers of temperatures R = 1, 4, 16 and
64. Note that the numbers of particles M are 50 in all cases and the maximum value of
temperature is fixed at T(R) = 1.163 for R > 1.
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As mentioned above, for the number of temperatures R = 1, we can estimate the
parameter d around the true value d = 6.0, while the other three parameters a, b and c
remain at their initial values (a = 0.025, b = 0.15, c = −60). We also find that the samples
of parameters a, b and c cannot move enough from their initial values since the values of
the standard deviations are very small. For the number of temperatures R = 4, we find the
samples can escape the local optima and we can estimate the true values of all parameters a,
b, c and d accurately due to the high temperatures that allow escape from the local optima.
However, since the values of the autocorrelation functions are close to 1.0, we need a large
number of samples in order to estimate the shape of the distribution p(Θ | y1:N). On the
other hand, we find that the values of the autocorrelation functions are smaller for R = 16
and 64.

Table 2. The estimated results with the numbers of temperatures R = 1, 4, 16 and 64.

Parameter R = 1 R = 4 R = 16 R = 64

a = 0.020
Mode 0.0251 0.0200 0.0205 0.0205

Std 5.5× 10−5 6.9× 10−4 6.7× 10−4 7.8× 10−4

ACF 0.9999 0.9914 0.5175 0.3074

b = 0.20
Mode 0.155 0.200 0.200 0.200

Std 3.0× 10−4 7.2× 10−3 7.3× 10−3 7.0× 10−3

ACF 0.9999 0.9919 0.5773 0.3082

c = −65
Mode −60.0 −64.75 −65.0 −65.0

Std 2.1× 10−3 2.8× 10−1 2.5× 10−1 2.6× 10−1

ACF 0.9999 0.9926 0.5359 0.3117

d = 6.0
Mode 6.10 6.10 6.05 6.05

Std 2.0× 10−2 8.9× 10−2 9.8× 10−2 9.8× 10−2

ACF 0.9999 0.9928 0.5222 0.3176

We show the estimated results with the numbers of particles M = 10, 20, 30, 40 and 50
in Table 3. Note that the numbers of temperatures R are 64 in all cases. For the numbers of
particles M = 10 and 20, the estimated values of the parameters a, b, c and d are far from
the true values (a = 0.020, b = 0.20, c = −65, d = 6.0). We consider that these results are
due to the low approximation accuracy of the marginal likelihood p(y1:N | Θ) in the SMC
method with too small numbers of particles. For the numbers of particles M ≥ 30, we can
estimate the true values of parameters a, b, c and d. Since there is no significant difference
between the mode values, the standard deviations and the values of the autocorrelation
functions for the numbers of particles M = 30, 40 and 50, we consider that the number of
particles M is sufficient for this problem if it is above 30.

Table 3. The estimated results with the numbers of particles M = 10, 20, 30, 40 and 50.

Parameter M = 10 M = 20 M = 30 M = 40 M = 50

a = 0.020
Mode 0.0220 0.0210 0.0200 0.0200 0.0205

Std 5.9× 10−4 7.5× 10−4 7.3× 10−4 6.7× 10−4 7.8× 10−4

ACF 0.5548 0.2707 0.3072 0.3391 0.3074

b = 0.20
Mode 0.195 0.190 0.200 0.195 0.200

Std 4.9× 10−3 8.3× 10−3 7.1× 10−3 5.9× 10−3 7.0× 10−3

ACF 0.2738 0.2611 0.2932 0.3352 0.3082

c = −65
Mode −60.75 −64.50 −65.00 −65.00 −65.00

Std 2.9× 10−1 3.7× 10−1 2.7× 10−1 2.8× 10−1 2.6× 10−1

ACF 0.9223 0.3071 0.2793 0.3701 0.3117

d = 6.0
Mode 6.50 6.10 6.10 6.05 6.05

Std 1.4× 10−1 8.2× 10−2 1.0× 10−1 9.3× 10−2 9.8× 10−2

ACF 0.6096 0.2750 0.3220 0.2985 0.3176

3.2. Lévy-Driven Stochastic Volatility Model

Next, we also verify the effectiveness of the proposed method using the Lévy-driven
stochastic volatility model [12,43,44]. In this model, the dynamics of the logarithm of asset
price y∗(t) are represented by the following differential equation:

dy∗(t) =
{

µ + βσ2(t)
}

dt + σ(t)dB(t), (21)
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where µ is the drift parameter and β is the risk premium. B(t) is the Brownian motion
and σ2(t) represents the volatility. The dynamics of the volatility σ2(t) are modeled by the
following Lévy-driven Ornstein–Unlenbeck process:

dσ2(t) = −λσ2(t)dt + dz(λt), (22)

where λ is a positive constant and z(t) is a non-Gaussian Lévy process with positive
increments. The observation at the time step n, yn, in this model is obtained by the
following Gaussian distribution:

yn ∼ N
(

µ∆ + βσ2
n , σ2

n

)
, (23)

where ∆ is the length of the time interval.
The stochastic volatility models are numerically investigated by using discretized dy-

namical models [12,43,44], and the estimation algorithm for the parameters of the stochastic
volatility models has been investigated using such the discretized ones [12]. The integrated
volatility σ2

n at the time step n is calculated as follows:

σ2
n =

∫ n∆

(n−1)∆
σ2(u)du

= λ−1
[
z(λn∆)− σ2(n∆)− z{λ(n− 1)∆}+ σ2{(n− 1)∆}

]
, (24)

where σ2(n∆) and z(λn∆) are, respectively, represented as follows:

σ2(n∆) = exp(−λ∆)σ2{(n− 1)∆}+ ησ,n, (25)

z(λn∆) = z{λ(n− 1)∆}+ ηz,n. (26)

Here, we address the case where the volatility σ2(t) follows a tempered stable marginal
distribution [44]. Following [2,44], ησ,n and ηz,n are obtained as follows:

ησ,n =
∞

∑
i=1

min
(( aiκ

Aλ∆

)−1/κ
, eiv

1/κ
i

)
exp(−λ∆ri) +

N(λ∆)

∑
i=1

ci exp(−λ∆r∗i ), (27)

ηz,n =
∞

∑
i=1

min
(( aiκ

Aλ∆

)−1/κ
, eiv

1/κ
i

)
+

N(λ∆)

∑
i=1

ci, (28)

where A = 2κδκ2/Γ(1− κ), a1 < a2 < . . . are the arrival times of a Poisson process with
intensity 1, e1, e2, . . . are independent and identically distributed exponential random vari-
ables with mean 2γ−1/κ , and v1, v2, . . ., r1, r2, . . . and r∗1 , r∗2 , . . . are standard uniform random
variables. c1, c2, . . . are obtained from a gamma distribution with the shape parameter 1− κ
and the scale parameter 2γ−1/κ , and N(λ∆) is obtained from a Poisson distribution with
mean λ∆δγκ. Here, κ, δ, γ and λ are the parameters Θ = {κ, δ, γ, λ} to be estimated.

In this paper, we employ the proposed method and the PMMH method for the
stochastic volatility model. The PMMH-based methods, including the proposed method,
can be applied to complex models such as the Lévy-driven stochastic volatility model, as
long as the probability density of the observation model can be calculated. On the other
hand, the PG-based method is difficult to apply to the stochastic volatility model due to
the need to calculate the probability density of the system model [12]. Following [12],
we use the true parameters Θ = {κ, δ, γ, λ} = {0.5, 1.41, 2.83, 0.1}, the number of data
N = 4.0× 102 and the time interval of length ∆ = 1.0 to generate data. In order to estimate
the parameters Θ, we use the initial values of the parameters Θ[0] = {0.25, 7.41, 9.83, 1.5},
the number of samples K = 1.5× 105, the number of burn-in samples Kburn−in = 105 and
the number of particles M = 200 in both the proposed REPMMH method and the PMMH
method. In the REPMMH method, the number of temperatures R is 64.
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We show in Figure 8 the estimated posterior distribution of parameters p(Θ | y1:N)
obtained by employing the PMMH method. From Figure 8, we find that a peak of the
estimated posterior distribution of parameter λ, p(λ | y1:N), is located around its true value
λ = 0.1. However, the maximum values of the estimated posterior distribution of the other
three parameters, κ, δ and γ, are far from their true values (κ = 0.5, δ = 1.41, γ = 2.83).
Thus, the joint posterior distribution of the four parameters is found to be not adequately
estimated. It is considered that the target distribution is not reached with a small number
of samples since the sampling efficiency of the PMMH method is low.
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Figure 8. Estimated posterior distributions obtained by employing the PMMH method in the Lévy-
driven stochastic volatility model. In each graph, the estimated probability density function of
parameters (κ, δ, γ and λ) is shown by the blue histogram. The red solid and black dashed lines
express the true and initial values, respectively.

We show in Figure 9 the estimated posterior distributions of parameters p(Θ | y1:N)
obtained by employing the REPMMH method. From Figure 9, we find that the true values
of parameters Θ = {κ, δ, γ, λ} = {0.5, 1.41, 2.83, 0.1} are estimated appropriately by using
the same number of samples and the same initial values Θ[0] = {0.25, 7.41, 9.83, 1.5} as the
PMMH method. The results in Figures 8 and 9 show that our REPMMH method has higher
sampling efficiency than the PMMH method.

Moreover, we show in Figure 10 the autocorrelation function results calculated using
the samples of the PMMH method and the REPMMH method. In all parameters κ, δ, γ and
λ, the decay of the autocorrelation is faster using the REPMMH samples than that using the
PMMH samples. As shown in Figure 10, the time constants of the autocorrelation functions
for the REPMMH samples are less than 15 for all parameters κ, δ, γ and λ, while the time
constant of the autocorrelation functions for the PMMH samples for the parameter γ is
more than 3.0× 103. As mentioned above, since the computational cost of the REPMMH
method is approximately R = 64 times the computational cost of the PMMH method,
the REPMMH method improves the sampling efficiency compared to the increase in the
computational cost.
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Figure 9. Estimated posterior distributions obtained by employing the REPMMH method in the
Lévy-driven stochastic volatility model. See also the captions of the figure and subfigures for Figure 8.
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Figure 10. Autocorrelation as a function of the lag length for parameters κ, δ, γ and λ in the Lévy-
driven stochastic volatility model. Results for the PMMH method (black dashed-dotted line) and the
REPMMH method at T(1) = 1.0 (red solid line) are shown.

4. Concluding Remarks

In this paper, we have proposed the replica exchange particle marginal Metropolis–
Hastings (REPMMH) method in order to estimate the marginal posterior distribution of
parameters p(Θ | y1:N) of the state space model. Our proposed method can be applied to
complex models such as the Lévy-driven stochastic volatility model, even if the probability
densities of the system models cannot be calculated explicitly. By the proposed method, we
introduce the exchange between samples of model parameters Θ at different temperatures
and realize an efficient sampling method for model parameters governing the nonlinear
dynamical systems.

Using nonlinear dynamical models such as the Izhikevich neuron model and Lévy-
driven stochastic volatility model, we show that our proposed REPMMH method can
improve the problem of initial value dependence of the particle marginal Metropolis–
Hastings (PMMH) method. The results have shown that the proposed REPMMH method
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accurately estimates the marginal posterior distribution of parameters. Moreover, by
comparing the autocorrelation functions of the obtained samples, it has been also shown
that our proposed REPMMH method can sample more efficiently than the conventional
methods. In the replica exchange particle Gibbs with ancestor sampling (REPGAS) method,
the next sample of latent variables is obtained under the strong influence of the current
sample of latent variables. On the other hand, in the REPMMH method, the correlation of
the latent variables between the current and next steps is low since the REPMMH method
only calculates the marginal likelihood of the next step, regardless of the latent variables
obtained in the current step. Therefore, it is considered that the REPMMH method can
sample parameters more efficiently than the REPGAS method.

In this paper, although we conducted the experiments by using two specific dynamical
models: the Izhikevich neuron model and the Lévy-driven stochastic volatility model, the
proposed REPMMH method can be applied to various dynamical systems described by
ordinary or partial differential equations. Although the proposed method can be applied
to any ordinary or partial differential equations that can be represented as state space
models, applications of the proposed method are difficult when the system models for the
dynamical systems or the observation models are completely unknown. In such cases, we
consider that combining the proposed method with non-parametric Bayesian methods is
effective. We leave this for future work.
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