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Abstract: In this paper, based on the results of rough set theory, test theory, and exact learning,
we investigate decision trees over infinite sets of binary attributes represented as infinite binary
information systems. We define the notion of a problem over an information system and study three
functions of the Shannon type, which characterize the dependence in the worst case of the minimum
depth of a decision tree solving a problem on the number of attributes in the problem description.
The considered three functions correspond to (i) decision trees using attributes, (ii) decision trees
using hypotheses (an analog of equivalence queries from exact learning), and (iii) decision trees using
both attributes and hypotheses. The first function has two possible types of behavior: logarithmic
and linear (this result follows from more general results published by the author earlier). The second
and the third functions have three possible types of behavior: constant, logarithmic, and linear (these
results were published by the author earlier without proofs that are given in the present paper).
Based on the obtained results, we divided the set of all infinite binary information systems into four
complexity classes. In each class, the type of behavior for each of the considered three functions does
not change.
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1. Introduction

Decision trees are studied in different areas of computer science, in particular in exact
learning [1], rough set theory [2–4], and test theory [5]. In some sense, these theories deal
with dual objects: for example, membership queries from exact learning correspond to at-
tributes from test theory and rough set theory. In contrast to test theory and rough set theory,
in exact learning, besides membership queries, equivalence queries are also considered.

We extend the model considered in test theory and rough set theory by adding the
notion of a hypothesis that is an analog of equivalence query. Papers [6–10] are related
mainly to the experimental study of decision trees with hypotheses. The present paper
contains a theoretical study of the depth of decision trees with hypotheses.

An infinite binary information system is a pair U = (A, F) where A is an infinite set
of elements and F is an infinite set of functions (attributes) from A to {0, 1}. A problem
over U is given by a finite number of attributes f1, . . . , fn from F: for a ∈ A, we should
find the tuple ( f1(a), . . . , fn(a)). To solve this problem, we can use decision trees with
two types of queries. We can ask about the value of an attribute fi ∈ { f1, . . . , fn}. As a
result, we obtain an answer of the kind fi(x) = δ where δ ∈ {0, 1}. We also can ask if a
hypothesis f1(x) = δ1, . . . , fn(x) = δn is true where δ1, . . . , δn ∈ {0, 1}. Either we obtain
the confirmation or a counterexample in the form fi(x) = ¬δi.

The depth of decision trees with hypotheses can be essentially less than the depth
of decision trees using only attributes. As an example, we consider the problem of the
computation of the disjunction x1 ∨ · · · ∨ xn. The minimum depth of a decision tree solving
this problem using only attributes x1, . . . , xn is equal to n. However, the minimum depth of
a decision tree with hypotheses solving this problem is equal to one: it is enough to ask
only about the hypothesis x1 = 0, . . . , xn = 0. If it is true, then the considered disjunction is
equal to zero. Otherwise, it is equal to one.
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Based on the results of exact learning, rough set theory, and test theory [1,11–16],
we study for an arbitrary infinite binary information system three functions of the Shannon
type that characterize the growth in the worth case of the minimum depth of a decision tree
solving a problem with the growth of the number of attributes in the problem description.
The considered three functions correspond to the following three cases:

(i) Only attributes are used in decision trees;
(ii) Only hypotheses are used in decision trees;
(iii) Both attributes and hypotheses are used in decision trees.

We show that the first function has two possible types of behavior: logarithmic and
linear. The second and third functions have three possible types of behavior: constant,
logarithmic, and linear. Bounds for the case (i) can be derived from more general results
obtained in [15,16]. Results related to the cases (ii) and (iii) were presented in the conference
paper [17] without proofs. In the present paper, we consider complete proofs for the cases
(ii) and (iii). We also investigate the join behavior of these three functions and describe four
complexity classes of infinite binary information systems; these results are completely new.

The obtained results allow us to understand the difference of time complexity for
conventional decision trees that use only queries based on one attribute each and for
decision trees with hypotheses. Moreover, we know now which combinations of types
of behavior of the three Shannon-type functions we can take under consideration of an
arbitrary infinite binary system, and we know the criteria for each combination.

This paper consists of six sections. In Sections 2 and 3, we consider the basic notions
and main results. Sections 4 and 5 contain proofs of the main results, and Section 6 gives a
short conclusion.

2. Basic Notions

Let A be a set of elements and F be a set of functions from A to {0, 1}. Functions from
F are called attributes, and the pair U = (A, F) is called a binary information system (this
notion is close to the notion of information systems proposed by Pawlak [18]). If A and F
are infinite sets, then the pair U = (A, F) is called an infinite binary information system.

A problem over U is an arbitrary n-tuple z = ( f1, . . . , fn) where n ∈ N, N is the set
of natural numbers {1, 2, . . .}, and f1, . . . , fn ∈ F. The problem z may be interpreted as a
problem of searching for the tuple z(a) = ( f1(a), . . . , fn(a)) for an arbitrary a ∈ A. The
number dim z = n is called the dimension of the problem z. Denote F(z) = { f1, . . . , fn}. We
denote by P(U) the set of problems over U.

A system of equations over U is an arbitrary equation system of the kind:

{g1(x) = δ1, . . . , gm(x) = δm}

where m ∈ N ∪ {0}, g1, . . . , gm ∈ F, and δ1, . . . , δm ∈ {0, 1} (if m = 0, then the considered
equation system is empty). This equation system is called a system of equations over z if
g1, . . . , gm ∈ F(z). The considered equation system is called consistent (on A) if its set of
solutions on A is nonempty. The set of solutions of the empty equation system coincides
with A.

As algorithms for problem z solving, we consider decision trees with two types of
queries. We can choose an attribute fi ∈ F(z) and ask about its value. This query has two
possible answers: { fi(x) = 0} and { fi(x) = 1}. We can formulate a hypothesis over z in
the form H = { f1(x) = δ1, . . . , fn(x) = δn} where δ1, . . . , δn ∈ {0, 1} and ask about this
hypothesis. This query has n + 1 possible answers: H, { f1(x) = ¬δ1}, . . . , { fn(x) = ¬δn}
where ¬1 = 0 and ¬0 = 1. The first answer means that the hypothesis is true. Other
answers are counterexamples.

A decision tree over z is a marked finite directed tree with the root in which:

• Each terminal node is labeled with an n-tuple from the set {0, 1}n;
• Each node, which is not terminal (such nodes are called working), is labeled with an

attribute from the set F(z) or with a hypothesis over z;



Entropy 2022, 24, 116 3 of 12

• If a working node is labeled with an attribute fi from F(z), then there are two edges,
which leave this node and are labeled with the systems of equations { fi(x) = 0} and
{ fi(x) = 1}, respectively;

• If a working node is labeled with a hypothesis:

H = { f1(x) = δ1, . . . , fn(x) = δn}

over z, then there are n + 1 edges, which leave this node and are labeled with the
system of equations H, { f1(x) = ¬δ1}, . . . , { fn(x) = ¬δn}, respectively.

Let Γ be a decision tree over z. A complete path in Γ is an arbitrary directed path from
the root to a terminal node in Γ. We now define an equation system S(ξ) over U associated
with the complete path ξ. If there are no working nodes in ξ, then S(ξ) is the empty
system. Otherwise, S(ξ) is the union of equation systems assigned to the edges of the path
ξ. We denote by A(ξ) the set of solutions on A of the system of equations S(ξ) (if this
system is empty, then its solution set is equal to A).

We say that a decision tree Γ over z solves the problem z relative to U if, for each element
a ∈ A and for each complete path ξ in Γ such that a ∈ A(ξ), the terminal node of the path
ξ is labeled with the tuple z(a).

We now consider an equivalent definition of a decision tree solving a problem. De-
note by ∆U(z) the set of tuples (δ1, . . . , δn) ∈ {0, 1}n such that the system of equations
{ f1(x) = δ1, . . . , fn(x) = δn} is consistent. The set ∆U(z) is the set of all possible solutions
to the problem z. Let ∆ ⊆ ∆U(z), fi1 , . . . , fim ∈ { f1, . . . , fn}, and σ1, . . . , σm ∈ {0, 1}. Denote:

∆( fi1 , σ1) · · · ( fim , σm)

the set of all n-tuples (δ1, . . . , δn) ∈ ∆ for which δi1 = σ1, . . . , δim = σm.
Let Γ be a decision tree over the problem z. We correspond to each complete path ξ in

the tree Γ a word π(ξ) in the alphabet {( fi, δ) : fi ∈ F(z), δ ∈ {0, 1}}. If the equation system
S(ξ) is empty, then π(ξ) is the empty word. If S(ξ) = { fi1(x) = σ1, . . . , fim(x) = σm}, then
π(ξ) = ( fi1 , σ1) · · · ( fim , σm). The decision tree Γ over z solves the problem z relative to U
if, for each complete path ξ in Γ, the set ∆U(z)π(ξ) contains at most one tuple, and if this
set contains exactly one tuple, then the considered tuple is assigned to the terminal node of
the path ξ.

As the time complexity of a decision tree Γ, we consider its depth h(Γ), that is the
maximum number of working nodes in a complete path in the tree Γ.

Let z ∈ P(U). We denote by h(1)U (z) the minimum depth of a decision tree over z,

which solves z relative to U and uses only attributes from F(z). We denote by h(2)U (z)
the minimum depth of a decision tree over z, which solves z relative to U and uses only
hypotheses over z. We denote by h(3)U (z) the minimum depth of a decision tree over z,
which solves z relative to U and uses both attributes from F(z) and hypotheses over z.

For i = 1, 2, 3, we define a function of the Shannon type h(i)U (n) that characterizes the

dependence of h(i)U (z) on dim z in the worst case. Let i ∈ {1, 2, 3} and n ∈ N. Then:

h(i)U (n) = max{h(i)U (z) : z ∈ P(U), dim z ≤ n}.

3. Main Results

Let U = (A, F) be an infinite binary information system and r ∈ N. The information
system U is called r-reduced if, for each consistent on A system of equations over U, there
exists a subsystem of this system that has the same set of solutions and contains at most r
equations. We denote byR the set of infinite binary information systems each of which is
r-reduced for some r ∈ N.
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The next theorem follows from the results obtained in [15], where we considered
closed classes of test tables (decision tables). It also follows from the results obtained in [16],
where we considered the weighted depth of decision trees.

Theorem 1. Let U be an infinite binary information system. Then, the following statements hold:

(a) If U ∈ R, then h(1)U (n) = Θ(log n);

(b) If U /∈ R, then h(1)U (n) = n for any n ∈ N.

A subset { f1, . . . , fm} of F is called independent if, for any δ1, . . . , δm ∈ {0, 1}, the sys-
tem of equations { f1(x) = δ1, . . . , fm(x) = δm} is consistent on the set A. The empty set
of attributes is independent by definition. We now define the independence dimension or
I-dimension I(U) of the information system U (this notion is similar to the notion of the
independence number of the family of sets considered by Naiman and Wynn in [19]). If, for
each m ∈ N, the set F contains an independent subset of cardinality m, then I(U) = ∞. Oth-
erwise, I(U) is the maximum cardinality of an independent subset of the set F. We denote
by D the set of infinite binary information systems with a finite independence dimension.

Let U = (A, F) be a binary information system, which is not necessarily infinite, f ∈ F,
and δ ∈ {0, 1}. Denote:

A( f , δ) = {a : a ∈ A, f (a) = δ}.

We now define inductively the notion of a k-information system, k ∈ N ∪ {0}. The bi-
nary information system U is called a 0-information system if all attributes from F are
constant on the set A. Let, for some k ∈ N∪ {0}, the notion of a m-information system be
defined for m = 0, . . . , k. The binary information system U is called a (k + 1)-information
system if it is not a m-information system for m = 0, . . . , k and, for any f ∈ F, there ex-
ist numbers δ ∈ {0, 1} and m ∈ {0, . . . , k} such that the information system (A( f , δ), F)
is a m-information system. It is easy to show by induction on k that if U = (A, F) is a
k-information system, then U′ = (A′, F), A′ ⊆ A, is a l-information system for some l ≤ k.
We denote by C the set of infinite binary information systems for each of which there exists
k ∈ N such that the considered system is a k-information system. The following theorem
was presented in [17] without proof.

Theorem 2. Let U be an infinite binary information system. Then, the following statements hold:

(a) If U ∈ C, then h(2)U (n) = O(1) and h(3)U (n) = O(1);

(b) If U ∈ D \ C, then h(2)U (n) = Θ(log n), h(3)U (n) = Ω(
log n

log log n ), and h(3)U (n) = O(log n);

(c) If U /∈ D, then h(2)U (n) = n and h(3)U (n) = n for any n ∈ N.

Let U be an infinite binary information system. We now consider the join behavior of
the functions h(1)U (n), h(2)U (n), and h(3)U (n). It depends on the belonging of the information
system U to the setsR, D, and C. We correspond to the information system U its indicator
vector ind(U) = (c1, c2, c3) ∈ {0, 1}3 in which c1 = 1 if and only if U ∈ R, c2 = 1 if and
only if U ∈ D, and c3 = 1 if and only if U ∈ C.

Theorem 3. For any infinite binary information system, its indicator vector coincides with one
of the rows of Table 1. Each row of Table 1 is the indicator vector of some infinite binary informa-
tion system.

For i = 1, 2, 3, 4, we denote by Vi the class of all infinite binary information systems,
for which the indicator vector coincides with the ith row of Table 1. Table 2 summarizes
Theorems 1–3. The first column contains the name of complexity class Vi. The next three
columns describe the indicator vector of information systems from this class. The last
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three columns h(1)U (n), h(2)U (n), and h(3)U (n) contain information about the behavior of the

functions h(1)U (n), h(2)U (n), and h(3)U (n) for information systems from the class Vi.

Table 1. Possible indicator vectors of infinite binary information systems.

R D C
1 0 0 0
2 0 1 0
3 0 1 1
4 1 1 0

Table 2. Summary of Theorems 1–3.

R D C h(1)
U (n) h(2)

U (n) h(3)
U (n)

V1 0 0 0 n n n
V2 0 1 0 n Θ(log n) Ω(

log n
log log n ), O(log n)

V3 0 1 1 n O(1) O(1)
V4 1 1 0 Θ(log n) Θ(log n) Ω(

log n
log log n ), O(log n)

4. Proof of Theorem 2

We precede with the proof of Theorem 2 by two lemmas.
Let d ∈ N. A d-complete tree over the information system U = (A, F) is a marked finite

directed tree with the root in which:

• Each terminal node is not labeled;
• Each nonterminal node is labeled with an attribute f ∈ F. There are two edges leaving

this node that are labeled with the systems of equations { f (x) = 0} and { f (x) = 1},
respectively;

• The length of each complete path (the path from the root to a terminal node) is equal
to d;

• For each complete path ξ, the equation system S(ξ), which is the union of equation
systems assigned to the edges of the path ξ, is consistent.

Let G be a d-complete tree over U and F(G) be the set of all attributes attached to
the nonterminal nodes of the tree G. The number of nonterminal nodes in G is equal to
20 + 21 + . . . + 2d−1 = 2d − 1. Therefore, |F(G)| ≤ 2d.

The results mentioned in the following lemma are obtained by methods similar to
those used by Littlestone [12], Maass and Turán [13], and Angluin [11].

Lemma 1. Let U = (A, F) be a binary information system, d ∈ N, G be a d-complete tree over U,
and z be a problem over U such that F(G) ⊆ F(z). Then

(a) h(2)U (z) ≥ d;

(b) h(3)U (z) ≥ d
log2(2d) .

Proof. (a) We prove the inequality h(2)U (z) ≥ d by induction on d. Let d = 1. Then, the
tree G has the only one nonterminal node, which is labeled with an attribute f that is not
constant on A. Therefore, |∆U(z)| ≥ 2 and h(2)U (z) ≥ 1. Let, for t ∈ N and for any natural d,
1 ≤ d ≤ t, the considered statement hold. Assume now that d = t + 1, G is a d-complete
tree over U, z is a problem over U such that F(G) ⊆ F(z), and Γ is a decision tree over z
with the minimum depth, which solves the problem z and uses only hypotheses. Let f be
the attribute attached to the root of the tree G and H be the hypothesis attached to the root
of the decision tree Γ. Then, there is an edge that leaves the root of Γ and is labeled with the
equation system { f (x) = δ} where the equation f (x) = ¬δ belongs to the hypothesis H.
This edge enters to the root of the subtree of Γ, which is denoted by Γ f . There is an edge
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that leaves the root of G and is labeled with the equation system { f (x) = δ}. This edge
enters the root of the subtree of G, which is denoted by Gδ. One can show that the decision
tree Γ f solves the problem z relative to the information system U′ = (A( f , δ), F) and Gδ is
a t-complete tree over U′. It is clear that F(Gδ) ⊆ F(z). Using the inductive hypothesis, we
obtain h(Γ f ) ≥ t. Therefore, h(Γ) ≥ t + 1 = d and h(2)U (z) ≥ d.

(b) We now prove the inequality h(3)U (z) ≥ d
log2(2d) . Let z = ( f1, . . . , fn) and Γ be a deci-

sion tree over z with the minimum depth, which solves the problem z and uses both attributes
and hypotheses. The d-complete tree G has 2d complete paths ξ1, . . . , ξ2d . For i = 1, . . . , 2d,
we denote by ai a solution of the equation system S(ξi). Denote B = {a1, . . . , a2d}. We now
show that the decision tree Γ contains a complete path, the length of which is at least d

log2(2d) .
We describe the process of this path construction beginning with the root of Γ.

Let the root of Γ be labeled with an attribute fi0 . For δ ∈ {0, 1}, we denote by Bδ

the set of solutions on B of the equation system { fi0(x) = δ} and choose σ ∈ {0, 1} for

which |Bσ| = max{|B0|, |B1|}. It is clear that |Bσ| ≥ |B|2 ≥
|B|
2d . In the considered case, the

beginning of the constructed path in Γ is the root of Γ, the edge that leaves the root and is
labeled with the equation system { fi0(x) = σ}, and the node to which this edge enters.

Let as assume now that the root of Γ is labeled with a hypothesis H = { f1(x) =
δ1, . . . , fn(x) = δn}. We denote by ξH the complete path in G for which the system of
equations S(ξH) is a subsystem of H. Let the nonterminal nodes of the complete path ξH be
labeled with the attributes fi1 , . . . , fid . For j = 1, . . . , d, we denote by Bj the set of solutions
on B of the equation system { fij(x) = ¬δij}. It is clear that |B1| + · · · + |Bd| ≥ |B| − 1.

Therefore, there exists l ∈ {1, . . . , d} such that |Bl | ≥
|B|−1

d ≥ |B|
2d . In the considered case,

the beginning of the constructed path in Γ is the root of Γ, the edge that leaves the root and
is labeled with the equation system { fil (x) = ¬δil}, and the node to which this edge enters.

We continue the construction of the complete path in Γ in the same way such that
after the tth query, we have at least |B|

(2d)t elements from B. The process of path construction

continues at least until |B|
(2d)t ≤ 1, i.e., at least until log2 |B| ≤ t log2(2d). Since |B| = 2d, we

have h(Γ) ≥ t ≥ d
log2(2d) and h(3)U (z) ≥ d

log2(2d) .

Lemma 2. Let U = (A, F) be a binary information system, k ∈ N ∪ {0}, and U not be an
m-information system for m = 0, . . . , k. Then, there exists a (k + 1)-complete tree over U.

Proof. We prove the considered statement by induction on k. Let k = 0. In this case, U is
not a 0-information system. Then, there exists an attribute f ∈ F, which is not constant on
A. Using this attribute, it is easy to construct a 1-complete tree over U.

Let the considered statement hold for some k, k ≥ 0. We now show that it also holds
for k + 1. Let U = (A, F) be a binary information system, which is not an m-information
system for m = 1, . . . , k + 1. Then, there exists an attribute f ∈ F such that, for any
δ ∈ {0, 1}, the information system Uδ = (A( f , δ), F) is not an m-information system for
m = 1, . . . , k. Using the inductive hypothesis, we conclude that, for any δ ∈ {0, 1}, there
exists a (k + 1)-complete tree Gδ over Uδ. Denote by G a directed tree with root in which
the root is labeled with the attribute f , and for any δ ∈ {0, 1}, there is an edge that leaves
the root, is labeled with the equation system { f (x) = δ}, and enters the root of the tree Gδ.
One can show that the tree G is a (k + 2)-complete tree over U.

Proof of Theorem 2. It is clear that h(3)U (z) ≤ h(2)U (z) for any problem z over U. Therefore,

h(3)U (n) ≤ h(2)U (n) for any n ∈ N.
(a) Let k ∈ N∪{0}. We now show by induction on k that, for each binary k-information

system U (not necessarily infinite) for each problem z over U, the inequality h(2)U (z) ≤ k
holds. Let U = (A, F) be a binary 0-information system and z be a problem over U. Since
all attributes from F(z) are constant on A, the set ∆U(z) contains only one tuple. Therefore,
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the decision tree containing only one node labeled with this tuple solves the problem z
relative to U, and h(2)U (z) = 0.

Let k ∈ N ∪ {0} and, for each m, 0 ≤ m ≤ k, the considered statement hold. Let us
show that it holds for k + 1. Let U = (A, F) be a binary (k + 1)-information system and
z = ( f1, . . . , fn) be a problem over U. For i = 1, . . . , n, choose a number δi ∈ {0, 1} such
that the information system (A( fi,¬δi), F) is an mi-information system where 1 ≤ mi ≤ k.
Using the inductive hypothesis, we conclude that, for i = 1, . . . , n, there is a decision tree
Γi over z, which uses only hypotheses, solves the problem z over (A( fi,¬δi), F), and has
depth at most mi. We denote by Γ a decision tree in which the root is labeled with the
hypothesis H = { f1(x) = δ1, . . . , fn(x) = δn}, the edge leaving the root and labeled with
H enters the terminal node labeled with the tuple (δ1, . . . , δn), and for i = 1, . . . , n, the edge
leaving the root and labeled with { fi(x) = ¬δi} enters the root of the tree Γi. One can show
that Γ solves the problem z relative to U and h(Γ) ≤ k + 1. Therefore, h(2)U (z) ≤ k + 1 for
any problem z over U.

Let U ∈ C. Then, U is a k-information system for some natural k, and for each problem
z over U, we have h(3)U (z) ≤ h(2)U (z) ≤ k. Therefore, h(2)U (n) = O(1) and h(3)U (n) = O(1).

(b) Let U = (A, F) ∈ D \C. First, we show that h(2)U (n) = O(log n). Let z = ( f1, . . . , fn)

be an arbitrary problem over U. From Lemma 5.1 [16], it follows that |∆U(z)| ≤ (4n)I(U).
The proof of this lemma is based on results similar to the ones obtained by Sauer [20] and
Shelah [21]. We consider a decision tree Γ over z, which solves z relative to U and uses
only hypotheses. This tree is constructed by the halving algorithm [1,12]. We describe the
work of this tree for an arbitrary element a from A. Set ∆ = ∆U(z). If |∆| = 1, then the
only n-tuple from ∆ is the solution z(a) of the problem z for the element a. Let |∆| ≥ 2.
For i = 1, . . . , m, we denote by δi a number from {0, 1} such that |∆( fi, δi)| ≥ |∆( fi,¬δi)|.
The root of Γ is labeled with the hypothesis H = { f1(x) = δ1, . . . , fn(x) = δn}. After
this query, either the problem z is solved (if the answer is H) or we halve the number
of objects in the set ∆ (if the answer is a counterexample { fi(x) = ¬δi}). In the latter
case, set ∆ = ∆U(z)( fi,¬δi). The decision tree Γ continues to work with the element a
and the set of n-tuples ∆ in the same way. Let, during the work with the element a, the
considered decision tree make q queries. After the (q− 1)th query, the number of remaining
n-tuples in the set ∆ is at least two and at most (4n)I(U)/2q−1. Therefore, 2q ≤ (4n)I(U)

and q ≤ I(U) log2(4n). Therefore, during the processing of the element a, the decision
tree Γ makes at most I(U) log2(4n) queries. Since a is an arbitrary element from A, the
depth of Γ is at most I(U) log2(4n). Since z is an arbitrary problem over U, we obtain

h(2)U (n) = O(log n). Therefore, h(3)U (n) = O(log n).
Using Lemma 2 and the relation U /∈ C, we obtain that, for any d ∈ N, there exists

d-complete tree Gd over U. Let F(Gd) = { f1, . . . , fnd}. We know that nd ≤ 2d. Denote

zd = ( f1, . . . , fnd). From Lemma 1, it follows that h(2)U (zd) ≥ d and h(3)U (zd) ≥ d
log2(2d) .

As a result, we have h(2)U (2d) ≥ d and h(3)U (2d) ≥ d
log2(2d) . Let n ∈ N and n ≥ 8. Then,

there exists d ∈ N such that 2d ≤ n < 2d+1. We have d > log2 n− 1, h(2)U (n) ≥ log2 n− 1,

h(2)U (n) = Ω(log n), and h(2)U (n) = Θ(log n). It is easy to show that the function x
log2(2x) is

nondecreasing for x ≥ 2. Therefore, h(3)U (n) ≥ log2 n−1
log2(2(log2 n−1)) and h(3)U (n) = Ω(

log n
log log n ).

(c) Let U = (A, F) /∈ D. We now consider an arbitrary problem z = ( f1, . . . , fn) over
U and a decision tree over z, which uses only hypotheses and solves the problem z over U
in the following way. For a given element a ∈ A, the first query is about the hypothesis
H1 = { f1(x) = 1, . . . , fn(x) = 1}. If the answer is H1, then the problem z is solved for the
element a. If, for some i ∈ {1, . . . , n}, the answer is { fi(x) = 0}, then the second query is
about the hypothesis H2 obtained from H1 by replacing the equality fi(x) = 1 with the
equality fi(x) = 0, etc. It is clear that after at most n queries, the problem z for the element
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a will be solved. Thus, h(2)U (z) ≤ n and h(3)U (z) ≤ n. Since z is an arbitrary problem over U,

we have h(2)U (n) ≤ n and h(3)U (n) ≤ n for any n ∈ N.
Let n ∈ N. Since U /∈ D, there exist attributes f1, . . . , fn ∈ F such that, for any

(δ1, . . . , δn) ∈ {0, 1}n, the equation system { f1(x) = δ1, . . . , fn(x) = δn} is consistent on
A. We now consider the problem z = ( f1, . . . , fn) and an arbitrary decision tree Γ over z,
which solves the problem z over U and uses both attributes and hypotheses. Let us show
that h(Γ) ≥ n. If n = 1, then the considered inequality holds since |∆U(z)| ≥ 2. Let n ≥ 2.
It is easy to show that an equation system over z is inconsistent if and only if it contains
equations fi(x) = 0 and fi(x) = 1 for some i ∈ {1, . . . , n}. For each node v of the decision
tree Γ, we denote by Sv the union of systems of equations attached to edges in the path
from the root of Γ to v. A node v of Γ will be called consistent if the equation system Sv
is consistent.

We now construct a complete path ξ in the decision tree Γ, for which the nodes are
consistent. We start from the root that is a consistent node. Let the path reach a consistent
node v of Γ. If v is a terminal node, then the path ξ is constructed. Let v be a working
node labeled with an attribute fi ∈ F(z). Then, there exists δ ∈ {0, 1} for which the system
of equations Sv ∪ { fi(x) = δ} is consistent. Then, the path ξ will pass through the edge
leaving v and labeled with the system of equations { fi(x) = δ}. Let v be labeled with a
hypothesis H = { f1(x) = δ1, . . . , fn(x) = δn}. If there exists i ∈ {1, . . . , n} such that the
system of equations Sv ∪ { fi(x) = ¬δ} is consistent, then the path ξ will pass through
the edge leaving v and labeled with the system of equations { fi(x) = ¬δ}. Otherwise,
Sv = H, and the path ξ will pass through the edge leaving v and labeled with the system of
equations H.

Let all edges in the path ξ be labeled with systems of equations containing one equation
each. Since all nodes of ξ are consistent, the equation system S(ξ) is consistent. We now
show that S(ξ) contains at least n equations. Let us assume that this system contains
less than n equations. Then, the set ∆U(z)π(ξ) contains more than one n-tuple, which is
impossible. Therefore, the length of the path ξ is at least n. Let there be edges in ξ, which
are labeled with hypotheses, and the first edge in ξ labeled with a hypothesis H leaves the
node v. Then, Sv = H, and the length of ξ is at least n. Therefore, h(Γ) ≥ n, h(3)U (z) ≥ n,

and h(2)U (z) ≥ n. As a result, we obtain h(3)U (n) ≥ n and h(2)U (n) ≥ n. Thus, h(2)U (n) = n and

h(3)U (n) = n for any n ∈ N.

5. Proof of Theorem 3

First, we prove several auxiliary statements.

Proposition 1. R ⊆ D.

Proof. Let U ∈ R. By Theorem 1, h(1)U (n) = Θ(log n). Let us assume that U /∈ D. Then, for
any n ∈ N, there exists a problem z = ( f1, . . . , fn) over U such that |∆U(z)| = 2n. Let Γ be
a decision tree over z, which solves the problem z relative to U and uses only attributes.
Then, Γ should have at least 2n terminal nodes. One can show that the number of terminal
nodes in the tree Γ is at most 2h(Γ). Then, 2n ≤ 2h(Γ), h(Γ) ≥ n, and hU(z) ≥ n. Therefore,
h(1)U (n) ≥ n for any n ∈ N, which is impossible. Thus,R ⊆ D.

Proposition 2. C ⊆ D.

Proof. Let U ∈ C. By Theorem 2, h(2)U (n) = O(1). Let us assume that U /∈ D. Then, by

Theorem 2, h(2)U (n) = n for any n ∈ N, which is impossible. Therefore, C ⊆ D.

Proposition 3. R∩ C = ∅.
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Proof. Assume the contrary: R ∩ C 6= ∅ and U = (A, F) ∈ R ∩ C. Let r, k ∈ N, U be
an r-reduced information system and U be a k-information system. We now consider an
arbitrary problem z = ( f1, . . . , fn) over U and describe a decision tree Γ over z, which uses
only attributes, solves the problem z over U, and has depth at most kr.

For i = 1, . . . , n, let δi be a number from {0, 1} such that (A( fi,¬δi), F) is an mi-
information system with 0 ≤ mi < k. Let t be the maximum number from the set {1, . . . , n}
such that the system of equations S = { f1(x) = δ1, . . . , ft(x) = δt} is consistent. Then,
there exists a subsystem { fi1(x) = δi1 , . . . , fip(x) = δip} of the system S, which has the same
set of solutions as S and for which p ≤ r. For a given a ∈ A, the decision tree Γ computes
sequentially values fi1(a), . . . , fip(a).

If, for some q ∈ {1, . . . , p}, fi1(a) = δi1 , . . . , fiq−1(a) = δiq−1 , and fiq(a) = ¬δiq , then
the decision tree Γ continues to work with the problem z and the information system
U′ = (A′, F) where A′ is the set of solutions on A of the equation system { fi1(x) =
δi1 , . . . , fiq−1(x) = δiq−1 , fiq(x) = ¬δiq}. We have that U′ is an l′-information system for
some l′ ≤ miq < k.

Let fi1(a) = δi1 , . . . , fip(a) = δip . If t = n, then (δ1, . . . , δn) is the solution of the
problem z for the considered element a. Let t < n. Then, the decision tree Γ continues
to work with the problem z and the information system U′′ = (A′′, F) where A′′ is the
set of solutions on A of the equation system { fi1(x) = δi1 , . . . , fip(x) = δip}. We know
that the equation system { f1(x) = δ1, . . . , ft(x) = δt, ft+1(x) = δt+1} is inconsistent.
Therefore, the system { fi1(x) = δi1 , . . . , fip(x) = δip , ft+1(x) = δt+1} is inconsistent. Hence,
A′′ ⊆ A( ft+1,¬δt+1) and U′′ is an l′′-information system for some l′′ ≤ mt+1 < k.

As a result, after the computation of the values of at most r attributes, we either solve
the problem z or reduce the consideration of the problem z over the k-information system
U to the consideration of the problem z over some l-information system where l < k.
After the computation of the values of at most rk attributes, we solve the problem z since
each problem over the 0-information system has exactly one possible solution. Therefore,
h(1)U (z) ≤ rk and h(1)U (n) = O(1). By Theorem 1, h(1)U (n) = Θ(log n). The obtained
contradiction shows thatR∩ C = ∅.

Proposition 4. For any infinite binary information system, its indicator vector coincides with one
of the rows of Table 1.

Proof. Table 3 contains as rows all three-tuples from the set {0, 1}3. We now show that
the rows with the numbers 5–8 cannot be indicator vectors of infinite binary information
systems. Assume the contrary: there is i ∈ {5, 6, 7, 8} such that the row with the number
i is the indicator vector of an infinite binary information system U. If i = 5, then U ∈ R
and U /∈ D, but this is impossible, since, by Proposition 1, R ⊆ D. If i = 6, then U ∈ C
and U /∈ D, but this is impossible, since, by Proposition 2, C ⊆ D. If i = 7, then U ∈ R
and U /∈ D, but this is impossible, since, by Proposition 1, R ⊆ D. If i = 8, then U ∈ R
and U ∈ C, but this is impossible, since, by Proposition 3, R∩ C = ∅. Therefore, for any
infinite binary information system, its indicator vector coincides with one of the rows of
Table 3 with Numbers 1–4. Thus, it coincides with one of the rows of Table 1.

Table 3. All 3-tuples from the set {0, 1}3.

R D C

1 0 0 0
2 0 1 0
3 0 1 1
4 1 1 0
5 1 0 0
6 0 0 1
7 1 0 1
8 1 1 1
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Define an infinite binary information system U1 = (A1, F1) as follows: A1 = N and F1
is the set of all functions from N to {0, 1}.

Lemma 3. The information system U1 belongs to the class V1.

Proof. It is easy to show that the information system U1 has an infinite I-dimension.
Therefore, U1 /∈ D. Using Proposition 4, we obtain ind(U) = (0, 0, 0), i.e., U1 ∈ V1.

For any i ∈ N, we define two functions pi : N→ {0, 1} and li : N→ {0, 1}. Let j ∈ N.
Then, pi(j) = 1 if and only if j = i and li(j) = 1 if and only if j > i.

Define an infinite binary information system U2 = (A2, F2) as follows: A2 = N and
F2 = {pi : i ∈ N} ∪ {li : i ∈ N}.

Lemma 4. The information system U2 belongs to the class V2.

Proof. For n ∈ N, denote Sn = {p1(x) = 0, . . . , pn(x) = 0}. One can show that the
equation system Sn is consistent and each proper subsystem of Sn has a set of solutions
different from the set of solutions of Sn. Therefore, U2 /∈ R. Using attributes from the
set {li : i ∈ N}, we can construct a d-complete tree over U2 for each d ∈ N. By Lemma 1
and Theorem 2, U2 /∈ C. One can show that I(U2) = 1. Therefore, U2 ∈ D. Thus,
ind(U2) = (0, 1, 0), i.e., U2 ∈ V2.

Define an infinite binary information system U3 = (A3, F3) as follows: A3 = N and
F3 = {pi : i ∈ N}.

Lemma 5. The information system U3 belongs to the class V3.

Proof. It is easy to show that U3 is a 1-information system. Therefore, U3 ∈ C. Using
Proposition 4, we obtain ind(U3) = (0, 1, 1), i.e., U3 ∈ V3.

Define an infinite binary information system U4 = (A4, F4) as follows: A4 = N and
F4 = {li : i ∈ N}.

Lemma 6. The information system U4 belongs to the class V4.

Proof. Let us consider an arbitrary consistent system of equations S over U4. We now
show that there is a subsystem of S, which has at most two equations and the same set of
solutions as S. Let S contain both equations of the kind li(x) = 1 and lj(x) = 0. Denote
i0 = max{i : li(x) = 1 ∈ S} and j0 = min{j : lj(x) = 0 ∈ S}. One can show that the
system of equations S′ = {li0(x) = 1, lj0(x) = 0} has the same set of solutions as S. The
case when S contains for some δ ∈ {0, 1} only equations of the kind lp(x) = δ can be
considered in a similar way. In this case, the equation system S′ contains only one equation.
Therefore, the information system U4 is 2-reduced and U4 ∈ R. Using Proposition 4, we
obtain ind(U4) = (1, 1, 0), i.e., U4 ∈ V4.

Proof of Theorem 3. From Proposition 4, it follows that, for any infinite binary information
system, its indicator vector coincides with one of the rows of Table 1. Using Lemmas 3–6,
we conclude that each row of Table 1 is the indicator vector of some infinite binary informa-
tion system.

6. Conclusions

Based on the results of exact learning, test theory, and rough set theory, for an arbitrary
infinite binary information system, we studied three functions of the Shannon type, which
characterize the dependence in the worst case of the minimum depth of a decision tree
solving a problem on the number of attributes in the problem description. These three
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functions correspond to (i) decision trees using attributes, (ii) decision trees using hypothe-
ses, and (iii) decision trees using both attributes and hypotheses. We described possible
types of behavior for each of these three functions. We also studied the join behavior
of these functions and distinguished four corresponding complexity classes of infinite
binary information systems. In the future, we plan to translate the obtained results into the
language of exact learning.

The problems studied in this paper allow us to confine ourselves to considering only
the crisp (conventional) sets that are completely defined by attributes. However, in the
future, when we investigate approximately defined problems or approximate decision trees,
it will be necessary to work with rough sets given by their lower and upper approximations.
This will require a wider range of rough set theory techniques than those used in the
present paper.
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