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Abstract: Continuous-variable measure-device-independent quantum key distribution (CV-MDI
QKD) is proposed to remove all imperfections originating from detection. However, there are still
some inevitable imperfections in a practical CV-MDI QKD system. For example, there is a fluctuating
channel transmittance in the complex communication environments. Here we investigate the security
of the system under the effects of the fluctuating channel transmittance, where the transmittance is
regarded as a fixed value related to communication distance in theory. We first discuss the parameter
estimation in fluctuating channel transmittance based on these establishing of channel models, which
has an obvious deviation compared with the estimated parameters in the ideal case. Then, we show
the evaluated results when the channel transmittance respectively obeys the two-point distribution
and the uniform distribution. In particular, the two distributions can be easily realized under the
manipulation of eavesdroppers. Finally, we analyze the secret key rate of the system when the channel
transmittance obeys the above distributions. The simulation analysis indicates that a slight fluctuation
of the channel transmittance may seriously reduce the performance of the system, especially in the
extreme asymmetric case. Furthermore, the communication between Alice, Bob and Charlie may
be immediately interrupted. Therefore, eavesdroppers can manipulate the channel transmittance
to complete a denial-of-service attack in a practical CV-MDI QKD system. To resist this attack, the
Gaussian post-selection method can be exploited to calibrate the parameter estimation to reduce the
deterioration of performance of the system.

Keywords: continuous-variable; quantum key distribution; measure-device-independent; fluctuating
channel transmittance; security analysis

1. Introduction

Quantum key distribution (QKD) offers an unconditionally secure communication
scheme to establish secret keys between the sender Alice and the receiver Bob through an
insecure quantum channel in the presence of potential eavesdropper Eve, where the two
remote partners are authenticated [1–5]. The security of the scheme is guaranteed by the
basic laws of quantum mechanics [6–8]. At present, there are two kinds of QKD protocols:
discrete-variable quantum key distribution (DVQKD) and continuous-variable quantum
key distribution (CVQKD). In particular, CVQKD scheme based on the Gaussian-modulated
coherent states (GMCS) can be well compatible with the classical optical communication
systems, which has been fully proven to be secure against general attacks (e.g., the collective
and coherent attacks) based on some ideal assumptions [8–12]. It has been experimentally
implemented by many research groups in laboratories and in field environments [13–18]. In
addition, the system has also been optimized by researchers from different aspects [19–25].
However, practical security problems seriously hinder the commercial development of
CVQKD, where this obstacle is caused by the security loopholes opened by the gaps
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between the theoretical model and the practical system because the behavior of real devices
typically deviates from that considered in the security proofs [26,27]. This problem also
limits the application of DVQKD, which has been investigated by many researchers [28–30].

In a practical CVQKD system, Eve can exploit the above imperfections to successfully
obtain secret key information without being detected, which is an effective quantum hack-
ing strategy. For example, Eve can control the transmitted local oscillator (LO) to perform
the LO fluctuation attack [31], LO calibration attack [32], and wavelength attack [33,34]. In
addition, the imperfect linearity of homodyne detector can be exploited by Eve to launch
saturation attack [35] and homodyne detector blinding attack [36]. Apart from this, laser
damage attack against optical attenuator and laser seeding attack in light source have
been proposed [37–42]. The security loopholes involved by these attacks can be closed
by the corresponding countermeasures, which makes the system complicated. Moreover,
there are some unknown attacks in practical CVQKD systems, which cannot be effectively
resisted by the above schemes. Therefore, the researchers propose the continuous-variable
measure-device-independent quantum key distribution (CV-MDI QKD) protocol to close
all loopholes opened by imperfect detection [43–53]. In CV-MDI QKD, the measurement
is performed by an untrusted third party, which is immune to all quantum hacking on
detection. The research of CV-MDI QKD can promote the application of CVQKD.

According to the framework of CV-MDI QKD, the source and channel become the final
battlefield between the authorized communication parties and Eve. Recently, the imperfec-
tions on source in practical CV-MDI QKD systems have been gradually researched [54–56].
In particular, the channel transmittance in theoretical model is considered to be a fixed
value, which can be acquired based on the communication distance. However, practical
communication environments are complex, which may result in the time-varying transmit-
tance. In this work, we investigate the effects of the fluctuating channel transmittance for
the security of practical CV-MDI QKD systems. Specifically, CV-MDI QKD in fluctuating
channel transmittance is first described. Based on the model, we then show the difference of
parameter estimation between this case and the stable channel case. To clearly quantify this
difference, we discuss the specific parameter estimation when the channel transmittance
respectively obeys the two-point distribution and the uniform distribution. Here, Eve can
easily manipulate the channel to make the transmittance obey the above distributions. Sub-
sequently, we analyze the secret key rate of the system based on the estimated parameter in
different channel distributions. We observe that the fluctuating channel transmittance make
the performance of the system deteriorated obviously, which may make communication
interrupted. This impact is even greater in the extreme asymmetric case. These analyses
indicate that the channel transmittance can be easily manipulated by Eve to launch a denial-
service attack in a practical CV-MDI QKD system, which is different from the quantum
hacking attack originating from security loopholes. Finally, the Gaussian post-selection
technology can be exploited to calibrate the estimated parameters to prevent this attack.

The paper is organized as follows. In Section 2, parameter estimation in complex
communication environments is shown for a practical CV-MDI QKD system, where these
two theoretical channel models are established. Then, based on these models, we analyze
the security of the system in the fluctuating channel transmittance when the channel
transmittance respectively obeys the two-point distribution and the uniform distribution in
Section 3. Finally, conclusions are presented in Section 4.

2. Channel Models and Parameter Estimation in Complex
Communication Environments

Figure 1 shows the entanglement-based (EB) model of a GMCS CV-MDI-QKD protocol,
which is fully equivalent to the standard prepare and measure (PM) model [45,46]. It is
important to note that this equivalence is the core of security proofs for GMCS CVQKD
protocols. In the EB model, one two-mode squeezed state with variance VA + 1(VB + 1) is
first prepared by Alice (Bob), where the mode A1(B1) is measured by a heterodyne detector
and the other mode A2(B2) is sent to an unauthenticated third party, Charlie, through the
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quantum channel. The channel distance between Alice (Bob) and Charlie is LAC(LBC), and
the total transmission distance LAB should be LAC + LBC. Subsequently, Charlie interferes
the received modes A′ and B′ at a beam splitter (BS) and obtains two output modes C and D.
Then, two homodyne detectors are exploited by Charlie to measure the quadrature variable
xC of mode C and quadrature variable pD of mode D, and the detection results xC, pD are
immediately announced through a public channel. Finally, the mode B1 is modified to B′1
by Bob through displacement operation D(β). Here β = gm(xC + ipD), and gm indicates
the gain of the displacement operation. It is believed that the mode A1 and B′1 become
entangled after through these above steps. Therefore, Alice and Bob will share a group
correlated vectors X = {(xA,i, xB,i)|i = 1, 2, ..., N} or P = {(pA,i, pB,i)|i = 1, 2, ..., N}. These
data can be used to estimate the channel transmittance TAC(TBC) and the excess noise
εAC(εBC). In addition, key reconciliation and privacy amplification are exploited to further
guarantee the security of the system.

P
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Figure 1. EB model of a practical GMCS CV-MDI-QKD system running in complex environments.
Here, channel transmittance TAC and TBC are modeled to obey a certain distribution, which may be
easily controlled by Eve.

According to the above analysis, there are two quantum channels in a practical CV-
MDI-QKD system, i.e., CAC and CBC, which are assumed to be a normal linear model with
the following relations:

xA′ = tACxA + zAC,

pA′ = tAC pA + zAC,

xB′ = tBCxB + zBC,

pB′ = tBC pB + zBC,

(1)

where xA(pA), xA′(pA′), xB(pB) and xB′(pB′) represent the corresponding quadrature vari-
ables of the mode A2, A′, B2 and B′, tAC =

√
TAC, tBC =

√
TBC, zAC and zBC indicate

the total noises in the aforementioned quantum channels. Here, zAC and zBC respec-
tively obey two centered normal distributions with variance σ2

AC = TACξAC + N0 and
σ2

BC = TBCξBC + N0, where ξAC = εAC N0, ξBC = εBC N0, and N0 is the shot-noise variance.
Therefore, tAC and σ2

AC can be calculated as

tAC =
E(xAxA′)

E(x2
A)

,

σ2
AC = E[(xA′ − tACxA)

2].
(2)

It is no doubt that tAC and σ2
AC can also be acquired using pA and pA′ . In addition,

tBC and σ2
BC can be similarly calculated. In the following analysis, we only discuss the
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relevant calculation about channel CAC. Based on the Eqs. (1) and (2), TAC and εAC can be
expressed by

TAC = t2
AC = [

E(xAxA′)

E(x2
A)

]2,

εAC =
σ2

AC − N0

N0t2
AC

=
E[(xA′ − tACxA)

2]− N0

N0TAC
.

(3)

In security proofs, the channel transmittance is assumed to be stable. Therefore,
it is reasonably regarded as a fixed value related to transmission distance. However,
practical communication environments are complex, which may result in a time-varying
transmittance. In particular, the potential Eve may control the channel transmittance. To
analyze the effects of the deviation, based on the phase space, xA and x′A can be written as

xA = |αA| cos θA,

xA′ =
√

TAC{|αA| cos(θA + ∆ϕ) + xεAC}+ xN0 ,
(4)

where |αA| is the amplitude of the coherent states prepared by Alice, θA is the phase of
these states, ∆ϕ is the phase shift caused by complex channel environments. In particular,
xεAC and xN0 are the additional values of quadratures variable xA, which are caused by the
channel excess noise εAC and shot-noise N0, respectively. We can further obtain

E(xAxA′) = E(
√

TAC|αA|2 cos2 θA) = E(
√

TAC)VxA ,

E(x2
A) = E(|αA|2 cos2 θA) = VxA ,

E(x2
A′) = VxA E(TAC) + ξACE(TAC) + N0,

(5)

where VxA = VAN0, VA is the modulation variance at Alice’s side. It is important to note
that TAC, |αA| cos θA, N0 and ξAC are totally independent. In addition, it is reasonable that
∆ϕ is approximated to zero in the above analyses, because the phase noise can be extremely
constrained by the high-precision phase compensation technique. Eventually, based on
Equations (3) and (5), the estimated channel parameters T̂AC and ε̂AC in fluctuating channel
transmittance should satisfy

T̂AC = [
E(xAxA′)

E(x2
A)

]2 = [E(
√

TAC)]
2,

ε̂AC =
VAE(TAC) + εACE(TAC)−VA[E(

√
TAC)]

2

[E(
√

TAC)]2
.

(6)

Similarly, the estimated channel parameters T̂BC and ε̂BC in fluctuating channel trans-
mittance also obey the above relations. There are some clear deviations between the
estimated channel parameters in fluctuating channel transmittance and ideal values, which
is closely related to the distribution of the fluctuating channel transmittance. Therefore,
we need to quantify the distribution to analyze the effects of the fluctuating channel trans-
mittance. However, the channel transmittance may irregularly change, which cannot be
described using a specific formula. In particular, Eve may actively control the channel to
disturb the transmittance. According to Ref. [57], the channel transmittance may be easily
manipulated by Eve to obey the two-point distribution or the uniform distribution. Then,
we discuss the estimated channel parameters when the channel transmittance obeys the
two distributions.

Figure 2 describes the probability density function when the channel transmittance
obeys the two-point distribution, where the channel transmittance can vary between 0 and
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T0 under the control of Eve. Therefore, TAC/T0 ∼ (1, P), where T0 = 10−0.02LAC represents
the ideal channel transmittance and LAC is the transmission distance between Alice and
Charlie. Correspondingly, we can obtain E(TAC) = PT0, E(

√
TAC) = P

√
T0. Eventually,

based on Equation (6), the channel parameters can be evaluated as

T̂AC,1 = P2T0, ε̂AC,1 =
1
P

VA −VA +
1
P

εAC, (7)

where P is the probability when the channel transmittance TAC equals to T0, εAC is the true
channel excess noise, the number 1 indicates the two-point distribution. It is no doubt that
the estimated channel parameters T̂BC,1 and ε̂BC,1 also satisfy Equation (7).

T0

P(T)

T0

P

Figure 2. The probability density function of the channel transmittance when it obeys the two-point
distribution, where T represents TAC or TBC.

Figure 3 shows the probability density function of the channel transmittance when
it obeys the uniform distribution. Here, TAC is a uniform distributed random number
between gT0(0 < g < 1) and T0, i.e., TAC ∼ U(gT0, T0), where T0 also represents the ideal
channel transmittance. Therefore, E(TAC) and E(

√
TAC) can be calculated as

E(TAC) =
∫ T0

gT0

1
T0 − gT0

TACdTAC

=
(1 + g)T0

2
,

E(
√

TAC) =
∫ T0

gT0

1
T0 − gT0

√
TACdTAC

=
2(1− g

3
2 )
√

T0

3(1− g)
.

(8)

0 TT0gT0

1/(T0-gT0)

P(T)

Figure 3. The probability density function of the channel transmittance when it obeys the uniform
distribution, where T represents TAC or TBC.
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According to Equations (6) and (8), the estimated values of the channel parameters
can be expressed as

T̂AC,2 =
4(1− g

3
2 )2T0

9(1− g)2 ,

ε̂AC,2 =

(1− 9g + 16g
3
2 − 9g2 + g3)VA + 9(1− g− g2 + g3)εAC

8(1− g
3
2 )2

,

(9)

where εAC also represents the true excess noise, the number 2 indicates the uniform dis-
tribution. Similarly, T̂BC,2 and ε̂BC,2 also obey Equation (9). In the following analysis, the
two-point and uniform distributions are considered to be common channel distribution
models to investigate the effects of the fluctuating channel transmittance.

In addition, fiber dispersion and imperfect polarization compensation in a practical
system may affect the accuracy of measurement, which makes the estimated channel
parameters deviate from the practical values. Therefore, these imperfections can indirectly
lead to the fluctuation of the channel transmittance. Here, this variation may be not regular,
which is difficulty expressed by a mathematical formula. However, according to the above
analysis, Eve may actively control channel to disturb the communication environments.
She can easily manipulate the channel to make it obeys the above distributions. To facilitate
security analysis, the two-point distribution and the uniform distribution can be considered
to be common channel distribution models, which does not affect our conclusion.

3. Security Analysis

Secret key rate is a key parameter for the security and performance of a practical
CV-MDI-QKD system. Here, we focus on the secret key rate of the system under one-mode
collective Gaussian attack, where reverse reconciliation is performed by Bob. It is important
to note that the one-mode attack is not the optimal strategy. At present, the two-mode
attack has been proven to be optimal. To be specific, the correlated two-mode coherent
Gaussian attack are performed on two quantum channels, where the interactions of the
two channels are used by Eve. However, in practical CV-MDI-QKD systems, the above
correlation can become very weak when these channels come from different directions.
Therefore, to facilitate analysis, the quantum channels of CV-MDI-QKD can be reduced to
one-mode channel, where the one-mode attack can be efficiently performed. In particular,
this simplification does not affect the results of the analysis of this article.

According to Ref. [45],the CV-MDI-QKD protocols are equivalent to the one-way
CVQKD schemes using coherent states and heterodyne detection when the EPR states
prepared by Bob and the displacement operation are assumed to be untrusted, which
indicates that the calculation of the secret key rate of CV-MDI-QKD is the same with the
standard one-way GMCS CVQKD. In the following analysis, the heterodyne detection is
assumed to be perfect, and the finite-size effect is not considered. First, the Shannon mutual
information between Alice and Bob can be calculated as [45,46,48]

Ihet
AB = 2× 1

2
log2

Vhet
Bm

Vhet
Bm |Am

= log2
Tm(VA + 1 + χline,m) + 1

Tm(1 + χline,m) + 1
,

(10)
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where

Vhet
Am

= VA/2 + 1,

Vhet
Bm

= [Tm(VA + 1 + χline,m) + 1]/2,

Vhet
Bm |Am

= Vhet
Bm
− Tm[(VA + 1)2 − 1]

Vhet
Am

= [Tm(1 + χline,m) + 1]/2,

χline,m = 1/Tm − 1 + εm.

(11)

Then, the covariance matrix Γm
AB between Alice and Bob can be written as

Γm
AB =

[
aI bσZ

bσZ cI

]
, (12)

where

a = VA + 1,

b =

√
Tm[(VA + 1)2 − 1],

c = TmVA + 1 + Tmεm.

(13)

Here,

Tm =
TAC

2
k2,

εm =1 +
1

TAC
[2 + TBC(εBC − 2) + TAC(εBC − 1)]

+
1

TAC

(√
2

k

√
VB −

√
TBC

√
VB + 2

)2

.

(14)

In particular, k =
√

2VB
TBC(VB+2) is adopted to minimize εm. Based on this condition, we

can obtain

Tm =
TACVB

TBC(VB + 2)
,

εm =
TBC
TAC

(εBC − 2) + εAC +
2

TAC
.

(15)

In the following simulation analysis, these above channel parameters should be re-
placed by the estimated values in Equations (7) or (9). Then, the Holevo bound can be
calculated as

χBE = G(
λm,1 − 1

2
) + G(

λm,2 − 1
2

)− G(
λm,3 − 1

2
). (16)

Here,

λ2
m,1,2 =

1
2
(Am ±

√
A2

m − 4Bm),

λm,3 =
(Tmεm + 2)(VA + 1)− TmVA

Tm(εm + VA) + 2
,

(17)

where

Am =(VA + 1)2 − 2Tm(V2
A + 2VA) + (TmVA

+ Tmεm + 1)2,

Bm =[(Tmεm + 1)(VA + 1)− TmVA]
2.

(18)



Entropy 2022, 24, 127 8 of 13

Finally, the secret key rate of the system can be acquired as

Km = βIhet
AB − χBE. (19)

Based on Equations (7), (9)–(11) and (15)–(19), the secret key rate of a CV-MDI-QKD
system can be analyzed when the channel transmittance obeys the two-point distribution
or the uniform distribution.

Figure 4 describes the secret key rate versus transmission distance in the symmetric
case when the channel transmittance obeys the two-point distribution. Here, the fixed
parameters for the simulation are set as β = 0.95, VA = VB = 40, and εAC = εBC = 0.05.
The simulation results show that the fluctuating channel make the performance of the
system dramatically, where P = 1 represents the ideal case. It is important to note that
even though the secure transmission distance is limited compared with a standard one-way
CVQKD system, the demand of high-efficiency homodyne detection is removed.
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Figure 4. Secret key rate as a function of the transmission distance from Alice to Bob in the symmetric
case when the channel transmittance obeys the two-point distribution, where LAC = LBC. The fiber
loss is 0.2 dB/km.

Figure 5 reveals the secret key rate of the system as a function of the transmission
distance from Alice to Bob in the extreme asymmetric case when the channel transmittance
obeys the two-point distribution. The fixed parameters for simulation are the same as the
symmetric case. It is obvious that the performance of the system also deteriorate under
the effects of the fluctuating channel transmittance. In particular, the deterioration in the
extreme asymmetric case is even worse than the symmetric case.



Entropy 2022, 24, 127 9 of 13

0 5 10 15 20 25 30 35

Transmission Distance (km)

10-4

10-3

10-2

10-1

100

101

S
ec

re
t K

ey
 R

at
e 

(b
it/

pu
ls

e)

P=1
P=0.999
P=0.998

Figure 5. Secret key rate vs the transmission distance from Alice to Bob in the extreme asymmetric
case when the channel transmittance obeys the two-point distribution, where LBC = 0.

Figure 6 shows the secret key rate of the system versus transmission distance in the
symmetric case when the channel transmittance obeys the uniform distribution, where
g reflects the degree of channel jitter. Here, the fixed simulation parameters remain un-
changed. We observe that the deterioration of the performance of the system increases with
the degree of channel jitter.

Figure 7 depicts the secret key rate of the system as a function of the transmission
distance from Alice to Bob in the extreme asymmetric case when the channel transmittance
obeys the uniform distribution. The fixed parameters for simulation analysis also remain
unchanged. It is clear that the dynamic trend of the performance of the system is consistent
with the results shown in Figure 5.

These above simulation analyses indicate that the fluctuating channel transmittance
may introduce an extra excess noise that can seriously deteriorate the performance of the
practical CV-MDI-QKD systems. Correspondingly, the communication service between
Alice, Bob and Charlie may be interrupted. Therefore, in a practical CV-MDI QKD systems,
the potential Eve can launch a denial-service attack by manipulating the channel transmit-
tance. To resist this attack, the Gaussian post-selection technology can be used to effectively
improve the performance of the system. Specifically, Charlie first judge whether the xA′ and
xB′ meet the Gaussian distribution. If the channel transmittance is manipulated, the normal
linear model of the channel is destroyed. Therefore, Charlie can then extract a set of (almost)
Gaussian-distributed data among the raw measurement data to calibrate the estimated
values of these channel parameters to improve the performance of the system [35,57]. For
example, if the channel transmittance obeys the two-point distribution, Charlie can first
filter out the data when the transmittance is zero, and then complete parameter estima-
tion. If the channel transmittance obeys the uniform distribution, Charlie can extract a set
of Gaussian-distributed data when the transmittance is the low bound gT0 to complete
parameter estimation [57].
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Figure 6. Secret key rate as a function of the transmission distance from Alice to Bob in the symmetric
case when the channel transmittance obeys the uniform distribution, where LAC = LBC.
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Figure 7. Secret key rate vs the transmission distance from Alice to Bob in the extreme asymmetric
case when the channel transmittance obeys the uniform distribution, where LBC = 0.
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4. Conclusions

We have investigated the security of a practical CV-MDI-QKD system under the effects
of the fluctuating channel transmittance caused by complex communication environments.
We first model the fluctuating channel transmittance based on the EB scheme, and revel
the deviation of parameter estimation between the fluctuating channel case and the ideal
case. Furthermore, we show the parameter estimation when the channel transmittance
respectively obey the two-point distribution and the uniform distribution. Based on the
estimated parameters, we analyze the practical performance of the system. We observe that
there is an obvious decline for the performance of the system under the impact of the fluc-
tuating channel transmittance, especially in the extreme asymmetric case. The simulation
results indicate that the fluctuating channel transmittance can produce an extra excess noise
to deteriorate the system performance, which may interrupt the communication service
between Alice, Bob and Charlie. This impact is more profound in the extreme asymmetric
case. Therefore, a denial-service attack can be launched by Eve through manipulating the
channel transmittance. To prevent this attack, the Gaussian post-selection technology is
exploited to improve the performance of the system.
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