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Abstract: We present a detailed analytical investigation of the optimal control of uniformly heated
granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed
to be bounded between two values that are close, which limits the possible values of the granular
temperature to a correspondingly small interval. Specifically, we are interested in minimising the
connection time between the non-equilibrium steady states (NESSs) for two different values of the
granular temperature by controlling the time dependence of the driving intensity. The closeness of the
initial and target NESSs make it possible to linearise the evolution equations and rigorously—from
a mathematical point of view—prove that the optimal controls are of bang-bang type, with only
one switching in the first Sonine approximation. We also look into the dependence of the optimal
connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear
regime are investigated.

Keywords: optimal control; granular fluids; linear response; Sonine approximation; bang-bang
controls

1. Introduction

The study of granular media, beyond its own theoretical interest, is particularly im-
portant for industrial applications such as improving their transport or storage. Granular
materials are discrete clusters of macroscopic particles that exhibit two fundamental fea-
tures. First, collisions between particles are inelastic, so that energy is not conserved: It
monotonically decreases with time if there is no external mechanism that injects energy
into the system. Second, thermal energy is many orders of magnitude lower than the char-
acteristic potential energy, making thermal fluctuations largely irrelevant for the behaviour
of granular systems [1].

In the simplest model for granular fluids, particles are d-dimensional smooth, hard
spheres of mass m that undergo inelastic binary collisions. In each collision, the tangential
component of the relative velocity is unchanged, whereas the normal component is reversed
and shrunk by a factor α, 0 ≤ α ≤ 1, which is termed the restitution coefficient. Energy is
only kinetic, and the energy dissipated in each collision is thus proportional to 1− α2—the
elastic limit corresponds to α = 1. In the undriven system, after a few collisions per
particle, the so-called homogeneous cooling state (HCS) is reached [2–7], in which the system
remains homogeneous and the granular temperature T—basically the average kinetic
temperature—monotonically decreases following an algebraic decay, the Haff law [2].

In order to allow the system to reach a stationary state, an energy injection mechanism
is needed. A simple but also relevant situation is the uniformly heated granular fluid [8,9]
that we consider throughout this work. Therein, independent white noise forces act on the
particles of the granular fluid, the intensity of which is characterised by a parameter χ ≥ 0
related to the variance of the stochastic force. The granular fluid reaches a non-equilibrium
steady state (NESS) in the long-time limit, in which the system remains homogeneous.
Therein, the energy injected by the stochastic thermostat balances—in average—the energy
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loss in collisions and the value of the granular temperature depends on the intensity of
the driving, whereas higher-order cumulants of the velocity are independent thereof. The
steady state is always stable, at variance with the HCS, which is known to be unstable for
perturbations of large enough wavelength [4,10,11] (On another note, velocity correlations
stemming from the dissipative character of collisions are relevant in certain physical
situations, e.g., for the understanding of the total energy fluctuations in the HCS [12,13]).
The uniformly heated granular gas has been extensively studied, both its properties at the
NESS [8,9,14,15] and its dynamical evolution [16–18].

Granular systems are intrinsically out-of-equilibrium systems. Their dissipative dy-
namics entail that their velocity distribution function (VDF) is non-Gaussian, even in the
long-time limit in which a hydrodynamic state, independent of the initial condition, is
reached. This is true for both the HCS in the undriven case and the NESS in the uniformly
heated situation. The non-Gaussianities of the VDF are essential to understand the be-
haviour of granular fluids and are incorporated to the picture by implementing a Sonine
expansion [3] of the Enskog–Fokker–Planck equation. This leads to an infinite hierarchy
of equations for the cumulants, which is typically closed by introducing the so-called first
Sonine approximation: Only the fourth cumulant or excess kurtosis a2 is retained—higher
order cumulants are neglected. Therein, the granular temperature and the excess kurtosis
obey a system of two coupled ordinary differential equations, the accuracy of which for
describing the dynamical evolution of the granular fluid has been validated in many works,
e.g., [8,9,15,17–21]. In this context, especially relevant are those analysing memory effects
such as the Kovacs hump or the Mpemba crossing, in which non-Gaussianities are key to
facilitate their emergence [18–21].

Only very recently has the possibility of controlling the dynamical evolution of granu-
lar systems been analysed [22]. This might be surprising at first sight, since the control of
physical systems has been considered for some time in different physical contexts, such as
quantum mechanics [23–26] and statistical mechanics [27–32]. A paradigmatic case of con-
trol of a mesoscopic system is that of an optically trapped colloidal particle [27,28,31,33–39].
When the confining potential is harmonic, the time dependence of the stiffness of the
trap κ(t) can be externally controlled, and one aims at optimising the connection between
two given equilibrium states, corresponding to different values of the stiffness of the
trap—i.e., the colloidal particle is being confined or deconfined. Here, optimising means
that some relevant physical observable (irreversible work, entropy production, connection
time, . . . ) is minimised. The time-dependent stiffness κ(t) plays the role of the control
function—sometimes together with the temperature of the bath, which can be changed in
an effective way by adding a random force [40,41]. The control problem is greatly simplified
by the following three features. First, the initial and target states are equilibrium states,
so that their corresponding probability distribution functions (PDFs) are perfectly known.
Second, the PDF is Gaussian for all times, so that it is completely characterised by its
average and variance. Third, the evolution equations for the average and the variance are
exactly solvable in closed form.

The delay in posing the problem of controlling granular systems probably stems
from the challenging character of the control problem in this case, both at the conceptual
and mathematical level. None of the three simplifying features above, holding for the
harmonically trapped Brownian particle, is present in granular fluids. First, the initial and
target states are NESS, and their PDFs are only approximately known. Second, the PDF
is non-Gaussian for all times. Third, the evolution equations are non-linear and thus not
exactly solvable. It is interesting to compare the situation in the granular case described
above with the one appearing in other paradigmatic system, the Brownian gyrator [42–44].
Although the initial and final states are also NESSs in that case, the PDF is Gaussian for all
times, and the evolution equations for the relevant moments can be exactly solved. Thus,
the control problem of this system is simpler, although only non-optimal connections have
been worked out, to the best of our knowledge [45].
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One may thus pose the problem of connecting two NESSs of the granular fluid corre-
sponding to different values of the driving intensity χ, χi and χf, i.e., to different values
of the granular temperature Ti and Tf. The control function here is the intensity of the
driving χ(t). We are interested in the time optimisation problem, i.e., to find the protocol
χ(t)—starting from (and ending at) the desired initial (and target) NESS—that minimises
the connection time between the initial and final states. This kind of time optimisation
problem is important from a fundamental point of view and also has relevance for appli-
cations. For the connection between equilibrium states, related problems emerge in the
optimisation of irreversible heat engines [46], the analysis of the Mpemba effect [21,47–49],
and the optimisation of the relaxation route to equilibrium [50–52].

The limiting situation in which all the power of the stochastic thermostat is available,
i.e., 0 ≤ χ < ∞, was investigated in Ref. [22] within the first Sonine approximation. Despite
the challenges mentioned above, the unboundedness of the control makes it possible to
give analytical predictions for the connecting time—the evolution equations are heavily
simplified in the limiting cases χ = 0 and χ = ∞. In addition, the analytical predictions
were compared with numerical simulations, and an excellent agreement was found. Indeed,
this was expected because the accurateness of the first Sonine approximation is a well-
established fact for the smooth hard-sphere granular gas, even for the study of subtle
behaviours such as the Kovacs or Mpemba memory effects [18–21]. This is the reason why
we follow a purely analytical approach in this paper.

In this work, we analytically investigate the more realistic case in which the driving
intensity is bounded between two values, χmin ≤ χ ≤ χmax. In order to make analytical
progress, we consider the linear response regime, in which χmin and χmax are close: This
allows us to linearise the evolution equations and make exact—in the linear response
limit—predictions for the optimal connecting time as a function of the bounds (χmin, χmax).
The linearisation of the equations also allows us to employ rigorous mathematical results
of optimal control theory (OCT) and to check that the underlying hypotheses are fulfilled,
a program that was unattainable in the non-linear case [22]. Moreover, we also explore
the limits of validity of the linear response regime, by taking the double limit (χmin � 1,
χmax � 1) and comparing the obtained behaviour with those for the non-linear case with
unbounded driving [22].

The structure of this paper is as follows. In Section 2, we put forward the model, write
the evolution equations for the temperature and the excess kurtosis, and linearise them
around the final NESS. Section 3 is devoted to the derivation of the optimal controls, in the
sense of minimising the connection time. The trajectories of the temperature and the excess
kurtosis—both as functions of time and in the phase plane—for the optimal controls are
analysed in Section 4. The dependence of the minimum connection time on the bounds of
the driving is the subject of study of Section 5. We investigate the limits of the validity of
the linear response approximation as the bounds in the driving are loosened in Section 6.
Finally, a discussion of the obtained results is presented in Section 7. The Appendices deal
with some technicalities that are omitted in the main text.

2. The Model

Our system is a granular fluid with number density n, comprising N d-dimensional
(d = 2, 3) hard-spheres of mass m and diameter σ (hard discs in d = 2). Specifically,
we consider smooth inelastic hard spheres. Collisions between them are binary, and the
post-collisional velocities (v′1, v′2) are given in terms of the pre-collisional ones (v1, v2) by:

v′1 = v1 −
1 + α

2
(v12 · σ̂)σ̂, v′2 = v2 +

1 + α

2
(v12 · σ̂)σ̂, (1)

where σ̂ is the unit vector along the direction joining the centre of the particles and α is
the restitution coefficient, 0 ≤ α ≤ 1. In addition, the system is heated by a stochastic
thermostat, i.e., a white-noise force Fi independently acts on every particle verifying
〈Fi(t)〉 = 0,

〈
Fi(t)Fj(t)

〉
= m2ξ2δijδ(t− t′), ∀i, j = 1, . . . , N, and ∀(t, t′).
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In the first Sonine approximation that we employ throughout, the system is described
by two variables, the granular temperature T and the excess kurtosis a2. Their definitions
in terms of moments of the velocity are:

〈
v2
〉
=

dT
m

, a2 =
d

d + 2

〈
v4〉
〈v2〉2

− 1. (2)

As stated in the introduction, the system reaches an NESS in the long-time limit due to the
balance—on average–of the energy input and dissipation. The stationary values of T and
a2 are given by:

T3/2
s =

mξ2

ζ0(1 + 3
16 as

2)
≡ χ, ζ0 =

2nσd−1(1− α2)π
d−1

2
√

mdΓ(d/2)
, (3)

as
2 =

16(1− α)(1− 2α2)

73 + 56d− 24dα− 105α + 30(1− α)α2 , (4)

Note that as
2 is independent of the thermostat intensity, as measured by χ, it only depends

on (d, α). From the kinetic equation, the following coupled system of ordinary differential
equations (ODEs) are obtained—see, e.g., [17,19]:

Ṫ = ζ0

[
χ(1 +

3
16

as
2)− T3/2(1 +

3
16

a2)

]
, (5a)

ȧ2 =
2ζ0

T

[
(T3/2 − χ)a2 + BT3/2(as

2 − a2)
]
, (5b)

where the parameter B is given by [17,19]

B =
aHCS

2

aHCS
2 − as

2
, aHCS

2 =
16(1− α)(1− 2α2)

25 + 2α2(α− 1) + 24d + α(8d− 57)
; (6)

aHCS
2 is the value of the excess kurtosis in the HCS [8,9].

3. Optimal Control in Linear Response

Above, we have considered that the driving intensity of the thermostat χ is constant.
In general, it may be time-dependent, a certain given function of time χ(t) that determines
the externally enforced driving program. Looking at the evolution Equation (5a,b) for
(T, a2) in the light of OCT, this means that χ(t) is the control function. In this paper, we
consider the following control problem: the connection of two NESS, i.e., bringing the
system from an initial state (Ti, a2i = as

2), to a target, final one (Tf, a2f = as
2), by engineering

a suitable driving program χ(t). Moreover, we would like to perform this connection in the
shortest possible time. The case in which all the power of the thermostat is available has
been considered in Ref. [22]. Here, we analyse the more realistic case in which the driving
intensity is bounded between two limiting values, χmin ≤ χ(t) ≤ χmax, with χmin ≥ 0 and
χmax < ∞.

In order to solve the control problem analytically, we restrict ourselves to the linear
response regime, i.e., χmin and χmax are close—and so are Ti and Tf. To look into the
dynamics of the system, it is preferable to introduce scaled variables as follows:

t∗ = ζ0T1/2
f t, T∗ =

T
Tf

, χ∗ =
χ

T3/2
f

, A2 =
a2

as
2

. (7)

In this way, we have defined dimensionless time t∗, granular temperature T∗, and
driving χ∗; moreover, scaling the excess kurtosis with its steady value simplifies our
analysis (Both aHCS

2 and as
2 change sign for α = 1/

√
2, so that a2 typically changes sign

with the inelasticity. On the other hand, the scaled variable A2 always remains positive).
For these scaled variables, we have the following evolution equations:
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Ṫ = χ(1 +
3

16
as

2)− T3/2(1 +
3
16

as
2 A2), (8a)

Ȧ2 =
2
T

[
(T3/2 − χ)A2 + BT3/2(1− A2)

]
. (8b)

We have omitted the superscript ∗ in the dimensionless variables in order to simplify
the notation since; from now on, these are the variables used. The term χ(1 + 3

16 as
2) on

the right hand side (rhs) of (8a) represents the energy injection due to the action of the
thermostat, while the term−T3/2(1+ 3

16 as
2 A2) collects the energy losses due to the inelastic

collisions. Of course, if χ is kept constant and equal to its target value, i.e., χ(t) = 1 ∀t ≥ 0,
the system reaches the NESS (Ts = 1, As

2 = 1) in the long-time limit, consistently with our
discussion in the previous section.

In linear response, we thus write:

T = 1 + δT, A2 = 1 + δA2, χ = 1 + δχ, (9)

with δT � 1, δA2 � 1, and δχ � 1. Note that, to be consistent, we must assume
that δχmin, δχmax � 1. This allows us to linearise the evolution equations of T and A2
as follows:

d
dt

(
δT

δA2

)
=

(
β
−2

)
δχ +

(
− 3

2 β 1− β
3 −2B

)(
δT

δA2

)
, (10)

where we have defined
β ≡ 1 +

3
16

as
2. (11)

Now it is δχ that plays the role of the control function, δχmin ≤ δχ ≤ δχmax.
Once the evolution equations are linearised, the control problem is stated as follows:

We would like to bring the system from the initial NESS corresponding to

δT(t = 0) = δTi, δA2(t = 0) = 0, (12)

to the target NESS
δT(tf) = 0, δA2(tf) = 0, (13)

in the minimum possible time tf. Moreover, the system remains stationary for t < 0 and
t > tf: This means that for t < 0, we have prepared the system in the NESS with the initial
value of the temperature by driving it with the corresponding intensity and that for t ≥ tf,
the driving intensity for the target temperature is applied, i.e.,

δχ(t) = δχi =
3
2

δTi, t < 0, δχ(t) = 0, t ≥ tf. (14)

Equation (10) is linear in both the variables (δT, δA2) and the control function δχ,
and therefore the rigorous theorems for linear control systems are applicable—see, for
example, chapter III of Ref. [53]. For our specific situation in which δχmin ≤ δχ ≤ δχmax,
these theorems ensure that the optimal protocol that minimises the connection time tf
is of bang-bang type with at most one change. That is, δχ(t) is piece-wise continuous,
taking either the value δχmax or δχmin and presenting, at most, one jump between these
two values in the time window (0, tf) (More specifically, this result stems from Theorem 10
in Section 17 of Ref. [53], and we check that the hypotheses of this theorem are fulfilled
in Appendix A). These kind of bang-bang optimal protocols arise in different physical
situations [22,23,54–56]. In general, bang-bang protocols emerge as the optimal ones
when Pontryagin’s Hamiltonian is linear in the controls—i.e., when the evolution equa-
tions are linear in the controls, although they may be non-linear in the relevant physical
variables [30,57–59].
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To be able to determine the optimal protocol, we must distinguish two cases according
to the initial temperature, a global cooling process (Ti > Tf = 1, δTi > 0) and a global
heating process (Ti < Tf = 1, δTi < 0):

• For δTi > 0, CH protocol: In the time window [0, tJ), the driving δχ is set to its minimum
value δχmin (cooling), whereas in the time window [tJ , tf), it is set to its maximum
δχmax (heating):

δχ(t) =


δχi, t < 0,
δχmin, 0 ≤ t < tJ ,
δχmax, tJ ≤ t < tf,
0, t ≥ tf.

(15)

• For δTi < 0, HC protocol: In the time window [0, tJ), the driving is set to its maximum
value χmax, whereas in the time window [tJ , tf), it is set to its minimum χmin:

χ(t) =


δχi, t < 0,
δχmax, 0 ≤ t < tJ ,
δχmin, tJ ≤ t < tf,
0, t ≥ tf.

(16)

The switching time tJ , 0 ≤ tJ ≤ tf, will be determined later as a function of the parameters
of the problem, i.e., as a function of (δχi, δχmin, δχmax). As already stated above, the values
of δχ for t < 0 and for t ≥ tf ensure that the system starts from the NESS with T = Ti and,
after the application of the bang-bang protocol, remains in the target NESS with T = Tf = 1,
for both the CH and HC protocols.

At first, there is no clear reason to assign the CH protocol to the case δTi > 0 and the
HC protocol to the case δTi < 0 (aside from the analogy with the full-thermostat-power
case analysed in Ref. [22]). In order to show that this is indeed the case, one needs to study
the behaviour of the trajectories swept by the point in the phase plane (δA2, δT). We defer
this analysis until Section 4.

3.1. Ti > Tf = 1 Cooling-Heating Bang-Bang

In this section, we integrate the solution of the system in two time windows: the first
one, [0, tJ), when δχmin is applied, and a second one [tJ , tf), when δχmax is applied. We
also determine the time tJ as well as the value of the variables δTJ and δA2J at that time.
The point (δA2J , δTJ) constitutes the set of initial conditions for the control system in the
second window.

Equation (10) is inhomogeneous, due to the term proportional to δχ on its rhs. (It is
only homogeneous when δχ = 0, i.e., when the control is set to the constant value χf = T3/2

f
corresponding to the final temperature.) Over each time window, δχ(t) = δχext, where
the subscript “ext” includes both bangs, δχext = δχmin (first window) and δχext = δχmax
(second window). The inhomogeneity can be thus understood as the system relaxing
towards the NESS corresponding to δχext. Let us denote by Text = 1+ δText the temperature
corresponding to the NESS reached when the system is driven with constant intensity
χext = 1 + δχext. Since the steady value of the excess kurtosis does not depend on the
driving intensity, we have only to subtract:

δText = (χext)
2/3 − 1 =

2
3

δχext + O(δχext)
2 (17)

from δT to make the system homogeneous. Thus, we define:

δT̃ ≡ δT − δText. (18)

The homogeneous system for δT̃ and δA2 reads:
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d
dt

(
δT̃

δA2

)
=

(
− 3

2 β 1− β
3 −2B

)(
δT̃

δA2

)
. (19)

The eigenvalues (−λ1,−λ2) and eigenvectors (v1, v2) of this system are given by:

λ1 =
1
2

(
3
2

β + 2B + k
)
> 0, v1 =

1
6

(
2λ2 − 3β

6

)
, (20a)

λ2 =
1
2

(
3
2

β + 2B− k
)
> 0, v2 =

1
6

(
2λ1 − 3β

6

)
, (20b)

where we have introduced the parameter:

k ≡ λ1 − λ2 =

√(
3
2

β− 2B
)2

+ 12(1− β) > 0. (21)

With the definitions above, both λ1 and λ2 are positive, and λ1 > λ2.
Now we can write the solution in both time windows, separately, because δT̃ is

different over each one. In the first step of the bang-bang, t ∈ [0, tJ), where δχ(t) = δχmin:(
δT̃

δA2

)
=

(
δT − 2

3 δχmin
δA2

)
= C1v1e−λ1t + C2v2e−λ2t. (22)

In the second step of the bang-bang, t ∈ [tJ , tf), where δχ(t) = δχmax:(
δT̃

δA2

)
=

(
δT − 2

3 δχmax
δA2

)
= C3v1e−λ1t + C4v2e−λ2t. (23)

The constants (C1, C2, C3, C4) are obtained by imposing the initial conditions in each time
window. For t = 0, we have the initial condition (12), which determines C1 and C2:

C2 = −C1 = 3
δTi − δTmin

k
= 2

δχi − δχmin

k
.

The point at the final time tJ of the first time window is:

δTJ = δT̃J + δTmin = C1

[
v1(1)e−λ1tJ − v2(1)e−λ2tJ

]
+

2
3

δχmin, (24a)

δA2J = C1

(
e−λ1tJ − e−λ2tJ

)
. (24b)

The initial conditions for Equation (23) are supplied by (δTJ , δA2J). Therefore, we can
obtain (C3, C4) as a function of the switching time tJ :(

δTJ − δTmax
δA2J

)
= C3v1e−λ1tJ + C4v2e−λ2tJ . (25)

Note that (C3, C4) also depend on the bounds of the driving (δχmin, δχmax) through δTmin
and δTmax. By imposing that we have to reach the target state, i.e., Equation (13), we write:(

−δTmax
0

)
= C3v1e−λ1tf + C4v2e−λ2tf . (26)

Equations (25) and (26) are four equations for the four unknowns (C3, C4, tJ , tf), which thus
provide us with the solution to the control problem. Solving for C3 and C4, we obtain:

C3 =
2δχmax

k

 δχtot
δχi−δχmin

eλ1tJ − 1
δχtot

δχi−δχmin
eλ2tJ − 1


λ1
k

, C4 = −C3e−ktf . (27)
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We have introduced the total amplitude of the allowed interval for the driving:

δχtot ≡ δχmax − δχmin = χmax − χmin > 0. (28)

In this way, the final time tf is given as a function of the switching time tJ :

tf =
1
k

ln

 δχtot
δχi−δχmin

eλ1tJ − 1
δχtot

δχi−δχmin
eλ2tJ − 1

 = tJ +
1
k

ln

1− δχi−δχmin
δχtot

e−λ1tJ

1− δχi−δχmin
δχtot

e−λ2tJ

 , (29)

which is in turn given by the solution of the implicit equation:

δχtot

(
1− δχi − δχmin

δχtot
e−λ2tJ

)λ1
k
= δχmax

(
1− δχi − δχmin

δχtot
e−λ1tJ

)λ2
k

. (30)

The set of Equations (29) and (30) provides an analytical solution for the minimum con-
nection time tf in the CH protocol, which is valid in the linear approximation we are
considering in this paper.

3.2. Ti < Tf = 1 Heating-Cooling Bang-Bang

Let us now start from an initial state with δTi < 0. The analysis of this case is similar
to that just carried out for δTi > 0, but the order of the bangs is reversed. In the first
time window, [0, tJ), the maximum driving δχmax is applied, whereas in the second time
window, [tJ , tf), the minimum driving δχmin is applied. Therefore, the homogenisation
procedure for the temperature δT is also reversed. In the first window t ∈ [0, tJ) we have:(

δT̃
δA2

)
=

(
δT − 2

3 δχmax
δA2

)
= C5v1e−λ1t + C6v2e−λ2t, (31)

whereas in the second window t ∈ [tJ , tf) it is:(
δT̃

δA2

)
=

(
δT − 2

3 δχmin
δA2

)
= C7v1e−λ1t + C8v2e−λ2t. (32)

The initial conditions are given by Equation (12). Inserting them into Equation (31),
we obtain:

C5 = −C6 = 3
δTmax − δTi

k
= 2

δχmax − δχi

k
. (33)

The evaluation of Equation (31) at time tJ gives the initial condition for the second time
window. Taking into account the difference in the δT̃ variables in Equations (31) and (32),
due to our switching the value of the driving intensity at t = tJ , one obtains (C7, C8) in
terms of tJ and also of the bounds (δχmin, δχmax) in complete analogy with the CH protocol.
In addition, at the final time tf, one must impose that the system reaches the target NESS, i.e.,
Equation (13), which provides the two extra equations needed to determine the switching
time tJ and the connection time tf as functions of the system parameters. The result is:

C7 =
2δχmin

k

 δχtot
δχmax−δχi

eλ1tJ − 1
δχtot

δχmax−δχi
eλ2tJ − 1


λ1
k

, C8 = −C7e−ktf , (34)

for (C7, C8) in terms of (tJ , tf):

tf =
1
k

ln

 δχtot
δχmax−δχi

eλ1tJ − 1
δχtot

δχmax−δχi
eλ2tJ − 1

 = tJ +
1
k

ln

1− δχmax−δχi
δχtot

e−λ1tJ

1− δχmax−δχi
δχtot

e−λ2tJ

 , (35)
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for the minimum connection time in terms of the switching time, and the following im-
plicit equation:

δχtot

(
1− δχmax − δχi

δχtot
e−λ2tJ

) λ1
k
= −δχmin

(
1− δχmax − δχi

δχtot
e−λ1tJ

) λ2
k

, (36)

for tJ . In complete analogy with the CH case, the set of Equations (35) and (36) gives the
minimum connection time for the HC protocol in the linear approximation. Note that ex-
changing δχmin ↔ δχmax (which entails δχtot → −δχtot) leads from Equations (35) and (36)
to Equations (29) and (30)—and vice versa.

Above, we have derived analytical expressions for different physical variables of inter-
est, for both the CH and HC bang-bang protocols, in the linear response approximation.
More specifically, we have (i) the complete description of the trajectory followed by the
system in the phase plane, i.e., the time evolution of the point (δA2(t), δT(t)), and (ii) the
switching time tJ and the minimum connection time tf. The linear response approximation
has allowed us to obtain analytical predictions as functions of all the relevant physical pa-
rameters: not only of the initial temperature Ti, as measured by δχi = 3δTi/2, but also of the
bounds of the driving (χmin, χmax), as measured by (δχmin, δχmax). Therefore, it is interest-
ing to inspect the behaviour of the obtained expressions as a function of (δχi, δχmin, δχmax)
in order to understand the response of the system to the optimal control designed.

4. Trajectories for the Temperature and the Excess Kurtosis

In this section, we look into the trajectories of the temperature and the excess kurtosis,
to understand the need for a two-step bang-bang protocol on a physical basis. The time
evolution of δT and δA2 is presented in Figure 1, for both the CH and the HC cases (δT
solid lines, δA2 dashed lines). First, let us analyse the CH protocol (left panel), i.e., δTi > 0
(also δχi > 0). Therein, δT relaxes to δTmin under the action of δχmin in the time window
[0, tJ) (without reaching it, since the relaxation at constant driving lasts for an infinite
time). Simultaneously, δA2 starts to increase from its steady value, equal to zero, because
Equation (10) implies the following:

d
dt

δA2

∣∣∣∣
t=0+

= −2δχmin + 3δTi = 2(δχi − δχmin), (37)

which is non-negative because δχmin ≤ 0 ≤ δχi. (Otherwise the connection of the two
NESS would be impossible, as rigorously proven in the next section—and in agreement
with physical intuition.) A decrease (an increase) in the granular temperature makes
the VDF separate from (closer to) the Gaussian shape, i.e., the scaled excess kurtosis A2
correspondingly increases (decreases). Once the target temperature Tf = 1 is reached inside
this first time window, i.e., the temperature curve crosses the horizontal axis δT = 0, the
action of δχmin cannot be interrupted by setting the thermostat intensity to unity because
δA2 > 0 and the system is not in the target NESS. This is why we must let δT continue to
drop to a value δTJ such that δTJ < 0, associated with a kurtosis value δA2J > 0. This point
(δA2J , δTJ) is determined by the condition that, at the end of the subsequent relaxation
with δχmax in the time window [tJ , tf), δA2 and δT must simultaneously reach their target
value (zero). Second, we analyse the HC case (right panel), the discussion is completely
analogous and thus we summarise it in the following. In the first time window [0, tJ)
with δχmax, the horizontal axis δT = 0 is crossed at some time smaller than tJ , but it is
necessary to continue applying δχmax to overshoot it, since δA2 < 1 for that time and the
system has not reached the target NESS. Once more, the point (δA2J , δTJ) is determined
by the condition that, at the end of the second time window with δχmin, both variables
simultaneously vanish.

The need of a two-step protocol, and the order of the bangs, can also be understood
—maybe more clearly—by looking at the trajectories in phase space. The trajectories of
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the phase space (δA2, δT) for the CH and the HC cases are shown in Figure 2. The target
state is the origin (0, 0), so the optimal trajectories must end up thereat. Since the optimal
protocols are of bang-bang type, with at most one switch, there are two possibilities: The
system approaches the origin following either the heating curve with δχmax (red solid line
in the left panel) or the cooling curve with δχmin (blue solid line in the right panel). These
two curves are uniquely defined because the origin is not a fixed point of the evolution
equations for δχmax, nor for δχmin.

The initial NESS does not lie on either of these two curves—they do not contain any
NESS apart from the target state (0, 0), thus, the necessity of having a two-step bang-bang
is clear. Recall that, for the linear case, there is a theorem ensuring that there is at most
one switching.

In Appendix B, we rigorously show that the CH (HC) protocol is the one making it
possible to connect the initial NESS with δTi > 0 (δTi < 0).

0 5 10 15 20 25
-10

-5

0

5

10

15

20

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

Figure 1. Time evolution of the temperature and the excess kurtosis. Specifically, we plot δT (solid
line) and δA2 (dashed line), both for the CH protocol (left panel) and for the HC protocol (right panel).
Dotted line represents the horizontal axis. The bounds for the driving intensity are δχmax = 0.1
and δχmin = −0.1, and the initial temperature is δTi = 0.01 for CH and δTi = −0.01 for HC. The
evolution under the action of δχmin is shown in blue and the evolution under δχmax in red. Other
parameters are α = 0.9 and d = 2.
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Figure 2. Phase plane trajectories. The CH case is illustrated in the left panel and the HC case
in the right panel. Several trajectories are shown for different initial temperatures δTi ∈ [0, 0.01]
(δTi ∈ [−0.01, 0]) for the CH (HC) protocol. The remainder of the system parameters are the same as
in Figure 1. In each panel, the solid line (red on the left, blue on the right) represents the second part
of the phase trajectory, arriving at the target NESS—the origin (δA2 = 0, δT = 0). As in the previous
figure, red (blue) lines correspond to δχmax (δχmin). Again in each panel, the dashed lines represent
the first part of the phase trajectory, starting from the initial points (0, δTi). These curves end up at
the points (δA2J , δTJ), marked with circles, at which the dashed and solid lines intersect.



Entropy 2022, 24, 131 11 of 29

5. Minimum Connection Time as a Function of the Bounds in the Driving Intensity

This section is devoted to studying the behaviour of the minimum connection time tf
(and also of the switching time tJ) as a function of the bounds in the driving intensity. The
analysis is carried out for both the CH (δTi > 0) and HC (δTi < 0) protocols. We will use
the variables without ‘δ’ in order to keep the discussion clearer.

A first question that naturally arises is the range of values of χmin and χmax allowing to
connect the initial and target states. In the non-linear regime and in the limit case (χmin = 0,
χmax = ∞), it is always possible to connect two NESS corresponding to temperatures Ti
and Tf [22]. However, it is not obvious at all that this is possible when not all the power
of the thermostat is available, i.e., in our case with bounds in the driving: χmin > 0 and
χmax < ∞. For example, given Ti > 1, it is unclear whether there appears some change in
the behaviour of the connecting time when the upper bound χmax crosses the value χi > 1.
Accordingly with our approach throughout, we intend to study this problem within the
linear response approximation.

5.1. CH Protocol

First, we consider the CH protocol, Ti > 1 or δTi > 0. Figure 3 illustrates the depen-
dence of tJ and tf on the bounds in the driving. Fixing the value of χmax, we can look into
their behaviour as functions of χmin (left panel). As the cooling capacity of the thermostat
decreases, i.e., as χmin increases, the minimum connection time tf increases. This is logical,
since the class of admissible control functions is being shrunk and the optimal connection
thus lasts longer. In addition, the switching time tJ increases: The cooling step of the
bang-bang must be longer to compensate for the decrease of cooling power. Both times
diverge in the limit as χmin → 1−, where the cooling power of the thermostat is vanishingly
small, and thus the cooling step of the bang-bang process takes an infinite time. Now we fix
the value of χmin and study the behaviour as functions of χmax (right panel). Analogously,
as the heating capacity of the thermostat decreases, i.e., as χmax decreases, tf increases,
because the class of admissible controls becomes smaller. On the other hand, the behaviour
of tJ is reversed, and tJ increases with χmax. This is also logical, since the first step of the
bang-bang is the cooling one, and as the heating capacity of the thermostat is increased,
the cooling step must take a longer time. In this case, it is only tf that diverges in the limit
as χmax → 1+. The lack of heating capacity makes the duration of the second (heating)
step diverge, since the time needed to relax towards Tf = 1 is infinity for a constant value
of the driving χ = χf = 1. There is no change in behaviour in the connection time when
χmax crosses the value χi, the driving intensity corresponding to the initial value of the
temperature. This is neatly observed in the inset, where a zoom of the graph for drivings
χmax ∈ [1, χi] is plotted.

An important point is the divergence of the connection time as χmin → 1− (for
fixed χmax) and as χmax → 1+ (for fixed χmin). Therefore, if χf = 1 lies outside the interval
[χmin, χmax], the target NESS is unreachable. In other words, the bounds in the driving must
verify (χmax ≥ 1, χmin ≤ 1), i.e., (δχmax ≥ 0, δχmin ≤ 0), to make it possible to connect
the initial and target states. In other words, Tf must belong in the interval [Tmin, Tmax]. In
fact, it is possible to rigorously show that the connecting time only diverges when either
χmin → 1− or χmax → 1+, see Appendix C for details.
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Figure 3. Switching time tJ and minimum connection time tf as functions of the thermostat limit
values for the CH protocol. Specifically, we have chosen the initial temperature Ti = 1.01 > 1. In the
left panel, tJ (dashed line) and tf (solid line) are plotted as functions of the lower bound χmin, for a
fixed value of the upper bound, namely, χmax = 1.1. In the right panel, they are plotted as functions
of the upper bound χmax, for a fixed value of the upper bound, namely, χmin = 0.9. Additional
parameters are α = 0.9 and d = 2. There are no qualitative changes for other values of (α, d), aside
from an increase in the connecting time as α decreases. The inset shows a zoom of the panel for
1 ≤ χmax ≤ χi, χi = 1.015 for Ti = 1.01.

5.2. HC Protocol

Figure 4 illustrates the situation for the HC protocol (Ti < 1 or δTi < 0). Note that the
panels are basically the horizontal reflections of those in Figure 3, with the roles of χmin
and χmax being exchanged. Therefore, the line of reasoning for physically understanding
the observed behaviours is completely similar to the one in the previous section, and it
will not be repeated here. We would only like to highlight the increase in the minimum
connection time as the bounds become tighter, due to the shrinking of the set of admissible
control functions, and its divergence for χmin → 1− (fixed χmax) and χmax → 1+ (fixed
χmin), which marks the impossibility of reaching a target state with temperature Tf = 1
lying outside the interval [Tmin, Tmax].
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Figure 4. Switching time tJ and minimum connection time tf as functions of the thermostat limit
values for the HC case. The initial temperature is now Ti = 0.99 < 1. The reminder of the parameters
are the same as in Figure 3. Again, the left (right) panel shows tJ (dashed) and tf (solid) as functions
of χmin (χmax), for a fixed value of χmax = 1.1 (χmin = 0.9). The inset in the left panel shows a zoom
of the graph for χi ≤ χmin ≤ 1, χi = 0.985 for Ti = 1.01, showing that there is no change in behaviour
when χmin crosses χi.

6. Validity of the Linear Response Approximation

The results obtained and analysed in the previous sections are quite general. On the
one hand, we have derived expressions for the relevant physical quantities as functions of
the bounds in the driving intensity (χmin, χmax) (or (δχmin, δχmax)). On the other hand, the
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linear response approximation limits the results, since we have assumed that the system
remains always close to the target NESS. Therefore, it is relevant to investigate the possible
validity of our results beyond the strictly linear framework.

In Ref. [22], it was shown that the minimum connection time in the non-linear case—for
a full-strength thermostat 0 ≤ χ < ∞, which we denote here by tn`

f —is given by:

tn`
f ∼

(
2

3B

)1/2
|δχi|1/2, |δχi| � 1, (38)

when the initial and final states are close—as expressed by the condition |δχi| � 1 (It
must be remarked that the non-dimensionalisation of time in Ref. [22], t∗ = ζ0T1/2

i t, differs
from ours in Equation (7) by a factor

√
Ti/Tf. This factor does not affect the lowest order

asymptotic expression in Equation (38), since the introduced corrections are higher-order).
Actually, Equation (38) does not have to hold for the linear case developed in this paper
because we are considering that the driving intensity χ is restricted to a small interval,
χmin = 1 + δχmin ≤ χ = 1 + δχ ≤ χmax = 1 + δχmax. (Recall that δχmax ≥ 0, whereas
δχmin ≤ 0.) Notwithstanding, we may progressively separate the bounds from unity
and compare our linear response predictions with Equation (38). More specifically, it is
interesting to take the limit χmin → 0 and χmax → ∞ and analyse the possible convergence
of our minimum connection time (for both the CH and HC cases) to the time given by
Equation (38).

In order to further explore this possible convergence, we have approximated tf to first
order in δχi. In Appendix E, it is shown that for short connecting times tf � 1, one has:

tf ∼
(

2
λ1λ2

)1/2( δχtot|δχi|
−δχminδχmax

)1/2

, (39)

where

λ1λ2 = 3βB + 3(β− 1) = 3B
(

1 +
3

16
as

2

)
+

9
16

as
2. (40)

Note that Equation (39) is valid to the lowest order in tf—terms of the order of t2
f have been

neglected—but no assumption has been made with regard to δχmin and δχmax.
In order to make the comparison between the non-linear (with full-strength thermostat)

and linear (with bounds in the driving) expressions above, we have represented the mini-
mum connecting time for different values of the bounds χmin and χmax in Figures 5 and 6
—for the CH and HC cases, respectively. Therein, we show the linear response expressions
Equation (29) (CH case) and (35) (HC case), together with the approximate linear expression
(39), and the non-linear expression (38) for a full-strength thermostat. We observe how the
times given by Equations (29) and (35), as well as their approximations (39), rapidly con-
verge to Equation (38) as the bounds separate from unity. This convergence is qualitatively
similar in the CH and HC cases. There are no significant differences between them up to
this point.

Let us look at the convergence towards the non-linear expression (38) in more detail.
First, we consider the CH case in Figure 7, which can be seen as a zoom of Figure 5—for
values of the bounds such that the linear time is close to the non-linear one. It is clearly ob-
served that as the bounds of the driving separate from unity, the linear response prediction
approaches the non-linear expression (38) “from above”: The connection times of the linear
theory are longer than those for the non-linear case. This is consistent, since Equation (38)
was obtained for the largest possible set of control functions, i.e., (χmin = 0, χmax = ∞): The
loosest the restrictions on the control functions are, the shortest the minimum connection
time is.
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Figure 5. Minimum connection time tf versus the initial control δχi for the CH case. Symbols represent
the linear response prediction for tf, as given by Equation (29), for different values of the bounds
(from top to bottom: δχmax = 0.1 and δχmin = −0.1 (triangles), δχmax = 0.3 and δχmin = −0.3
(stars), δχmax = 1 and δχmin = −0.7 (diamonds), δχmax = 99 and δχmin = −0.99) (circles). Dashed
lines correspond to Equation (39) for each case, which shows the soundness of this approximate
expression. The solid line corresponds to Equation (38), which is basically superimposed with the
dashed line for δχmax = 99 and δχmin = −0.99. Other parameters are α = 0.9 and d = 2.
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Figure 6. Minimum connection time tf versus the initial control δχi for the HC case. The line code is
the same as in Figure 5. Again, the solid line corresponding to Equation (38) is basically superimposed
with the linear response prediction for the further from unity bounds. Once more, α = 0.9 and d = 2.
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Figure 7. Convergence to the non-linear expression (38) as the bounds go to more extreme values for
the CH case. We plot the connection time tf versus the initial control δχi for α = 0.9 and d = 2. Several
sets of data are plotted: (i) the non-linear expression (38) (blue solid line), and (ii) the linear prediction,
as given by Equation (29), for several values of the bounds, namely, δχmax = 9 and δχmin = −0.9
(stars), δχmax = 19 and δχmin = −0.95 (triangles), δχmax = 99 and δχmin = −0.99 (circles). The time
tf given by Equation (29) converges to that in Equation (38) “from above”.

Now we have a closer look at the HC case in Figure 8. As the bound in the controls
move away from unity, the minimum connection time is also very close to the non-linear
expression (38). However, the convergence “from above” observed in the CH case is broken.
In fact, the linear prediction is neatly below the non-linear one for the data corresponding
to the most extreme values of the bounds. This marks a first physical limit for the range of
controls that can be used in the linear approach: Beyond the values χmin and χmax such that
the linear prediction for the minimum connection time become smaller than that provided
by the non-linear prediction (38), the linear theory is clearly not valid. Recall that the latter
was obtained for the full strength of the thermostat, (χmin = 0, χmax = ∞), so for a smaller
set of controls, the minimum connection time must be longer.

We have illustrated the breakage of the convergence “from above” in the HC protocol
for the particular case α = 0.9 and d = 2. This behaviour is robust: It occurs for all α,
and also for d = 3. On the other hand, in the CH protocol, the inversion of the natural
convergence “from above” never comes about. This asymmetry between the CH and HC
protocols stems from the physical limit that χmin has: While χmax can be as large as desired,
χmin must always be non-negative. This entails that, when applying a CH protocol, the
granular temperature T evolves between the values 0 and 1 for all times, which prevents the
system from presenting important deviations from the linear response behaviour. However,
for the HC protocol, the temperature can reach arbitrarily large values under the action
of a high enough driving χmax, which makes the linear response approximation no longer
valid. In fact, if we had studied the system from a purely mathematical point of view
and removed the physical restriction χmin ≥ 0 (letting it vary between −∞ and +∞), this
asymmetry between the CH and HC cases would have disappeared.
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Figure 8. Convergence to the non-linear expression (38) as the bounds go to more extreme values
for the HC case. Symbols code of the data shown are the same as in Figure 7. The breakage of the
convergence “from above” to the non-linear result is clearly seen: For extreme enough values of the
bounds, the linear time becomes smaller than the non-linear prediction for a full-strength thermostat.

It is interesting to remark that as α decreases (i.e., as the inelasticity increases), less
extreme values of χmax and χmin are needed to provoke the inversion. In other words,
the linear approximation breaks down for less extreme bounds. For example, let us con-
sider α = 0.1, which can be regarded as a high-inelasticity case—as opposed to the low-
inelasticity case α = 0.9. Fixing χmin = 0, the connection times of the linear approxima-
tion become shorter than those given by Equation (38) for δχmax ≥ 9.2 in the range of
δTi ∈ [−0.01, 0] (or, equivalently, δχi ∈ [−0.015, 0]), smaller than the value δχmax ≥ 9.8 for
α = 0.9. This trend with α of the bounds leading to the inversion of the convergence “from
above” can be understood by recalling that as

2 is a decreasing function of α. Consequently,
the importance of the heating term in the evolution equation of the temperature (8a),
χ
(
1 + 3

16 as
2
)
, increases as α is lowered: A smaller value of χ is needed to obtain the same

value of the heating term.

7. Discussion

Our work improves the understanding of the optimal control of driven granular gases.
The results obtained in this paper complement and enrich those obtained in Ref. [22] for a
full-strength thermostat. The inclusion of bounds in the driving, χmin ≤ χ ≤ χmax raises
non-trivial questions that have been answered by our study, such as the range of initial and
target temperatures that can be connected. Our investigation has been carried out in the
linear response regime, i.e., the initial and target states are close enough—and so are the
bounds of the driving χmin and χmax. This allows us to linearise the evolution equations
around the final (target) NESS.

The linear response approximation leads to a set of evolution equations that are
linear both in the control function and the dynamical variables—more precisely, in their
deviations from their target values. Therefore, we obtain a linear control problem that
can be completely solved. A rigorous mathematical theorem ensures that the optimal
control, minimising the connection time, is of bang-bang type with at most one switching:
i.e., the optimal control comprises two time windows [0, tJ) and [tJ , tf), with the control
being equal to one of its limiting values, either χmin or χmax, in the first time window [0, tJ)
and changing to the other limiting value at the switching time tJ . Therefore, two types of
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bang-bang protocols arise, depending on the order of the bangs: χmin followed by χmax,
which we have termed CH, or χmax followed by χmin, which we have termed HC. We have
shown that the CH protocol is the optimal one when the initial temperature Ti is larger
than the final one Tf, whereas the HC protocol is the optimal one in the reverse situation,
Ti < Tf.

We have investigated the behaviour of the connection time as a function of the bounds
in the driving intensity. This study has allowed us to elucidate the range of initial and final
temperatures that can be connected. We have shown that the final temperature has to lie
between the temperatures Tmin and Tmax, where Tmin (Tmax) is the steady temperature cor-
responding to the constant driving χmin (χmax). On the other hand, the initial temperature
may lie outside the interval [Tmin, Tmax], and the connection is still possible: The minimum
connection time is still finite when the upper bound χmax crosses the initial temperature
Ti > Tf (or the lower bound crosses the initial temperature Ti < Tf) (It could be argued that,
still, the most relevant physical situation corresponds to the case Ti ∈ [Tmin, Tmax] because
one needs to prepare the system in the initial NESS).

In addition, we have explored the limits of the validity of the linear response approxi-
mation we have employed throughout. We have done this by loosening the restrictions
on the bounds χmin and χmax. Specifically, we have analysed the behaviour of our (linear
response) prediction for the minimum connection time, tf, as χmin is decreased to very
small values, and χmax is increased to very large values. This behaviour has been com-
pared with the minimum connecting time for the non-linear case tn`

f , which was obtained
when the thermostat has its full strength, χmin = 0 and χmax = ∞. Specifically, we have
compared the linear time with the asymptotic expression for tn`

f for small temperature
jumps—in which the corresponding connection times are also very small [22]. For the CH
case, we have found that tf tends to tn`

f always “from above”, tf > tn`
f . This is logical, since

the largest set of controls—such as that of the full-power thermostat—should lead to the
shortest connection times. However, for the HC case, we have found that the tendency
from above towards tf is broken for large enough values of χmax. This marks a limit of
validity for the linear response approximation in this case. The asymmetry between the
CH and HC protocols can be understood on a physical basis: In the latter case, heating
precedes cooling, and thus the temperature departs from the vicinity of Tf for high enough
χmax—whereas in the former, cooling precedes heating, and the system remains closer to
the target state even when χmax becomes large.

In order to further look into the behaviour described in the previous paragraph, we have
looked into the regime of short connecting times tf � 1 within the linear response frame-
work. Note that our linear response predictions for tf, as given by Equations (29) and (35),
contain all the powers of δχi/δχtot, δχmax/δχtot, δχmin/δχtot. Linear response assumes
that both δχi � 1, δχmax � 1, and δχmin � 1, but the ratios between one another are in
principle of the order of unity. It is only when δχi is much smaller than δχmax and δχmin that
the connection time becomes small. In this regime, we have obtained a simple approximate
expression for tf valid to the lowest order in δχi, which also depends on the bounds in
the driving. This approximate expression always gives connection times that are longer
than that for the full-power thermostat, both for the CH and HC cases. This means that the
inversion of the tendency “from above” towards tn`

f comes from higher-order terms in the
ratios δχi,max,min/δχtot.

Our work also opens the door to finding new optimal controls for other non-equilibrium
systems. For example, let us look at a colloidal particle moving in the vicinity of a minimum
of the trapping potential—which can be thus considered to be harmonic. In that case, the
temperature of the thermal bath in which the particle is immersed plays the role of the
driving intensity. Interestingly, the temperature of the bath can be effectively increased by
adding a random forcing that can be modelled as a Gaussian white noise [40,41]. In this
way, the effective temperature changes from Tmin (room temperature) to Tmax (thousands
of kelvins). The similitude of the mathematical framework, linear evolution equations and
bounded control, makes it appealing to analyse the optimal connection—also in the sense
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of minimising the connection time—in that case and compare the corresponding results
with those derived here.

It is also relevant to extend the optimal controls derived here—and also of those for
a full-power thermostat in Ref. [22]—to more complex situations, such as rough granular
gases [60–64]. Translational and rotational velocities are correlated, even for small rough-
ness [60,61]. In addition, the number of relevant variables increases: The values of the
translational and rotational temperatures are, in general, different, and additional cumu-
lants emerge (See, for example, [62–64] for the general kinetic framework). The impact of
these features on the optimal controls is thus an interesting prospect for future work.
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Appendix A. Maximum Principle for Linear Systems: Verifying Hypothesis

Let us consider the linear, both in the variables x and the controls u, control system:

dx
dt

= Ax + Bu, (A1)

in which x : R→ Rn, u : R→ U, where the control set U is a m-dimensional parallelepiped,
and A and B are two matrices of suitable dimensions. Now we analyse the problem of
bringing the system from xi to xf in the minimum possible time tf, which is known as
the time optimisation problem. The columns of the matrix B are denoted by bj, and we
introduce the assumption that the set of vectors {bj, Abj, A2bj, ...An−1bj} constitutes a basis
of Rn for each j = 1, . . . , m. Under this controllability hypothesis, we can formulate the
following theorem:

Theorem A1. If all the eigenvalues of A are real, then the optimal controls are bang-bang, i.e., they
take the most extreme values of their definition domain and present, at most, n− 1 switchings.

Our system (10) perfectly fits into the framework given by Equation (A1), with the
identifications:

x =

(
δT

δA2

)
, u = δχ, A =

(
− 3

2 β 1− β
3 −2B

)
, B =

(
β
−2

)
. (A2)

Therefore, n = 2 and m = 1, with U ≡ [δχmin, δχmax]. We know that the eigenvalues of the
matrix A are real, since they are given by (−λ1,−λ2) in Equation (20). Thus, the theorem
above applies, and the controls are bang-bang with at most one switching if the vectors
{b1, Ab1} form a basis of R2. The determinant of the matrix with columns b1 and Ab1 is
∆ = 4(βB− 1) > 0, since βB > 1 for all α. In fact, as seen in Figure A1, ∆ increases with α.
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Figure A1. Discriminant ∆ as a function of the restitution coefficient α. Both the d = 2 (solid line) and
d = 3 (dashed) cases are shown. The discriminant remains positive for all values of α, guaranteeing
that the optimal control is of the bang-bang type with at most one switching.

Appendix B. Order for the Bangs

In this Appendix B, we prove that the optimal protocol for the case Ti < Tf = 1 is of
HC type. A completely analogous proof links the case Ti > Tf = 1 to the CH protocol. We
proceed by showing that one can only reach NESSs with Ti < Tf = 1, i.e., with δTi < 0,
making use of an HC protocol, it is impossible with a CH bang-bang.

The idea of the proof is based on rigorously establishing that the qualitative behaviour
of the motion of the system in the phase plane (δA2, δT) is the one depicted in Figure A2. We
start by analysing the shape of the cooling curve, which starts from a NESS (0, δTi). For the
cooling steps, δT(t) and δA2(t) are given by their respective expressions in Equation (24),
with the substitution tJ → t. Therefore, their time derivatives are:

d
dt

δT = 2
δχi − δχmin

k

(
λ1v1(1)e−λ1t − λ2v2(1)e−λ2t

)
, (A3)

d
dt

A2 = 2
δχi − δχmin

k

[
λ1e−λ1t − λ2e−λ2t

]
. (A4)

Note that dA2/dt|t=0 = 2(δχi − δχmin) > 0. On the one hand, δT(t) monotonically de-
creases from δTi = 2δχi/3 for t = 0 to δTmin = 2δχmin/3 for t→ ∞ because d(δT)/dt does
not vanish for t > 0. In fact, the possible extremum of δT occurs at a time kt1 = log v1(1)λ1

v2(1)λ2
,

which either does not exist (for α > 1/
√

2) or is negative (for α < 1/
√

2). On the other
hand, d(δA2)/dt vanishes at a time t0 given by:

t0 =
1
k

log
λ1

λ2
> 0, (A5)

i.e., δA2 increases from zero to positive values in the interval [0, t0), then reaches a maximum
at t = t0 and decreases back to zero for t0 < t.
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Figure A2. Qualitative picture of the heating and cooling trajectories in the phase plane. Curves
for t > 0 are drawn with solid lines, curves for t < 0 with dashed lines; heating ones (δχmax) are
in red, cooling ones (δχmin) in blue. The common tangent to the heating and cooling curves at the
origin is represented by a black dotted line. The system starts cooling from an initial state δTi < 0.
Let us assume that the bang-bang protocol is of CH type. In the first step of the bang, the system
follows the blue cooling curve: If it is allowed to relax during an infinite time, it reaches the NESS
(0, δTmin = 2

3 δχmin) over the vertical axis. The cooling must be interrupted at some time tJ > 0,
where the driving is switched to δχmax: Since the system must reach the target NESS at the origin,
it needs to move over the branch of the heating curve corresponding to t < 0 (red dashed line).
However, this is impossible, since this heating curve is always above the tangent line and does not
intersect the cooling curve. Therefore, it is not feasible to drive the system to the origin using a CH
protocol for δTi < 0.

The above discussion entails that the motion of the point (δA2, δT) along the cooling
curve in the phase plane follows indeed the shape depicted by the blue solid line in
Figure A2. An analogous study shows that the shape of the heating trajectories that starts
from a NESS, i.e., from the vertical axis δA2 = 0, must be like the red solid line in Figure A2:
δT increases monotonically for t > 0, and δA2 starts decreasing, reaches a minimum, and
afterwards increases back to zero.

Once we know the qualitative behaviour of the curves (heating and cooling) that
start from an NESS, let us apply a cooling process to an initial state (0, δTi < 0). We
know that all of these cooling trajectories must be contained in the region between the
vertical axis and the cooling curve starting from the origin, since phase plane trajectories
for the same value of δχ cannot intersect. The only way for the system to reach the point
(0, 0) with a CH protocol is that the cooling trajectory beginning at (0, δTi < 0) intersects
the heating trajectory (δχmax) that crosses the origin (0, 0), i.e., to the branch of the red
solid line corresponding to negative times (red dashed line). Our aim is to prove that this
trajectory cannot enter the region described above, where all the cooling curves starting
from (0, δTi < 0) are confined. To prove this, note that the cooling and heating trajectories
going through the origin have a common tangent, since

d
dt δT
d
dt δA2

=
−βδχ

2δχ
=
−β

2
< 0 (A6)

is independent of δχ (black dotted line). We proceed to prove that the heating curve that
goes through a point P over the tangent line is always above this tangent line and, therefore,
cannot intersect any cooling curve. It is enough to show that the slope of the heating curve
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that goes through an arbitrary point over the tangent line is always larger (lower in absolute
value) than the slope of the tangent. To do this, we take the point P over the tangent:

δTP = − β

2
δA2P, (A7)

and making use of Equation (10), we have that:

d
dt

δTP = βδχmax −
3
2

βδTP + (1− β)δA2P = βδχmax +

(
3
4

β2 + 1− β

)
δA2P, (A8)

and

d
dt

δA2P = −2δχmax + 3δTP − 2BδA2P = −2δχmax −
(

3
2

β + 2B
)

δA2P. (A9)

We have that 3
4 β2 + 1− β > 0:

3
4

β2 + 1− β > 0 =
3
4

(
1 +

3
16

as
2

)2
− 3

16
as

2 =
3
4

(
1 +

1
8

as
2

)
+

27
1024

(as
2)

2 > 0, (A10)

and 3
2 β + 2B > 0, ∀(α, d). Therefore d

dt δTP > 0 and d
dt δA2P < 0 over the tangent line, and

the slope of the heating curve on this point is negative:

mP =
d
dt δTP
d
dt A2P

=
βδχmax + ( 3

4 β2 + 1− β)δA2P

−2δχmax − ( 3
2 β + 2B)δA2P

< 0. (A11)

Now we compare it with the slope of the tangent:

mP +
β

2
=

3
2
(

β2 + 1− β
)
δA2P − β

( 3
2 β + 2B

)
δA2P

2
(
−2δχmax − ( 3

2 β + 2B)δA2P
) =

[4βB− 3(1− β)]δA2P

2δχmax + ( 3
2 β + 2B)δA2P

≥ 0 (A12)

for δA2P ≥ 0 because 4βB− 3(1− β) > 0. Then:

mP > − β

2
.

and the heating curve cannot cross any cooling curve (since all of them are under the
tangent line). We conclude that it is not possible to drive the system from (0, δTi < 0) to the
origin with a CH protocol.

On the other hand, the HC protocol starting from (0, δTi < 0) and ending up at the
origin is indeed feasible, as shown in Figure A3. The cooling curve that goes through the
origin—specifically its dashed branch—divides the semi-plane δA2 < 0 into two parts. The
initial point (0, δTi < 0) and the NESS for the heating part of the protocol, (0, δTmax), lie at
different sides thereof. As a consequence, the heating curve for the first bang—over which
δT monotonically increases and δA2 has only one minimum—intersects at only one point
the cooling curve for the second bang, giving rise to the optimal connection.
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Figure A3. Qualitative picture of the HC protocol in the phase plane. Curves for t > 0 are drawn with
solid lines, curves for t < 0 with dashed lines; heating ones (δχmax) are in red, cooling ones (δχmin)

in blue. The system starts heating from an initial state δTi < 0, corresponding to point I. In the first
step of the bang, the system follows the red heating curve: If allowed to relax during an infinite time,
it reaches the NESS (0, δTmax = 2

3 δχmax) over the vertical axis. The heating is interrupted at the point
J over the cooling curve for t < 0 (blue dashed line), where the driving is switched to δχmin. The
optimal connection thus comprises the arcs I J and JF.

Appendix C. Limit Values for the Intensity of the Thermostat

In this Appendix C, we are interested in studying the range of values for the intensity
of the thermostat that make it possible to connect the initial and target NESS (for both the
CH and HC protocols). In particular, we would like to discern whether the connection is
possible for any pair of values (χmin, χmax) or there appears a region in parameter space
that make the connection impossible. We analyse the CH case (cooling, Ti > 1) in detail,
since the analysis of the HC case follows completely analogous lines.

Physically it seems clear that, in order to reach the final temperature Tf = 1 from
an initial temperature Ti > 1, it is imperative that the minimum intensity of the driving
verifies χmin < 1—the minimum value of the thermostat intensity has to be smaller than
that corresponding to the final temperature. However, what about χmax? Is the connection
always possible as long as χmax > 1? Or, on the contrary, is there a lower bound that
makes it impossible to connect the two NESS? The limit values (χmin, χmax), beyond that
the connection is no longer possible, are those that bring about a divergent minimum
connection time tf.

In the following, we show how the line of reasoning above gives answers to the
questions posed: the physical intuition on the limit value of χmin is correct, tf diverges
in the limit as δχmin → 0−, and the limit value of χmax is also unity, tf diverges in the
limit as δχmax → 0+. In order to prove these statements, we will follow the following
procedure: to elucidate the behaviour with δχmin (δχmax), we keep δχmax (δχmin) fixed
and progressively increase δχmin (decrease δχmax) from negative (positive) values until the
minimum connection time diverges.

From Equation (29), which gives tf as a function of δχi, δχmin and δχmax in the CH
case, we can infer the values of δχmin that make tf diverge. This divergence only comes
about when either the numerator of the logarithm tends to ∞ or the denominator tends
to 0. We analyse both possibilities in the following. For the numerator to diverge, either
δχmin = δχi > 0 (recall that we are studying the CH protocol) or tJ → ∞. In the latter case,
tf always diverges (Physically , it is evident that the connection time cannot be shorter than
the switching time, tf ≥ tJ . Mathematically, the divergence of the numerator always wins
because λ1 > λ2 and tf ∼ tJ ; the time spent in the second part of the bang-bang becomes
negligible as compared with tJ). The switching time tJ is determined by Equation (30),
which tells us that when tJ → ∞:
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δχtot → δχmax. (A13)

Therefore, tJ → ∞ when δχmin → 0−, in agreement with the physical intuition
described above. This makes it unnecessary to study the other possibility of divergence
of tf, δχmin → δχi > 0. Let us explore the second possibility, i.e., the vanishing of the
denominator of the logarithm in Equation (29), which occurs when:

tJ →
1

λ2
ln
(

δχi − δχmin

δχtot

)
. (A14)

Note that the numerator of the logarithm is positive for this value of tJ because λ1 > λ2.
When Equation (A14) holds, the left hand side (lhs) of Equation (30) vanishes. As a
consequence, it is δχmax → 0+, since the factor accompanying it on the rhs of Equation (A14)
is basically the numerator of the logarithm in Equation (29). Therefore, tf → ∞ when
δχmax → 0+.

Wrapping things up, our analysis above implies that it is always possible to connect
two non-equilibrium steady states as long as δχmin < 0 and δχmax > 0, that is, the
lower (upper) bound of the thermostat intensity, χmin (χmax) is below (above) the one
corresponding to the final state—i.e., unity, with our choice of variables. Therefore, there
are no additional regions in parameter space that do not allow for connecting the two NESS.
As already said above, the HC case (heating, Ti < 1) is treated in a completely analogous
way, with the same conclusion: χmin < 1 and χmax > 1, with the roles of these limitations
exchanged with respect to the case CH.

Appendix D. Bang-Bang for the Non-Linear Case

In the linear case, Equation (10), the number of switchings of the bang-bang control
is given by the theorem in Appendix A. In the first Sonine approximation employed to
describe the granular gas, we have two variables and thus only one switching. In this way,
either the CH protocol or the HC protocol is that minimising the connection time between
the initial and final NESS.

In the non-linear case, Equation (8), the optimal connection is also of bang-bang
type [22]. The evolution equations—despite being non-linear in the temperature—are
linear in the intensity of the driving, and Pontryagin’s maximum principle [53,54] ensures
that the optimal control minimising the connection time is bang-bang. However, the
number of switchings from one extreme value of χ to the other is not known. The simplest
two-step bang-bang protocols were investigated in Ref. [22], but it was not proved that the
two-step bang-bangs led to the minimum time. Here we present such a proof.

In this Appendix D, we consider more complex bang-bang processes, with more than
two steps. We show that the connection time for this more complex protocols is always
longer than that for the two-step bang-bangs. For the non-linear case, we look into the move-
ment of the system in the phase plane (A2, T) (instead of (δA2, δT)). Let us first focus on
the case Ti < 1, illustrated by Figure A4. The system starts from a point I = (1, Ti) and ends
up at the target point F = (1, Tf = 1). The heating curve—with χ = χmax = ∞—passing
through I (red solid line) and the cooling curve—with χmin = 0—passing through F (blue
solid line) intersect at the point J. The two-step bang-bang is formed by joining the portion
of the heating curve joining I and J and the portion of the cooling curve joining J and F,
i.e., the arcs I J and JF.

A four-step bang-bang is shaped as follows. Let us consider a point K belonging to
the portion of the heating curve from I to F, interrupt the heating at this point and switch
the driving to χmin = 0. Then the system starts to sweep the cooling curve passing through
K (blue dashed line). At the point L, the cooling is interrupted and the driving switched to
χmax. Then the system starts to sweep the heating curve passing through L (red dashed
curve). The heating is interrupted when the latter heating curve reaches the point M, which
belongs to the cooling curve passing through F. The arcs IK, KL, LM, and MF build a
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four-step bang-bang. The point K must verify TK < TJ , otherwise, it is easy to show that
the four-step bang-bang cannot reach the target NESS.

The above picture entails that in order to show the optimality of the two-step bang-
bang, we have to establish that the time needed for going from K to L, tKL, is longer than
the time needed for going from J to M, tJM. Making use of Equation (8), the equation of
motion in the phase plane with χmin = 0 is given by:

Ṫ = −T3/2(1 +
3

16
as

2 A2), Ȧ2 = 2T1/2 AHCS
2 − A2

AHCS
2 − 1

, (A15)

where AHCS
2 = aHCS

2 /as
2 > 1. Thus, in the phase plane, one has:

dT
dA2

= −
(1 + 3

16 as
2 A2)T

2 AHCS
2 −A2

AHCS
2 −1

, (A16)

which can be integrated to obtain an explicit expression for T(A2) over the cooling
curve [22]. From Equation (A15), we have:

dt =
AHCS

2 − 1
2

dA2

(T(A2))1/2(AHCS
2 − A2)

, (A17)

and integrating it, we obtain the expressions for tJM and tKL:

tJM =
AHCS

2 − 1
2

∫ A2M

A2J

dA2

[T(A2)]1/2(AHCS
2 − A2)

(A18a)

tKL =
AHCS

2 − 1
2

∫ A2L

A2K

dA′2
[T(A′2)]

1/2(AHCS
2 − A′2)

(A18b)

In order to compare tJM and tKL, it is convenient to rewrite them in terms of a common
variable. This variable can be naturally defined by employing the bijection that the heating
curves establish between the points belonging to the JM and LK arcs. In the limit as χ→ ∞,
Equation (8) leads to:

dT
dA2

= − βT
2A2

=⇒ T2 Aβ
2 = const. (A19)

Therefore, we define a variable ξ in the following way:

ξ = T2(A2)Aβ
2 , ξi ≡ T2

i ≤ ξ ≤ ξL ≡ T2
L Aβ

2L = ξM ≡ T2
M Aβ

2M, (A20)

and we have:

tJM =
AHCS

2 − 1
2

∫ ξL

ξi

dξ

ξ1/4
dA2

dξ

Aβ/4
2

AHCS
2 − A2(ξ)

(A21a)

tKL =
AHCS

2 − 1
2

∫ ξL

ξi

dξ

ξ1/4
dA′2
dξ

A′2
β/4

AHCS
2 − A′2(ξ)

(A21b)

In view of Figure A4, it is straightforward to see that:

Aβ/4
2

AHCS
2 − A2(ξ)

<
A′2

β/4

AHCS
2 − A′2(ξ)

, (A22)

since A2(ξ) < A′2(ξ), ∀ξ. Now, we show that the next inequality also holds:

dA2(ξ)

dξ
<

dA′2(ξ)
dξ

. (A23)
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Taking logarithms in Equation (A20), one obtains:(
2

d ln T(A2)

dA2
+

β

A2

)
dA2 =

dξ

ξ
. (A24)

Plugging Equation (A16) into the last equation, we obtain:

Ξ(A2)dA2 =
dξ

ξ
, (A25)

where

Ξ(A2) ≡ −(AHCS
2 − 1)

1 + 3
16 as

2 A2

AHCS
2 − A2

+
β

A2
(A26)

is a decreasing function of A2 (all of the terms in the sum of its derivative are negative),
positive for A2 < 1 and negative for A2 > 1. The resulting integrals can be written as:

tJM =
AHCS

2 − 1
2

∫ ξL

ξi

dξ

ξ5/4
1

Ξ(A2(ξ))

Aβ/4
2

AHCS
2 − A2(ξ)

, (A27a)

tKL =
AHCS

2 − 1
2

∫ ξL

ξi

dξ

ξ5/4
1

Ξ(A′2(ξ))
A′2

β/4

AHCS
2 − A′2(ξ)

. (A27b)

These expressions let us conclude that tJM < tKL: A2(ξ) < A′2(ξ) and thus the
integrand in tJM is smaller than the integrand in tKL. Therefore, a two-step protocol is
better than a four-step one. This line of reasoning can be easily extended two six-step, eight-
step, etc., protocols, showing each of them to be worse than the previous one. Protocols
with an odd number of switches can be described as a limiting case of protocols with an
even number of switching: For example, the three-step protocol can be seen as a four-step
protocol for which M coincides with F.

Let us inspect the case Ti > 1. Again, we start by considering a two-step protocol,
comprising the arcs I J and JF. We also build a four-step protocol, comprising the arcs IK,
KL, LM, and MF. The expression for the times are formally equal to those for the case
Ti > 1, given by Equation (A27):

tKJ =
AHCS

2 − 1
2

∫ ξK

1

dξ

ξ5/4
A2(ξ)

β/4

|Ξ(A2(ξ))|(AHCS
2 − A2(ξ))

,

tLM =
AHCS

2 − 1
2

∫ ξK

1

dξ

ξ5/4
A′2(ξ)

β/4

|Ξ(A′2(ξ))|(AHCS
2 − A′2(ξ))

,

where 1 = ξM = ξ J and ξL = ξK. However, the inequality in Equation (A22) is reversed,
so it is not direct that tKJ < tLM. Still, it is possible to inspect the behaviour of F(A2),
defined as:

F(A2) =
Aβ/4

2

|Ξ(A2)|(AHCS
2 − A2)

(A28)

in the interval 1 < A2 < AHCS
2 : Therein, F(A2) monotonically decreases with A2, and

thus tKJ < tLM. As a consequence, the four-step bang-bang lasts longer than the two-step
bang-bang. Six-step, eight-step, etc., protocols are even worse, so the two-step bang-bang
is the optimal one also for Ti > 1.
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Figure A4. Comparison of the two- and four-step bang-bang processes for Ti < 1. The two-step
bang-bang connects I and F with the arcs I J and JF, whereas the four-step one comprises the arcs IK,
KL, LM, and MF. The latter obtains I and F connected, but it takes it longer to complete it—for all the
possible points TK < TJ . Any four-step protocol whose first cooling arc ends at a point with TK > TJ

cannot drive the system to the target NESS F = (1, 1). Dotted lines represent the axes. Dashed and
solid lines correspond to the heating and cooling steps of the bang-bang, respectively.

Figure A5. Comparison of the two- and four-step bang-bang processes for Ti > 1. Analogously
to the case Ti < 1, the two-step bang-bang connects I and F with the arcs I J and JF, whereas the
four-step one comprises the arcs IK, KL, LM, and MF. It takes it longer to complete the latter—but
now TK > TJ . In this case, if TK < TJ , the system cannot be driven to the target NESS. Dotted, dashed,
and solid lines have the same meaning as in Figure A4.

Appendix E. Approximate Expressions for Short Connection Time

Let us look into the CH case, since the analysis of the HC case follows along similar
lines—as usual. Note that, despite the closeness of the initial and final states, both the
switching time tJ and the connecting time tf are in principle of the order of unity. This may
be surprising at first sight, but we have to take into account that the intensity of the driving
is also bounded in a small interval, δχ ∈ [δχmin, δχmax] ∀t ≥ 0. In fact, tJ and tf depend
on the ratios δχi/δχtot, δχmin/δχtot and δχmax/δχtot—all of them order of unity quantities,
in principle.
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Our purpose in this Appendix E is to find an approximate expression for the minimum
connecting time when it is very short, i.e., when tf � 1—and so is tJ because tJ ≤ tf � 1.
Note that tJ and tf vanish simultaneously when δχi = 0. First, we can make use of
Equation (29) to find a relation between tf and tJ in this regime:

tf =
1
k

ln

1 +
δχtot

δχi−δχmin

(
eλ1tJ − eλ2tJ

)
δχtot

δχi−δχmin
eλ2tJ − 1

 =
1
k

δχtot
δχi−δχmin

(λ1 − λ2)tJ
δχtot

δχi−δχmin
− 1

+O(t2
J ), (A29)

i.e.,

tf ∼
δχtot

δχmax − δχi
tJ ∼

δχtot

δχmax
tJ . (A30)

We have neglected δχi in the denominator because it gives higher-order corrections that
have been already neglected.

In the same vein, we can expand Equation (30) in powers of tJ . First, we rewrite
Equation (30) in the equivalent form:

(δχmax − δχi)
[
1 + a

(
eλ2tJ − 1

)] λ1
k
= δχmax

[
1 + a

(
eλ1tJ − 1

)] λ2
k , (A31)

where we have introduced a parameter a defined by:

a =
δχtot

δχmax − δχi
. (A32)

Equation (A31) makes clear that tJ → 0 when δχi → 0. Now, we expand it in powers
of tJ using:

[
1 + a

(
eλ2tJ − 1

)] λ1
k = 1 + a

λ1λ2

k
tJ +

aλ2
2λ1

2k

(
1− a + a

λ1

k

)
t2

J +O(t3
J ) (A33)

and an analogous expression—exchanging λ1 and λ2—for the term in brackets on the rhs.
In this way, we reach the lowest order:

δχi = δχmax
1
2

a(a− 1)λ1λ2t2
J +O(t3

J ). (A34)

Terms of the order of t3
J also include the contributions proportional to δχitJ in the expansion—

note that δχi = O(t2
J ). Bringing to bear the definition of a, to the lowest order we have to

substitute δχi with zero, i.e., a ∼ δχtot/δχmax and

1
2

λ1λ2t2
J ∼

δχi

δχtot

δχmax

−δχmin
. (A35)

For the connection time, we thus obtain:

1
2

λ1λ2t2
f ∼

δχi

δχmax

δχtot

−δχmin
, (A36)

which is equivalent to Equation (39) in the main text.
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