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Abstract: The ability to control the flow of quantum information is deterministically useful for
scaling up quantum computation. In this paper, we demonstrate a controllable quantum switchboard
which directs the teleportation protocol to one of two targets, fully dependent on the sender’s choice.
Importantly, the quantum switchboard also acts as a optimal quantum cloning machine, which allows
the receivers to recover the unknown quantum state with a maximal fidelity of 5

6 . This protects the
system from the complete loss of quantum information in the event that the teleportation protocol
fails. We also provide an experimentally feasible physical implementation of the proposal using a
coupled-cavity array. The proposed switchboard can be utilized for the efficient routing of quantum
information in a large quantum network.

Keywords: quantum entanglement; quantum network; coupled-cavity array

1. Introduction

A quantum network contains many quantum nodes for processing and storing quan-
tum states and quantum channels for the distribution of quantum information [1–3]. The
ability to distribute arbitrary quantum states is essential for quantum information pro-
cessing in a quantum network. Efficient navigation in a complex quantum network will
eventually need a quantum multiplexer or switchboard to direct the flow of quantum
information. A likely scenario is one where we have many quantum devices or computers
linked by a switchboard system to other devices and computers for processing, storing or
sensing (see Figure 1). Many quantum information processes require the explicit prepa-
ration of specially entangled quantum states. Two-qubit maximally entangled state often
called Bell state, for instance, form an essential quantum resource needed in quantum
teleportation [4]. The preparation of three-qubit maximally entangled state (such as GHZ
state) could be harnessed for secure secret sharing [5]. In one-way quantum computing,
a four-qubit entangled state called cluster state provides an efficient implementation of a
universal quantum gate: arbitrary single-qubit unitary operation [6].

Entangled states which are used as a common resource in quantum information
processes generally need not even be maximally entangled at all. As long as the state is
genuinely entangled, quantum computation and communication will generally be better
than the classical counterparts. In particular, the nonmaximally entangled W state was
experimentally implemented and proposed for controlled quantum teleportation and
secure communication [7].

An essential component of any quantum computation is the ability to spread quantum
information over various parts of the quantum computer. The parts then undergo separate
evolutions depending on the type of the quantum information processing we wish to
implement. Ultimately, we need to be capable of navigating the relevant part of the
information into a designated output. In a classical computer, this flow of information is
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achieved through a controllable switch. Is it possible to design a quantum analogue for
such a device? An added complexity in a quantum switch would be the requirement that
the information flows down many possible channels coherently as well as the possibility of
channeling it in one selected direction.

Figure 1. A quantum network consisting of many quantum devices and computers connected
through a quantum switchboard. Switchboard can also redirect congested channels to less used
channels during peak usage.

Ideally, we would like to realize a simple device to achieve this purpose. In addition,
these qubits are implemented in practice in a physical system determined by the nature
of the qubits and couplings between them. Therefore, in the design of the switch, realistic
interaction between the qubits severely limits the type of possible Hamiltonians that can
execute such a quantum switch. Here, we present a possible implementation of the switch
that minimally fulfills these requirements.

In the usual teleportation protocol [4], the sender Alice and receiver Bob begins by
sharing a two-qubit maximally entangled Bell state. Alice also possesses an additional
ancilla qubit which carries the quantum state to be teleported. Alice then performs a Bell
measurement on her share of the entangled state and the ancilla qubit, and the measurement
results are then communicated classically to Bob which will perform a corresponding
unitary operation on his qubit to recover the desired state, thus completing the teleportation.
The choice of receiver is fixed by whoever Alice shares the initial entangled state with, and
cannot be changed without discarding the entangled state and setting up a new one with a
different receiver Charlene. This poses two limitations to the scheme: to teleport quantum
states on-demand with multiple receivers, Alice has to share a separate entangled qubit
pair with each of the receivers, which must be isolated from one another. Furthermore,
Alice is not allowed to choose the receiver after the Bell measurement in this scheme.

In this paper, we show how the above challenges can be overcome by using a specific
four-qubit entangled state shared between the sender Alice, the two receivers Bob and
Charlene, as well as the accomplice Dick. The role of Dick is to direct the teleported
state to the desired receiver as per the sender’s choice, which can be done after Alice
reveals the Bell measurement results. By controlling the flow of quantum information
deterministically, the protocol becomes a quantum switchboard with Dick acting as a
‘switchboard operator’. Previous proposals of controlled quantum teleportation [8–15]
share the common problem of significant loss of quantum information in the event of
teleportation failure, which in the worst-case scenario causes the receiver qubit to be in a
maximally-mixed state indicating a complete information loss. The teleportation protocol
can fail if, for example, the classical communication channel is attacked which hinders
Alice from announcing the results of her Bell measurement. Our proposed switchboard
has the unique feature of also being an optimal quantum cloning machine, which allows
the receivers to recover the unknown quantum state with the maximal fidelity of 5

6 even
if the teleportation protocol fails. We also provide an experimentally feasible physical
implementation of the quantum switchboard using a driven coupled cavity array [16],
which realizes the required multipartite entangled state.
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2. Controllable Quantum Switchboard

The controllable quantum switchboard serves to direct the flow of quantum informa-
tion in a quantum network [17]. Specifically, it allows Alice to transfer her quantum state
perfectly to either Bob or Charlene (free choice) with the help of her accomplice Dick. The
basis of the scheme requires all four parties to be initialized in the four-qubit entangled state

|ψ〉 = 1√
3
(|(11)AB〉 |(11)DC〉 − |(11)AC〉 |(11)BD〉)

=
1

2
√

3
(2 |0110〉+ 2 |1001〉 − |0101〉 − |1010〉 − |0011〉 − |1100〉)ABCD

(1)

using the notation for Bell states

|(ab)〉 =
1

∑
k=0

(−1)kb
√

2
|k, k⊕ a〉 (2)

with ⊕ denoting modulo-2 addition, or an XOR operation. For example, the state |(11)〉
represents the singlet state 1√

2
(|0〉 |1〉 − |1〉 |0〉). It turns out that this state is ideally suited

for a quantum switchboard, i.e., a circuit that can be used to direct the flow of quantum
information in a controllable manner. An interesting property of the presented switchboard
is that in the case of failure the information is not entirely lost.

We will now illustrate the quantum switchboard protocol. Suppose Alice wants
to teleport her quantum state |α〉0 encoded in an ancilla qubit (indexed 0) to Bob. The
combined state of the ancilla and the initial entangled state can be expressed as

|α〉0 |ψ〉 =
1

4
√

3

1

∑
k,l,m,n=0

λkl |(mn)0A〉 ⊗Umn,kl |α〉B |(kl)DC〉 (3)

where λ11 = 3, λ01 = λ10 = 1 and λ00 = −1. Umn,kl is the unitary transformation on Bob’s
qubit, determined by the results of both Bell measurements (mn) and (kl). Explicitly, the set
of unitaries Umn,kl are the Pauli operators {I, X, Y, Z}where Umn,kl = I if m⊕ k = n⊕ l = 0,
X if m⊕ k = 1 and n⊕ l = 0, Y if m⊕ k = n⊕ l = 1, and lastly Z if m⊕ k = 0 and n⊕ l = 1.
Alice first performs a Bell measurement on the ancilla and her share of |ψ〉, yielding a
measurement result (mn). Immediately after getting one of the four possible outcomes,
she broadcasts two (classical) bits of information to Bob and Charlene as it is in the usual
teleportation scheme. At this point, it is not necessary for Dick to know these two bits of
information.

The Bell measurement collapses the state of the other three parties to be

|χmn〉 =
1

∑
k,l=0

λkl

2
√

3
Umn,kl |α〉B |(kl)DC〉 (4)

If we trace out Charlene and Dick’s qubits, then Bob will have the mixed state

ρmn =
1

12

1

∑
k,l=0
|λkl |2Umn,kl |α〉 〈α|U†

mn,kl (5)

A similar state is obtained for Charlene if we trace out Bob and Dick’s qubits instead. For
example, if the Bell measurement yields (11), Bob’s state becomes

ρ11 =
1

12
(9 |α〉 〈α|+ X |α〉 〈α|X + Y |α〉 〈α|Y + Z |α〉 〈α| Z) (6)



Entropy 2022, 24, 136 4 of 10

The fidelity of the state recovered by Bob is Fα = 〈α|ρ11|α〉 = 3
4 + 1

12 (| 〈X〉 |2 + | 〈Y〉 |2 +
| 〈Y〉 |2). Writing the arbitrary state as |α〉 = cos(θ/2) |0〉+ exp (iφ) sin(θ/2) |1〉 and aver-
aging over the Bloch sphere, we have

1
4π

∫ 2π

0
dφ
∫ π

0
dθ sin θ| 〈α|Ô|α〉 |2 =

1
3

, Ô = X, Y, Z (7)

Hence, Bob and Charlene can recover the state of the ancilla qubit with a fidelity
of 5

6 . There is no loss of generality in assuming the Bell measurement result to be (11)
since the state in Equation (6) can be obtained for any (mn) by simply performing an
additional unitary transformation U†

mn,11 on the state ρmn based on the knowledge of
the broadcast classical bits. Equivalently, we can also write the state in Equation (6) as
5
6 |α〉 〈α|+

1
6 |α⊥〉 〈α⊥|, where |α⊥〉 is the state orthogonal to |α〉, from which the cloning

fidelity of 5
6 becomes apparent. The given state at the beginning does not provide a

universal cloning machine for three copies of the cloned state [18]. In fact, tracing out Bob
and Charlene’s qubits after the Bell measurement, and performing an appropriate unitary
transform on Dick’s qubit depending on the measurement outcome, we can write Dick’s
qubit as ρD = 1

3 |α〉 〈α|+
2
3 |α⊥〉 〈α⊥|. Thus, the qubit belonging to Dick is related to the

Alice’s ancilla qubit with the “classical” fidelity 1
3 , i.e., the fidelity that can be achieved

without prior entanglement. Interestingly, Bob and Charlene possess the optimum fidelity
achievable under a symmetric cloning machine. Dick’s fidelity is allowed since there is
no limitation on the production of clones with the fidelity below 2

3 using a trivial cloning
scheme, such as by measuring the qubit on a random basis [18].

To obtain perfect fidelity, the accomplice Dick can send his qubit to Charlene to perform
Bell measurement, yielding the result (kl). With both measurement results (mn) from Alice
and (kl) from Charlene, Bob now has the state

|φ〉B = Umn,kl |α〉 (8)

Thus, Bob can recover Alice’s state |α〉 (up to a global phase) by simply performing an
inverse transform Umn,kl on his qubit. The presented protocol behaves like an optimal
telecloner [19]. However, there is still an unused qubit held by Dick. Depending on Alice’s
decision regarding to whom she wishes ultimately to send her auxiliary qubit; say Bob
(Charlene) for instance, she can direct Dick to send his qubit to Charlene (Bob). As soon
as Charlene receives Dick’s qubit, he can perform a Bell measurement on his qubit with
Dick’s qubit and send the results of his measurement to Bob. Using the information from
Charlene, Bob can perfectly recover the state of the Alice’s auxiliary qubit. Alternatively,
Dick can also make the decision on whom he wishes to transmit the unknown qubit held
originally by Alice.

The situation is entirely symmetric, i.e., Dick can send his qubit to Bob instead of
Charlene with the result that now Charlene can obtain Alice’s auxiliary qubit with perfect
fidelity. In short, the state acts as a quantum switchboard in which Alice can direct optimal
clones to Bob and Charlene or perform perfect quantum teleportation to Bob or Charlene by
utilizing Dick’s qubit as in a quantum demultiplexer. A schematic diagram of this quantum
switchboard protocol is shown in Figure 2. By directing Dick’s qubit to either Bob (or
Charlene), Alice can effectively transfer the unknown auxiliary qubit to Charlene (or Bob).
Moreover, she can delay the transfer process to a later time as long as she has effective
control over Dick’s qubit. The relative phase of π between the components of the state |ψ〉
is crucial for desired functionality. Other phase choices or, for that matter, the complete
lack of coherence, will not give us the same quantum switch. To show this, we can consider
adding a relative phase eiφ between the two components. By a similar calculation as before,
we find that the cloning fidelity is now 3−2 cos φ

2(2−cos φ)
, which gives the maximal value of 5

6 only
for φ = π (mod 2π).
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Figure 2. Schematic of quantum switchboard. Suppose Alice wishes to send her auxiliary qubit
to Bob. She can direct Dick to send his qubit to Charlene (Bob). Charlene then performs a Bell
measurement on his qubit with Dick’s qubit and sends results of his measurement to Bob. Using
information from Charlene, Bob can perfectly recover state of Alice’s auxiliary qubit. Our switchboard
state has unique feature of also being an optimal quantum cloning machine, which allows receivers
to recover quantum state with maximal fidelity in event that teleportation protocol fails.

Also, if we initialize the qubits in singlet pairs, i.e., the first term in Equation (1), the
deterministic controlled teleportation to either Bob or Charlene can be achieved trivially.
However, tracing out Alice, Bob, and Dick’s qubits, we find that Charlene’s qubit is always
in the maximally mixed state 1

2 I which implies that the quantum information is entirely
lost. Hence, our proposed initial state is necessary to achieve the dual functionality of both
optimal quantum cloning and a deterministic teleportation protocol. Furthermore, in an
actual network of nodes, the scheme is easily extendable to a Bethe lattice of nodes within
the switchboard configuration as shown in Figure 3. Naturally, the configuration shown in
the figure is not the only possibility.

Figure 3. An illustration of how the scheme can be extended to a network of nodes with receivers
labelled by Bob1, Bob2, · · · and Charlene1, Charlene2, · · · . The controllers are not omitted from the
diagram for simplicity, but are inherently present at each branch of the network to direct the flow of
quantum information.

Incidentally, replacing the four-qubit state with a GHZ state, shared among Alice,
Bob, and Charlene, one could in principle provide perfect quantum teleportation to both
Bob and Charlene without the additional benefit of an optimal quantum cloner [8]. In this
case, Alice teleclones to both Bob and Charlene with a classical fidelity of 2

3 . The eventual
quantum teleportation to Bob (or Charlene) is performed with a measurement in the basis

1√
2
(|0〉 ± |1〉). The presence of singlets or dimer-like bonds in the four-qubit state renders

it more insensitive to perturbation in the quantum critical regimes. This latter feature is
absent in the GHZ state.
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3. Realization of Next Nearest-Neighbor Interactions with Coupled-Cavity Array

Remarkably, the Majumdar–Ghosh (MG) model given by the spin-chain Hamilto-
nian [20]

HMG = J
N

∑
i=1

(
2~Si~Si+1 + α~Si~Si+2

)
(9)

and periodic boundary conditions is exactly solvable for α = 1 and even number of spins,
with the degenerate ground state manifold spanned by the basis (dimer) states

|ψg〉 = |(11)12〉 |(11)34〉 . . . |(11)(N−1)N〉
|φg〉 = |(11)23〉 |(11)45〉 . . . |(11)N1〉

(10)

Thus, the required four-qubit state in Equation (1) can be prepared from the superposition
of the Majumdar–Ghosh Hamiltonian ground states. While the Majumdar–Ghosh model
is yet to be realized experimentally, close proximity to the Majumdar–Ghosh point with
α = 0.9 was experimentally observed in the Cu2+ mineral szenicsite Cu3(MoO4)(OH)4 [21],
showing the dimerized phase. We also note that both the local and non-local dimers in
Equation (10) can be prepared using the dark states of a driven-dissipative spin chain
coupled indirectly via mediating photons in a chiral waveguide [22,23]. In this waveguide
quantum electrodynamics (QED) setup, the infinite-range nature of the effective spin-spin
interactions give rise to interesting dimer states depending on the detuning pattern of the
spins and the chirality of the waveguide, which are by design robust against decoherence
effects in the waveguide. This means that the controllable quantum switchboard can
also be potentially realized with a cold-atom chain. Additionally, chiral waveguide QED
realizes the paradigm of cascaded systems, which was exploited in several proposals for
long-distance quantum information processing [24,25].

In this section, we provide a different physical implementation using a coupled-cavity
array. We directly engineer the Majumdar–Ghosh Hamiltonian which yields the desired
switchboard state as the ground state. We review the proposal introduced in Ref. [26] to
realize next nearest neighbor (NNN) spin-chain interactions using a coupled-cavity array,
and show how it can be used to implement the quantum switchboard. Consider an array
of N cavity QED subsystems. Each subsystem comprises a four-level atom coupled to a
bimodal cavity, with 6 optical driving fields. This forms an effective double Λ system, with
Λa = {|1〉 , |2〉 , |3〉} and Λb = {|1〉 , |2〉 , |4〉} (as shown in Figure 4). The ground states |1〉
and |2〉 will be used as a logical qubit.

Figure 4. (a) Coupled-cavity array setup. Each unit cell contains a four-level atom coupled to
a two-mode cavity field with strengths ga and gb. Each atom is driven by four external lasers
with Rabi frequencies Ω1, Ω2, Ω3 and Ω4. (b) Energy level diagram of the four-level atom. The
detunings δj are defined in the main text. A double Λ system is formed, with Λa = {|1〉 , |2〉 , |3〉}
and Λb = {|1〉 , |2〉 , |4〉}. The ground states |1〉 and |2〉 are used to encode a qubit.

At the jth site, the atom is coupled to 2 cavities (modes aj at frequency ωa and bj at
frequency ωb, with coupling strengths ga and gb respectively). The four driving lasers
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have Rabi frequencies Ω1, Ω2e−iπ j, Ω3 and Ω4e−iπ j, with laser frequencies ω1, ω2, ω3 and
ω4 respectively. The transitions are labelled in Figure 4. We can define the detunings
δ31 = ω31 − ωa, δ42 = ω42 − ωb, ∆31 = ω31 − ω1, ∆42 = ω42 − ω2, ∆32 = ω32 − ω3 and
∆41 = ω41 −ω4.

Assuming the detunings to be large compared to the Rabi frequencies |ga|, |gb|, Ωi, we
can apply the rotating wave approximation and adiabatically eliminate the excited states
|3〉 and |4〉. This leads to the Hamiltonian

H = −∑
j

[
A1 |1j〉 〈1j| ajeiδ1t + A2 |2j〉 〈1j| ajeiδ2t + H. c.

]
−∑

j

[
(−1)jB1 |2j〉 〈2j| bjeiδ1t + (−1)jB2 |1j〉 〈2j| bjeiδ2t + H. c.

]
−∑

j

[
A3 |1j〉 〈2j| eiδ3t + B3 |2j〉 〈1j| eiδ3t + H. c.

]
−∑

j

[(
Ω2

1
∆31

+
Ω2

4
∆41

)
|1j〉 〈1j|+

(
Ω2

3
∆32

+
Ω2

2
∆42

)
|2j〉 〈2j|

]

−∑
j

[
g2

a
δ31
|1j〉 〈1j| a†

j aj +
g2

b
δ42
|2j〉 〈2j| b†

j bj

]
+ ∑

j

[
Ja(a†

j aj+1 + aja†
j+1) + Jb(b†

j bj+1 + bjb†
j+1)

]

(11)

where the coupling parameters are given by

A1 =
Ω1ga

2

(
1

∆31
+

1
δ31

)
, A2 =

Ω3ga

2

(
1

∆32
+

1
δ32

)
A3 =

Ω1Ω3

2

(
1

∆31
+

1
∆32

)
, B1 =

Ω2gb
2

(
1

∆42
+

1
δ42

)
B2 =

Ω4gb
2

(
1

∆41
+

1
δ42

)
, B3 =

Ω2Ω4

2

(
1

∆41
+

1
∆42

) (12)

the two-photon detunings are defined as δ1 = δ31 − ∆31 = δ42 − ∆42, δ2 = δ31 − ∆32 =
δ42 − ∆41 and δ3 = δ1 − δ2. Ja and Jb are the tunneling rates for the NN hopping term
between the cavities. The (−1)j factors come from the choice of coupling phases in Ω2 and
Ω4. The terms containing Ai and Bi originate from Λa and Λb respectively (defined in the
caption of Figure 4). Using the ground states |1j〉 and |2j〉 as qubits, we can define the spin
operators SZ

j = 1
2 (|2j〉 〈2j| − |1j〉 〈1j|), S+

j = |2j〉 〈1j| , S−j = |1j〉 〈2j|.
To simplify the Hamiltonian, we first observe that the third and fourth terms contribute

an effective local magnetic field hjSZ
j and can be temporarily ignored. The fifth term

modifies the two-photon detunings, giving δa1 = δ1 + g2
a/δ31, δa2 = δ2 + g2

a/δ31, δb1 =
δ1 + g2

b/δ42 and δb2 = δ2 + g2
b/δ42. Assuming periodic boundary conditions, we can take

the Fourier transform of aj and bj:

aj(bj) =
1√
N

N

∑
k=1

Fjkck(dk), Fjk = exp
(
−i

2π

N
jk
)

,
N

∑
j=1

F∗jkFjl = Nδ̃kl (13)

where δ̃kl is the Kronecker delta. Going into the rotating frame and assuming large detun-
ings, we can adiabatically eliminate the cavities and obtain (after some algebra)
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H =
N

∑
j=1

2

(
Ja

δ2
a1

A2
1 −

Jb

δ2
b1

B2
1

)
SZ

j SZ
j+1 +

(
Ja

δ2
a2

A2
2 −

Jb

δ2
b2

B2
2

)
(S+

j S−j+1 + S−j S+
j+1)

+ 2

(
J2
a

δ3
a1

A2
1 +

J2
b

δ3
b1

B2
1

)
SZ

j SZ
j+2 +

(
J2
a

δ3
a2

A2
2 −

J2
b

δ3
b2

B2
2

)
(S+

j S−j+2 + S−j S+
j+2) +O

(
J3
µ

δ3
µi

) (14)

for µ = a, b and i = 1, 2. The first two terms correspond to the NN interactions and the
last two terms correspond to the NNN interactions. We can rewrite the above spin-chain
Hamiltonian (with local magnetic fields) in a more compact form

H =
N

∑
j=1

2

∑
i=1

Ji(SX
j SX

j+i + SY
j SY

j+i) + λiSZ
j SZ

j+i + hjSZ
j (15)

where

J1 = 2

(
Ja

δ2
a2

A2
2 −

Jb

δ2
b2

B2
2

)

λ1 = 2

(
Ja

δ2
a1

A2
1 −

Jb

δ2
b1

B2
1

) (16)

are the NN interaction strengths, and

J2 = 2

(
J2
a

δ3
a2

A2
2 +

J2
b

δ3
b2

B2
2

)

λ2 = 2

(
J2
a

δ3
a1

A2
1 +

J2
b

δ2
b1

B2
1

) (17)

are the NNN interaction strengths. Controlling the parameters appropriately, the MG
model in Equation (9) can be realized.

The scheme cannot work without both Λa and Λb. If we only consider the Λa system,
the NNN interaction strengths will be weaker than the NN interaction strengths by an
order of J/δ. Since we require δ to be large, the NNN strengths will thus be very weak
and cannot realize the MG Hamiltonian. With the two Λ systems, the driving phase can
then produce the (−1)j factors in Equation (11), which can be utilized to suppress NN
interactions and boost NNN interactions (notice the sign differences between Equation (16)
and Equation (17) ). As such, the resultant NN and NNN interaction strengths can be made
comparable by controlling the free laser and cavity parameters.

To obtain the MG Hamiltonian, we require J1 = λ1, J2 = λ2 and J1 = 2J2. This can
be realized (for example) by setting δ1 = δ2, Ω1 = Ω3, Ω2 = Ω4, ∆31 = ∆32, ∆41 = ∆42,
δ31 = δ32, Ja = Jb, δa2 = δb2, B2 = A2/2, Ja = 0.3δa2. As demonstrated in [26], the J1/J2
ratio can be adjust arbitrarily and can even be greater than 1, even though each term in J1
is significantly larger than J2. Moreover, the qubit is encoded in the ground states of the
four-level atom, it is highly robust against decoherence due to dissipation. There is also
negligible transitions to the excited states during the process due to large detunings, which
justifies the adiabatic elimination of excited states.

Our scheme is experimentally feasible with state-of-the-art quantum devices such
as microtoroidal cavities [27] and quantum dot-cavity systems [28]. The ground-state
encoding of the qubit provides the robustness against radiative decay which thus leads to a
long T1 coherence time. The double Λ system can be realized with natural atoms such as
the D1 line in cesium atoms, using the 62S1/2 hyperfine states as the ground states and the
62S3/2 hyperfine states as the excited states [29]. Multimode cavities (two cavity modes in
our case) have also been experimentally demonstrated to achieve strong coupling with the
atoms [30]. This is sufficient for our proposal as the effective coupling parameters, as given
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by the A and B parameters in our manuscript, can be increased (if necessary) by using a
stronger laser driving field without requiring ultrastrong cavity-atom interactions.

4. Conclusions

We demonstrate the controllable quantum switchboard which directs the flow of quan-
tum information in a quantum network, by allowing the sender to freely choose one of the
two targets to receive the quantum state via teleportation. The key difference with other
controlled teleportation protocols is that in the event of failure, the quantum information is
not entirely lost and the switchboard behaves as an optimal telecloner, where the receivers
can recover the quantum state with a maximal fidelity of 5

6 . This is achieved by preparing
the sender, receivers, and controller in a four-qubit entangled state, which is necessary to
function as both an optimal symmetric quantum cloning machine and deterministic con-
trolled teleportation. We also provide an experimentally feasible physical implementation
of the required four-qubit entangled state (as the ground state of the Majumdar–Ghosh
model) using a coupled-cavity array. The quantum switchboard can potentially be a useful
component of a large quantum network, where the information pathway can be redirected
efficiently to reduce network congestion. The optimal telecloning aspect of our proposal
provides a safeguard against the complete loss of quantum information in the worst-case
scenario of a teleportation failure.
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