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Abstract: A general framework is introduced to estimate how much external information has been
infused into a search algorithm, the so-called active information. This is rephrased as a test of fine-
tuning, where tuning corresponds to the amount of pre-specified knowledge that the algorithm makes
use of in order to reach a certain target. A function f quantifies specificity for each possible outcome
x of a search, so that the target of the algorithm is a set of highly specified states, whereas fine-tuning
occurs if it is much more likely for the algorithm to reach the target as intended than by chance. The
distribution of a random outcome X of the algorithm involves a parameter θ that quantifies how
much background information has been infused. A simple choice of this parameter is to use θ f in
order to exponentially tilt the distribution of the outcome of the search algorithm under the null
distribution of no tuning, so that an exponential family of distributions is obtained. Such algorithms
are obtained by iterating a Metropolis–Hastings type of Markov chain, which makes it possible to
compute their active information under the equilibrium and non-equilibrium of the Markov chain,
with or without stopping when the targeted set of fine-tuned states has been reached. Other choices
of tuning parameters θ are discussed as well. Nonparametric and parametric estimators of active
information and tests of fine-tuning are developed when repeated and independent outcomes of the
algorithm are available. The theory is illustrated with examples from cosmology, student learning,
reinforcement learning, a Moran type model of population genetics, and evolutionary programming.

Keywords: active information; exponential tilting; fine-tuning; functional information; large deviations;
Markov chains; Metropolis–Hastings; Moran model; statistical estimation and testing

1. Introduction

When Gödel published their incompleteness theorems [1], the mathematical world was
shaken such that to date it has neither recovered nor fully assimilated the consequences [2].
Hilbert’s program to base mathematics on a finite set of axioms had previously been
pursued by Alfred North Whitehead and Bertrand Russell [3]. However, this approach
turned out to be wrong when Gödel proved that no finite set of axioms in a formal system
can prove all its true statements, including its own consistency. At a similar but lesser scale,
when David Wolpert and William MacReady published their No Free Lunch Theorems
(NFLTs, [4,5]), there was disquiet in the community because these results imply that there
is no one-size-fit-all algorithm that can do well in all searches [6], and thus that a “theory
of everything” is not possible in machine learning. Wolpert and MacReady concluded
that it was necessary to incorporate “problem-specific knowledge into the behavior of the
algorithm” [5]. Thus, active information (actinfo) was introduced in order to measure
the amount of information carried out by such problem-specific knowledge [7,8]. More
specifically, the NFLTs say that no search works better on average than a blind search, i.e., a
search according to a uniform distribution. Accordingly, actinfo is defined as

I+ = log
P(A)

P0(A)
, (1)
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where A ⊂ Ω is the non-empty target of the search algorithm, a subset of the finite
sample space Ω, and P0 is a uniform probability measure (P0(A) = |A|/|Ω|). P must
be seen here as the probability measure induced by the problem-specific knowledge of
the researcher, whereas P0 is the underlying distribution assumed in the NFLTs. This
corresponds to absence of problem-specific knowledge, in accordance with Bernoulli’s
Principle of Insufficient Reason (PoIR). An equivalent characterization of actinfo is the
reduction in functional information

I+ = I f 0 − I f = − log P0(A)− (− log P(A)) (2)

between algorithms that do not and do make use background knowledge. The name
functional information was introduced by Szostak and collaborators [9,10]. It refers to
applications wherein A corresponds to all outcomes of an algorithm that are functional
according to some criterion. Then, I f 0 and I f are the self-information (measured in nats) of
the event that an algorithm X produces a functional outcome, given that it was generated
under P0 and P, respectively.

Suppose we do not know whether problem-specific knowledge has been used or
not when the random search X ∈ Ω was generated. This corresponds to a hypothesis
testing problem

H0 : X ∼ P0,
H1 : X ∼ P,

(3)

where data are generated from distributions P0 and P under the null and alternative
hypotheses H0 and H1, respectively. It follows from (1) that I+ is the log likelihood ratio
when testing H0 against H1, if data are censored so that only X ∈ A is known.

When the sample space Ω is finite or a continuous, bounded subset of a Euclidean
space, the PoIR can be motivated by the fact that the uniform distribution maximizes the
Shannon entropy, since it thereby maximizes ignorance about the outcome of X. However,
the uniform distribution is neither a feasible choice of P0 for infinite, countable sample
spaces nor for continuous, unbounded samples spaces. For this reason, actinfo was gener-
alized to deal with unbounded spaces [11], by choosing P0 to maximize Shannon entropy
under side constraints ξ, such as the existence of various moments. This gives rise to a
family of null distributions P0 = P0ξ , with a ξ a nuisance parameter that has to be estimated
or controlled for in order to estimate or give bounds for the active information.

Actinfo has also been used for mode detection in unsupervised learning, among other
applications [12,13]. Based on previous works by Montañez [14,15], actinfo has been used
in the past for testing hypotheses [16]. More specifically, P is regarded as a random measure
in [16], so that I+ is random as well and expressions for the tail probability of I+ can
be found.

1.1. Fine-Tuning

Fine-tuning (FT) was introduced by Carter in physics and cosmology [17]. According
to FT, the constants in the laws of nature and/or the boundary conditions in the standard
models of physics must belong to intervals of low probability in order for life to exist. Since
its inception, FT has generated a great deal of fascination, seen in multiple divulgation
books (e.g., [18–21]) and scientific articles (e.g., [22–25]). For a given constant of nature X,
the connection between FT and active information can be described in three steps:

(i) Establishing the life-permitting interval (LPI) A that allows the existence of life for
the constant, with Ω = (0, ∞) = R+ or Ω = R denoting the range of values that this
constant could possibly take, including those that do not permit life.

(ii) Determining the probability P0(A) of such a LPI. If P0 = P0ξ contains unknown
parameters ξ, find an upper bound

P0max(A) = max
ξ

P0ξ(A) (4)
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of P0(A).
(iii) Suppose that H1 corresponds to an agent who uses background knowledge of what is

required for life to exist in order to bring about a constant of nature X that definitely
permits life (P(A) = 1). The active information I+ = I f 0 = − log P0(A) is then a
measure of how much background knowledge this agent has infused. Following
[26,27], we conclude that X is finely tuned when the lower bound − log P0max(A)
of I+ = I f 0 is large enough. That is, FT corresponds to infusing a high degree of
background knowledge into a problem.

Fine-tuning has also been used in biology. Dingjan and Futerman explored it for
cell membranes [28,29], whereas Thorvaldsen and Hössjer [30] formalized it for a large
class of biological models. According to [30], a system is fine-tuned if it satisfies the two
following requirements:

(a) It has an independent specification;
(b) It is very unlikely to occur by chance.

1.2. The Present Article

In this article, actinfo will not only be used in the algorithmic sense. It will also be
employed for testing the presence of and estimating the degree of fine-tuning (FT) of a
search algorithm or agent who brings about X. Our definition of FT relies on (a) and (b),
and in order to formalize these two concepts, we introduce a specificity function f , which
quantifies, in terms of f (x), how specified an outcome x ∈ Ω is. The target A, on the other
hand, is a set of highly specified states, that is, all states with a degree of specificity that
exceed a given threshold f0. Then, I+ in (1) is a test statistic for testing whether an algorithm
has a much larger probability of reaching the set of highly specified states compared to a
random search. This is a test of FT, since reaching the target corresponds to specificity (a),
whereas reaching it with a much higher probability than expected by chance corresponds
to (b).

To calculate I+, the distributions P0 and P of the random search algorithm under H0
and H1, respectively, need to be defined. As mentioned above, the null distribution P0 is
typically chosen according to some criterion, such as a maximizer of entropy, possibly with
some extra constraints on moments for unbounded Ω, which was the strategy implemented
in [26,27]. Another possibility is to choose P0 as the equilibrium distribution of a Markov
chain that models the dynamics of the system under the null hypothesis of no external
input. In general, P0 = P0ξt involves a number of nuisance parameters ξ, and sometimes,
also the time point t when an algorithm that does not make use of external information
stops. The choice of P = Pθξt is problem specific, and it possibly involves the nuisance
parameters ξ of the null distribution, the time point t when the algorithm stops, as well
as the tuning parameters θ that correspond to infusing the background knowledge into
the search problem. Therefore, in its most general form, the actinfo (1) is a function
I+ = I+(θ, ξ, t) of the tuning parameters θ, the nuisance parameters ξ, and the time point t.

This general framework has many applications based on different choices of f , A, P0,
and P. For some models, f is a binary function that quantifies functionality, so that A is
the set of objects of a certain type (e.g., universes, proteins, protein complexes, or cellular
networks) that are functional or permit life, among the set Ω of all such objects.

Another possibility is to choose A as the set of populations x whose (expected) fitness
f (x) exceeds a given threshold. In this setting, P0ξt(A) corresponds to the probability that
a randomly chosen population would evolve and reach target A of high fitness at time t,
given that no background knowledge of the specificity function f is used to generate X,
so that natural selection does not occur. The functional information I f 0 = − log P0ξt(A)
corresponds to the amount of external information that an evolutionary algorithm infuses
under H1, given that it brings about X so that A happens with certainty (P(A) = 1) within
time t. In this case, the population is finely tuned when I f 0 is large enough. More generally,
we say that an evolutionary algorithm that generates X ∼ P = Pθξt after t time steps is finely
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tuned when I+(θ, ξ, t) is large enough. Typically, θ involves the selection parameters that
determine to which extent a population evolves towards higher fitness.

A third possibility is to choose f (X) = X as the test score of a randomly chosen
student, whereas A = [ f0, ∞) is the set of results of those students who pass the test with a
score of at least f0. Assume that f (X) ∼ N(ξ, 1) for a randomly chosen student who did not
prepare for the test (H0), whereas f (X) ∼ N(ξ + θt, 1) for a randomly chosen student who
prepared for the test for a period of length t (H1). Then, P0(A) = P0ξ(A) = 1−Φ( f0 − ξ),
whereas P(A) = Pθξt(A) = 1− Φ( f0 − ξ − θt), where Φ is the cumulative distribution
function of a standard normal distribution. In particular, the tuning parameter θ > 0
corresponds to the amount of knowledge that a student is expected to generate per unit
time of study.

The unified treatment of search problems and FT of this paper, is organized as follows:
Section 2 introduces the specification function f and the set A of highly specified states.
Section 3 introduces a class of probability distributions P = Pθ for which the specificity
function f is used to exponentially tilt the null distribution P0, so that outcomes with
high specificity are more likely to occur, and with a scalar tuning parameter θ of Pθ that
corresponds to the amount of exponential tilting. A proof is presented that it is possible
to obtain a Metropolis–Hastings type Markov chain in discrete time t = 0, 1, 2, . . ., whose
outcome X = Xt at time t has the aforementioned exponentially tilted distribution under
equilibrium, that is, when t is large. The corresponding actinfo I+(θ, t) is shown to increase
monotonically with t towards an equilibrium limit. The actinfo of a search algorithm
X = Xt∧T that stops at time T, when the targeted set A of highly specified states has been
reached, is also shown to increase more rapidly. Section 4 introduces various nonparametric
and parametric estimators of actinfo, and corresponding tests of FT, when n repeated and
independent outputs of the search algorithm are available. In particular, large deviations
theory is used to prove that the significance levels of these tests, i.e., the probability of
detecting FT under H0, goes to zero at an exponential rate when the sample size n increases.
Section 5 presents a number of examples from cosmology, student learning, reinforcement
learning, and population genetics, that illustrate our approach. A discussion in Section 6
follows, whereas the proof and further details about the models are presented in Section 7.

2. Specificity and Target

Consider a function f : Ω→ R and assume that the objective of the search algorithm,
or the agent that brings about X, is to find regions in Ω where f is large. The rationale for
this is an independent specification, where a more specified state x ∈ Ω corresponds to a
larger f (x). It is further assumed that the target set in (1) is given by

A = {x ∈ Ω; f (x) ≥ f (x0)} (5)

for some x0 ∈ Ω. This implies that the purpose of the search algorithm or the agent is to
bring about an X that is at least as specified as x0. We will refer to f as a specificity function
of the agent or an objective function of the search algorithm.

Several examples of specificity functions are provided in Section 5. For instance,
Example 2 deals with student learning. For a special case of this model, f (x) = x represents
the test score of a student, whereas x0 is a reference value that corresponds to the minimum
score needed to pass the test.

For cosmological FT (Example 1), x is the value of a particular constant of nature and
the specificity function equals

f (x) = 1{x∈A}, (6)

where 1{·} is the indicator function. That is, f has a binary range, with f (x) = 1 and 0
corresponding to whether x permits a universe with life, and in particular, x0 is a universe
that permits life. From this, A is the LPI of this constant. Moreover, X is the value of
this constant of nature for a randomly generated universe, with a distribution that either
incorporates external information (H1) or not (H0).
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In the context of proteins, x is taken to be an amino acid sequence, whereas f (x)
in (6) quantifies whether the protein that the amino acid corresponds to is functional
(1) or not (0). For instance, X could be the outcome of a random evolutionary process,
the goal of which is to generate a functioning protein, and this process either makes use
of external information (H1) or not (H0). In a more refined example (Example 4), x is a
molecular machine that consists of a possibly large number of proteins (or parts), and f (x) is
(a monotone function of) the fitness of x.

Interpretation of Target

There are at least two ways of interpreting x0, and hence also the target set A. Ac-
cording to the first interpretation, x0 is the outcome of random variable X′ ∈ Ω; that is,
the outcome of a first search. Suppose that X is another random variable that represents
a second (possibly future) search, independent of X′. Then, if we condition the outcome
x0 of the first search, the actinfo I+ in (1) is the log likelihood ratio for the event that the
second search variable X is at least as specified as the observed value f (x0) of the first search.

There is, however, no need to associate x0 in (5) with a first search variable X′. Instead,
some a priori information may be used to define which values of f represent a high amount
of specificity. This gives rise to the second interpretation of x0, according to which x0 is
used for defining outcomes with a high and low degree of specificity, using f0 = f (x0) as a
cutoff. According to this interpretation, the two sets A in (5) and its complement

Ac = Ω \ A = {x; f (x) < f (x0)}

represent a dichotomization of specificity, so that A and Ac consist of all states with high
and low specificity, respectively. With this interpretation of x, I+ is the log likelihood ratio
for testing FT based on the search variable X. In particular, suppose that the specificity
function f is bounded, i.e.,

fmax = max
x∈Ω

f (x) < ∞. (7)

Then, the most stringent definition of high specificity,

f0 = fmax, (8)

only regards outcomes with a maximal value of f as highly specified, so that

A = Ωmax = {x ∈ Ω; f (x) = fmax}. (9)

Note that (6) is a special case of (9).

3. Active Information for Exponentially Tilted Systems

Throughout Section 3, ξ is assumed to be known and the null distribution does not
involve any time index t. Therefore, P0 is known, whereas P = Pθt involves the tuning
parameters θ and the time index t. It will be further assumed in Sections 3.1 and 3.2 that
the system is in equilibrium, or that the time index t is fixed, so that t can also be dropped
under H1 (P = Pθ).

3.1. Exponential Tilting

Let Pθ be an exponentially tilted version of P0 for some scalar tuning parameter θ > 0,
which will also be called a tilting parameter. Exponential tilting is often used for rare events
simulation [31,32]. Here, f is used to define the tilted version of P0 as

Pθ(x) =
eθ f (x)

M(θ)
P0(x), (10)
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with

M(θ) = ∑
x∈Ω

eθ f (x)P0(x) (11)

a normalizing constant assuring that Pθ is a probability measure. For countable sample
spaces Ω, we interpret P0(x) and Pθ(x) as the probability masses, whereas for continuous
sample spaces, they are probability densities and the sum in (11) is replaced by an integral.
The larger the tilting parameter θ > 0, the more the probability mass of Pθ concentrates
on regions of large f . In particular, P∞, the weak limit of Pθ as θ → ∞, is supported on (9)
whenever (7) holds.

The parametric family

P = {Pθ ; θ ≥ 0} (12)

of distributions is an exponential family [33] (Section 1.5), and each Pθ ∈ P gives rise to a
separate version of actinfo. This is summarized in the following proposition (cf. Section 7
for a proof):

Proposition 1. Suppose the target set A is defined as in (5) for some x0 ∈ Ω such that P0(A) > 0.
Then, Pθ(A) is a strictly increasing function of θ ≥ 0 with P∞(A) = 1. Consequently, the actinfo

I+(θ) = log
Pθ(A)

P0(A)
(13)

is a strictly increasing function of θ ≥ 0, with I+(0) = 0 and I+(∞) = I f 0 = − log P0(A).

The intuitive interpretation of Proposition 1 is that the larger θ is, the more problem-
specific knowledge is infused into Pθ in terms of shifting probability mass towards regions
in Ω where f , the specificity function, is large.

A simple instance of exponential tilting is the student learning example of Section 1.2.
Recall that f (x) = x is the test score of a student, with X ∼ N(ξ, 1) for a randomly chosen
student who did not prepare for the test (H0), whereas X ∼ N(ξ + θ, 1) is the test score of a
randomly chosen student who prepared for the test during t = 1 units of time (H1). It is
clear that

P0(x) = e−(x−ξ)2/2/
√

2π,
Pθ(x) = e−(x−ξ−θ)2/2/

√
2π = P0(x)eθx/M(θ).

3.2. Metropolis–Hastings Systems with Exponential Tilting Equilibrium

Inspired by Markov Chain Monte Carlo methods [34], consider a Markov chain
X0, X1, . . . ∈ Ω for which Pθ is the equilibrium distribution. Consequently, if P = Pθ (that is,
under the alternative hypothesis H1 in (3) when θ > 0), X = Xt may be interpreted as the
outcome of an algorithm after t iterations, provided that t is so large that the equilibrium
has been reached. The assumption is made that this algorithm knows f and tries to explore
the whole state space Ω. If the Markov chain has an equilibrium distribution (10), this
corresponds to an algorithm that favors jumps towards the regions of large f when θ > 0, an
effect which is accentuated the higher the value of θ is. In further detail, the transition kernel
of the chain is an instance of the well-known Metropolis–Hastings (MH) algorithm [35,36],
which is closely related to simulated annealing [37]. This kernel has a probability or density

πθ(x, y) = rθ(x)δ(x, y) + αθ(x, y)q(x, y) (14)
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for jumps from x to y, where δ(x, ·) is a point mass at x ∈ Ω, q(x, ·) is a proposal distribution
of jumps from a current position x of the Markov chain,

αθ(x, y) = min

[
1,

eθ f (y)P0(y)q(y, x)
eθ f (x)P0(x)q(x, y)

]
(15)

is the probability of accepting a proposed move from x to y, whereas

rθ(x) = 1− ∑
y∈Ω

αθ(x, y)q(x, y) (16)

is the probability that the Markov chain rejects a proposed move away from x (for continu-
ous sample spaces q(x, ·) is a probability density and then the sum in (16) is replaced by an
integral). The transition of the Markov chain from Xt = x to the next state Xt+1 is described
in two steps as follows. First, a candidate Y ∼ q(x, ·) is proposed. Then, in the second step,
this candidate is either accepted with a probability of αθ(x, Y), so that Xt+1 = Y, or it is
rejected with probability 1− αθ(x, Y), so that Xt+1 = Xt. It is well known that Pθ is the
equilibrium distribution of this Markov chain whenever it is irreducible; that is, provided
the proposal distribution q is defined in such a way that moving between any pair of states
in Ω in a finite number of steps is possible [38], pp. 243–245.

In particular, if q is symmetric and P0 is uniform, then a proposed upward move with
f (Y) > f (x) and Pθ(Y) > Pθ(x) is always accepted, whereas a proposed downward move
with f (Y) < f (x) is accepted with a probability of Pθ(Y)/Pθ(x). The Markov chain only
makes local jumps if q(x, ·) puts all its probability mass in a small neighborhood of x, for
any x ∈ Ω. At the other extreme is a chain with the global proposal distribution q(x, ·) ∼ Pθ

for any x ∈ Ω; all proposed jumps of this chain are then accepted (α(x, y) = 1), and {Xt}∞
t=1

is a sequence of independent and identically distributed (i.i.d.) random variables with
Xt ∼ Pθ .

The choice of proposal distribution q is problem specific. In this section, we defined
q for the Metropolis–Hastings type algorithms that require knowledge of the specificity
function f , since the acceptance probability (15) is a function of f . Proposed moves also
occur for evolutionary algorithms (Examples 4 and 5 of Section 5). These algorithms are
typically the result of many small changes, with specificity corresponding to functionality
or fitness. The proposed moves are local mutations that either survive (are accepted)
or do not. Other algorithms (such as reinforcement learning in Example 3 of Section 5)
only make use of estimates of the specificity function. However, it is still meaningful for
these algorithms to talk about proposed moves that are initially large (exploration phase)
followed by a subsequent period of small or no moves (exploitation phase). In the context
of Metropolis–Hastings algorithms, this is the strategy of simulated annealing, where large
moves are initially proposed (corresponding to high temperatures), followed by subsequent
small proposed moves (corresponding to low temperatures).

3.3. Active Information for Metropolis–Hastings Systems in Non-Equilibrium

Suppose, for simplicity, that the sample space Ω is finite, and that the states in Ω are
listed in some order. Let

P0 = (P0(x); x ∈ Ω) (17)

be a row vector of length |Ω| with all the null distribution probabilities, and let

Πθ = (πθ(x, y); x, y ∈ Ω) (18)
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be a square matrix of order |Ω| that defines the transition kernel of the Markov chain
{Xt}∞

t=0 of Section 3.2. If X0 ∼ P0, then by the Kolmogorov–Chapman equation Xt ∼ Pθt,
where

(Pθt(x); x ∈ Ω) = Pθt = P0Πt
θ . (19)

Hence, if P = Pθt, then X = Xt corresponds to observing the Markov chain at time
t, under the alternative hypothesis H1 in (3). Some basic properties of the corresponding
actinfo are summarized in the following proposition, which is proved in Section 7:

Proposition 2. Suppose that X = Xt is obtained by iterating t times a Markov chain with initial
distribution (17) and transition kernel (18). The actinfo then equals

I+(θ, t) = log
Pθt(A)

P0(A)
= log

P0Πt
θv

P0v
, (20)

where v is a column vector of length |Ω| with ones in positions x ∈ A and zeros in positions
x ∈ Ac. In particular, I+(θ, 0) = 0 and

lim
t→∞

I+(θ, t) = I+(θ). (21)

Therefore, I+(θ, t) > 0 corresponds to knowledge of f being used to generate t jumps
of the Markov chain, under the alternative hypothesis H1 in (3).

3.4. Active Information for Metropolis–Hastings Systems with Stopping

In Section 3.3, P ∼ Pθt was obtained by starting a random search with null distribution
P0, and then iterating the Markov chain of Section 3.2 t times. However, knowledge of f
can be utilized even more and stop the Markov chain if the target A in (5) is reached before
time t. This can be formalized by introducing the stopping time

T = min{t ≥ 0; Xt ∈ A} (22)

and letting

Pθts(x) = P(Xt∧T = x) (23)

be the probability distribution of the stopped Markov chain Xt∧T , with the last index s
in (23) being an acronym for stopping. In particular,

Pθts(A) = ∑
x∈A

Pθts(x) = P(T ≤ t) (24)

is the probability of reaching the target A for the first time after t iterations or earlier.
The theory of phase-type distributions can then be used to compute the target probability
Pθts(A) in (23) [39,40]. To this end, clump all states x ∈ A into one absorbing state, and
decompose the transition kernel in (18) according to

Πθ =

(
Πna

θ Πna,a
θ

0 1

)
, (25)

where Πna
θ is a square matrix of order |Ac| containing the transition probabilities between all

non-absorbing states in Ac, whereas Πna,a
θ is a column vector of length |Ac| with transition

probabilities π(x, A) from all the non-absorbing states x ∈ Ac into the absorbing state A.
Moreover, Pna

0 = (P0(x); x ∈ Ac) is a row vector of length |Ac| that is the restriction of the
start-distribution P0 in (17) to all non-absorbing states. Then
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Pθts(A) = 1− Pna
0 (Πna

θ )t1, (26)

where 1 is a column vector of |Ac| ones.
The actinfo I+s of a search procedure with stopping is thus defined:

Proposition 3. Suppose that X = Xt is obtained by iterating a Markov chain with an initial
distribution (17) and a transition kernel (18) (for some θ ≥ 0) at most t times, and stopping
whenever the set A is reached. Then, the actinfo is given by

I+s (θ, t) = log
Pθts(A)

P0(A)
= log

1− Pna
0 (Πna

θ )t1
P0v

, (27)

with P0 and v as in Proposition 2, whereas Pna
0 , Πna

θ , and 1 are defined below (25) and (26). This
actinfo satisfies

I+s (θ, t) ≥ I+(θ, t) (28)

and I+s (θ, t) is a non-decreasing function of t such that

lim
t→∞

I+s (θ, t) = I f 0 (29)

and

∞

∑
t=0

(
1− P0(A)eI+s (θ,t)

)
= E(T). (30)

Proposition 3 is proven in Section 7. Inequality (28) states that, for a search procedure
with t iterations, knowledge about f that is used for stopping the Markov chain in (18) will
increase the actinfo, regardless of whether knowledge about f was used (θ > 0) or not
(θ = 0) when iterating the Markov chain. Equation (29) is a consequence of the fact that
target A is eventually reached with probability 1, so that the actinfo of a search procedure
with stopping equals the functional information I f 0 = − log P0(A) after many iterations
of the Markov chain. Moreover, Equation (30) tells that the rate at which P0(A)eI+s (θ,t)

approaches 1 is determined by the expected waiting time E(T) of reaching the target.
From Proposition 3, actinfo for a system with stopping is closely related to the phase-

type distribution of the waiting time T until the target is reached. This has been studied
in [41], in the context of the expression of a number of genes, with x being the collection of
the regulatory regions of all these genes.

4. Estimating Active Information and Testing Fine-Tuning

In Section 3, we gave explicit expressions of the actinfo, for Metropolis–Hastings
algorithms with a scalar tuning parameter θ. In general, however, it might be infeasible
to calculate I+, either because the sample space is very large, or the nuisance parameters
ξ and/or the tuning parameters θ are unknown. If is of interest then to consider ways of
estimating I+ from data, for instance through Monte Carlo-based methods. To this end,
we will assume that the random search algorithm is repeated independently, under the
same conditions, n times. For instance, suppose that {Xit}∞

t=0 corresponds to independent
realizations i = 1, . . . , n of a search algorithm. If these independent realizations are recorded
or stopped at one single time point, the outcome is either Xi = Xit for i = 1, . . . , n, or
Xi = Xi,t∧Ti , for i = 1, . . . , n, depending on whether the search algorithm is stopped at
a fixed time point t or at random time points {Ti}n

i=1. In either case, an output of i.i.d.
random variables

X1, . . . , Xn ∼ Q (31)
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is obtained. These repeated outcomes of the search algorithm will be used to test for
and estimate the degree of fine-tuning. The methodology depends on whether the null
distribution P0 is known or involves unknown nuisance parameters.

4.1. Null Distribution Known

Suppose the null distribution P0 is known. The sample in (31) is then used for testing
between the two hypotheses

H0 : Q = P0,
H1 : Q ∈ P1,

(32)

with
P1 = {P; P(A) ≥ pmin} (33)

the set of distributions that correspond to fine-tuning. Suppose an estimate Q̂(A) of the
probability that X ∈ A is computed from data (31), with an associated empirical actinfo

Î+ = Î+n = log
Q̂(A)

P0(A)
. (34)

If Q̂(A) is a consistent estimator of Q(A), then for large sample sizes, Î+ will be
close to

I+Q = log
Q(A)

P0(A)
, (35)

which equals 0 under H0 and I+ = I+P under H1, for some particular P ∈ P1. To test H0
against H1,

reject H0 when Î+ ≥ Imin, (36)

where Imin is a pre-specified lower bound on the range of values of the actinfo that corre-
sponds to FT.

4.1.1. Nonparametric Estimator and Test

In Section 3, P = Pθ , P = Pθt, or P = Pθts were used for distributions that make use of
pre-specified knowledge. These distributions involve the tilting parameter θ, and possibly
also the number of iterations t of the algorithm and a stopping time T. In this section,
however, no other assumption than P ∈ P1 is made on P, and a nonparametric version of
the empirical actinfo is used. The fraction

Q̂(A) =
1
n

n

∑
i=1

1{Xi∈A} (37)

of random searches that fall into A is used as an estimate of Q(A). Therefore, (37) only
requires the knowledge of the set A, not of the function f .

The following result establishes the asymptotic normality of the nonparametric version
of the estimator Î+ in (34). Moreover, large deviations [42] are used to show that the
significance level of the nonparametric version of the FT test (36) goes to zero exponentially
fast with n (see Section 7 for more details of the proof).

Proposition 4. Suppose the empirical actinfo Î+n in (34) is computed nonparametrically, using (37)
as an estimate of the target probability Q(A). Then, Î+n is an asymptotically normal estimator of I+Q
in (35), in the sense that

√
n( Î+n − I+Q )

L−→ N(0, V) as n→ ∞, (38)
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where L−→ refers to convergence in distribution, and

V =
1−Q(A)

Q(A)
(39)

is the variance of the limiting normal distribution. The significance level of the test (36) for
fine-tuning, with threshold Imin, satisfies

lim
n→∞

−
log
(

PH0( Î+n ≥ Imin)
)

n
= C, (40)

where

C = pmin log
pmin

P0(A)
+ (1− pmin) log

1− pmin
1− P0(A)

(41)

is the Kullback–Leibler divergence between Bernoulli distributions with success probabilities pmin =
P0(A) exp(Imin) and P0(A), respectively.

Remark 1. The conclusion of Proposition 4 is that the probability of observing actinfo that corre-
sponds to fine-tuning by chance decays at rate e−Cn when the sample size n becomes large.

4.1.2. Parametric Estimator and Test

Suppose that there is a priori knowledge that P is close to the parametric exponential
family P of distributions in (10)–(12) for some value θ > 0 of the tilting parameter. A
parametric test of actinfo is naturally defined. For this, first compute the maximum
likelihood estimate

θ̂ = θ̂n = arg max
θ≥0

n

∑
i=1

log Pθ(Xi) (42)

of θ, and use it to define a parametric estimate

Q̂(A) = Pθ̂(A) (43)

of the target probability Q(A) that is inserted into (34) to define a parametric version of the
empirical actinfo Î+. As opposed to (37), the estimate (43) requires the full knowledge of f .

To analyze the properties of the estimator (34) and test (36), introduce

θ∗ = arg min
θ≥0

DKL(Q ‖ Pθ), (44)

where

DKL(Q ‖ Pθ) = ∑
x∈Ω

Q(x) log
Q(x)
Pθ(x)

(45)

is the Kullback–Leibler divergence between Q and Pθ . From (44), Pθ∗ is the distribution in
P that best approximates Q. In particular, θ∗ = θ if Q ∈ P and Q = Pθ for some θ ≥ 0.

The following proposition shows that Î+ is an asymptotically normal estimator of
I+(θ∗) in (13), which differs from I+Q in (35) whenever Q /∈ P . Moreover, the proposition
also provides large sample properties of the significance level of the test for actinfo (cf.
Section 7 for details of the proof):
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Proposition 5. Suppose the empirical actinfo Î+n in (34) is computed parametrically, using an
estimate (43) of the target probability Q(A). Then, Î+n is an asymptotically normal estimator of
I+(θ∗), in the sense that

√
n
(

Î+n − I+(θ∗)
) L−→ N(0, V) as n→ ∞, (46)

where the variance of the limiting normal distribution is given by

V =
Cov2

Pθ∗
[ f (X)I( f (X) ≥ f0)]VarQ[ f (X)]

P2
θ∗(A)Var 2

Pθ∗
[ f (X)]

. (47)

Moreover, the significance level of the parametric test for fine-tuning, based on (36) and (43), satisfies

lim
n→∞

−
log
[
PH0

(
Î+n ≥ Imin

)]
n

= C, (48)

for

C = sup
φ>0

{
φEPmin [ f (X)]− log M(φ)

}
, (49)

where Pmin = Pθmin , θmin < θ∗ is the solution of Pθmin(A) = pmin = P0(A) exp(Imin), M(φ) is
given by (11), whereas pmin is defined in (33).

4.1.3. Comparison between Nonparametric and Parametric Estimates of Actinfo

The two versions of empirical actinfo are complementary. The nonparametric version
is preferable in the sense that it makes less assumptions about the distribution P of the
random algorithm under H1, and in particular, it is a consistent estimator of I+Q in (35).
The parametric version of Î+, on the other hand, is preferable when nQ(A) is small,
since it makes use of all data in order to estimate Q(A), although it is not a consistent
estimator of I+Q when Q /∈ P . The asymptotic variances in (39) and (47), as well as the
rates of exponential significance level decrease in (41) and (49), agree when Q = Pθ∗ and
f (x) = f01{x∈A}, which is a special case of (8).

4.2. Null Distribution Unknown

Suppose that the null distribution P0 = P0ξ involves an unknown nuisance parameter
ξ ∈ Ξ. The objective is then to test the two hypotheses

H0 : Q ∈ P0,
H1 : Q ∈ P1,

(50)

where the set of distribution under the null and alternative hypotheses equals

P0 = {P0ξ ; ξ ∈ Ξ} (51)

and (33), respectively.

4.2.1. One Sample Available

The actinfo

I+Q = I+Q (ξ) = log
Q(A)

P0ξ(A)
(52)

cannot be consistently estimated if only one sample (31) is available. The best course of
action is thus to estimate a lower bound

Î+ = Î+n = log
Q̂(A)

P0max(A)
(53)
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of I+, with P0max(A) defined in (4) and Q̂(A) an estimate of Q(A). This estimator will have
an asymptotic bias

B = I+Q (ξ∗)− I+Q = log
P0ξ(A)

P0max(A)
≤ 0, (54)

where ξ∗ is the nuisance parameter that maximizes P0ξ(A) [43]. For the numerator of (53),
either the nonparametric estimate of Q(A) in (37) can be used, or a parametric class

P = {Pθξ ; θ ∈ Θ, ξ ∈ Ξ}

of distributions can be used that involves a tuning parameter vector θ and a vector of
nuisance parameters ξ. If Q is thought to be close to P , the parametric estimate

Q̂(A) = Pθ̂ξ̂(A) (55)

of Q(A) is used, which generalizes (43), with

(θ̂, ξ̂) = arg max
θ,ξ

n

∑
i=1

log Pθξ(Xi). (56)

When the sample size n tends towards infinity, the estimator (56) will converge to

(θ∗, ξ∗) = arg min
θ,ξ

DKL(Q ‖ Pθξ). (57)

The following result is an extension of Propositions 4 and 5, when nuisance parameters
ξ are added and a general type of tuning parameter θ (not necessarily a scalar tilting
parameter) is used. A short proof of the proposition is offered in Section 7.

Proposition 6. Suppose that the null distribution P0 = P0ξ involves an unknown parameter ξ and
the actinfo I+Q in (52) is estimated by Î+n in (53), using an estimator Q̂(A) of the target probability
Q(A) that is either nonparametric (37) or parametric (55). Given these assumptions, Î+n is an
asymptotically normal estimator, in the sense that

√
n( Î+n − I+Q − B) L−→ N(0, V) as n→ ∞. (58)

The asymptotic bias B in (58) is defined in (54) whereas the asymptotic variance V is defined
in (39) for the nonparametric estimator of I+Q , whereas

V = E[ψθ∗ξ∗(X)|X ∈ A]E[ψ′θ∗ξ∗(X)]−1E[ψT
θ∗ξ∗(X)ψθ∗ξ∗(X)]

· E[(ψ′θ∗ξ∗)
T(X)]−1E[ψθ∗ξ∗(X)|X ∈ A]T

(59)

for the parametric estimator of I+Q , with ψθξ(x) = d log Pθξ(x)/d(θ, ξ), (θ∗, ξ∗) defined as in (57),
and T refering to matrix transposition. Moreover, the significance level of the test (36) of FT, with
threshold Imin, satisfies

lim
n→∞

−
log
[
P0ξ

(
Î+n ≥ Imin

)]
n

= C, (60)

with

C = pmine−B log
pmine−B

P0ξ(A)
+ (1− pmine−B) log

1− pmine−B

1− P0ξ(A)
(61)

for the nonparametric version of the test, with pmin = P0ξ(A) exp(Imin). For the parametric
versions of the FT-test, and in the special case when θ is a scalar exponential tilting parameter, C is
given by (49), with Pmin = Pθminξ , and θmin the solution of Pθminξ(A) = pmine−B.
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Remark 2. The negative bias term B makes the test of FT in Proposition 6 more conservative than
the tests in Propositions 4 and 5. This can be seen, for instance, by comparing the two large deviation
rates C in (41) and (61). The rate in (61) is larger, since pmin is multiplied by a term e−B. This
corresponds to the fact that to falsely reject H0 in Proposition 6 is more difficult.

4.2.2. Two Samples Available

In addition to the first sample (31), suppose a second sample

X01, . . . , X0n0 ∼ P0ξ (62)

of n0 i.i.d. observations under the null distribution is available. A consistent estimator

Î+ = Î+nn0
= log

Q̂(A)

P0ξ̂(A)
(63)

of I+Q in (52) is then available, with

ξ̂ = arg max
ξ

n0

∑
i=1

log P0ξ(X0i). (64)

The following result provides asymptotic properties of the estimator (63) of actinfo,
and the corresponding test (36) of FT with threshold Imin (cf. Section 7 for a proof):

Proposition 7. Suppose that the null distribution P0 = P0ξ involves an unknown nuisance
parameter ξ, and that the active information I+Q in (52) is estimated by Î+nn0

in (63), making use of
two samples (31) and (62), of sizes n and n0, from Q and P0ξ , respectively. Further assume that the
estimator Q̂(A) of Q(A) is either nonparametric (37) or parametric (55). If n, n0 → ∞ in such a
way that

n
n0
→ λ > 0, (65)

then √
n( Î+nn0

− I+Q )
L−→ N(0, V1 + λV2), (66)

where
V2 = E[ψξ(X)|X ∈ A]E[ψT

ξ (X)ψξ(X)]−1E[ψξ(X)|X ∈ A]T , (67)

and ψξ(x) = d log P0ξ(x)/dξ. If the nonparametric estimator of Q(A) is used, then V1 equals V
in (39), whereas if the parametric estimator Q(A) is used, then V1 equals V in (59). The significance
level of the test (36) of FT, with threshold Imin, satisfies the same type of large deviation result (60)
as in Proposition 6, for the nonparametric and parametric versions of the test (in the latter case
assuming that θ is a scalar tilting parameter), but in the definitions of the nonparametric and
parametric large deviation rates C, the bias term B = 0.

5. Examples

In this section, we provide five examples. The first cosmology example is a contin-
uation of Section 1.1, with specificity corresponding to a universe that permits life. The
second example of student learning was introduced in Section 1.2, with specificity being
the test score of a student who prepares for a test. The third example concerns reinforce-
ment learning, with specificity the cumulative reward of a certain trajectory of actions
and environments. The last two examples concern evolutionary algorithms for generating
molecular machines, with specificity corresponding to the functionality or fitness of these
machines. These evolutionary algorithms can be viewed as extensions or variants of the
Metropolis–Hastings algorithms of Section 3.2, where proposed moves correspond to mu-
tations, whereas accepted moves correspond to mutations that survive and then possibly
spread to a whole population.
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Example 1 (Cosmology [26,27]). Suppose that there is a positive constant of nature
X ∈ Ω = R+, a life-permitting interval A ⊂ Ω, and a specificity function (6) that equals
1 inside A = (a, b) and zero elsewhere. The maximum entropy distribution under a first
moment constraint ξ = E(X) is exponential with expected value. Consequently,

P0ξ(A) =
1
ξ

∫ b

a
e−x/ξdx.

The null and alternative hypotheses for the fine-tuning test are given in (50), where
under H1, the agent brings about a life-permitting value of X with probability 1 (P(A) = 1).
Only one universe is observed, with a value X = X1 of the constant. Therefore, there is
a sample (31) of size n = 1, whereas no null sample (62) is available. Since X1 ∈ A is
life-permitting, Q̂(A) = 1. The estimate (53) of actinfo then simplifies to

Î+ = log
1

P0max(A)
= − log P0max(A). (68)

Let x = (a + b)/2 be the midpoint of the LPI and suppose that half of its relative size
ε = (b− a)/(2x) is small. The probability in (68) is then approximated by

P0max(A) ≈ (b− a)max
ξ>0

e−x/ξ

ξ
≈ 2εe−1.

From (68), the estimated actinfo

Î+ ≈ 1− log(ε)− log(2)

is a monotone decreasing function of ε.

Example 2 (Evaluation of student test scores [44]). As a generalization of the example
given in Section 1.2, suppose that a number of students perform a test. Let x = (z, y) =
(z1, . . . , zd−1, y) ∈ Rd summarize the chararcteristics of a student with covariates z that
are used to predict the outcome y of the test. The specificity function f (x) = xd = y
equals the student’s test score, and (5) corresponds to the set of students that pass the
test, with a minimally allowed score of f0. The population of students follows a (d− 1)-
dimensional multivariate normal distribution Z ∼ N(m, Σ), where m = (m1, . . . , md−1)
and Σ = (σjk)

d−1
j,k=1 are known. The conditional distribution of the response follows a

multiple linear regression model

Y|Z = z ∼ N

(
ξ0 +

d−1

∑
j=1

ξ jzj + t(θ0 +
d−1

∑
j=1

θjzj), σ2

)
,

for a student with a covariate vector z who prepared for the test for a period of length
t. The nuisance parameter vector ξ = (ξ0, . . . , ξd−1, σ2) involves the error variance and
the regression parameters for students who did not train for the test, whereas the tuning
parameter vector θ = (θ0, . . . , θd−1) involves the regression parameters that correspond to
the effect of preparing for the test. The unconditional distribution of the response is normal,
Y ∼ N(µ, V), with

µ = µ(θ, ξ, t) = (ξ0 + tθ0) + ∑d−1
j=1 (ξ j + tθj)mj,

V = V(θ, ξ, t) = σ2 + ∑d−1
j,k=1(ξ j + tθj)(ξk + tθk)σjk.

Therefore, the probability that a randomly chosen student that studied for the test for
a period of length t passes is
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P(A) = Pθξt(A) = P(Y ≥ f0) = 1−Φ
(

f0 − µ√
V

)
, (69)

where Φ is the cumulative distribution function of a standard normal distribution. The null
distribution P0 = P0ξ corresponds to putting t = 0 in (69). Thus, the actinfo

I+ = I+(θ, ξ, t) = log
1−Φ

(
( f0 − µ(θ, ξ, t)/

√
V(θ, ξ, t)

)
1−Φ

(
( f0 − µ(0, ξ, 0)/

√
V(0, ξ, 0)

) (70)

quantifies how much learning, during a period of length t, increases the probability of
passing the test. To compute an estimate Î+ of I+ in (70), estimates ξ̂ and θ̂ of ξ and θ are
needed. This can be achieved by collecting two training samples, as in (63). Another option
is to compute the least squares estimates (ξ̂, θ̂) of the nuisance and the tuning parameters
jointly, without bias, from one single dataset {(ti, zi, yi)}n

i=1, provided that the time periods
ti vary, so that all parameters are identifiable.

Example 3 (Reinforcement learning (RI) [45]). Consider an agent whose purpose is to
maximize the reward f (x) of a trajectory x that they to some extent will be able to control,
for a time period of length t. At each time point u, there are m possible environments
S = {s1, . . . , sm} and q possible actions A = {a1, . . . , aq} to take. The state space
X = At × S t+1 consists of all possible trajectories

x = (a0, . . . , at−1, s0, . . . , st)

of environments and actions, where su is the environment and au the action taken at time u.
A corresponding random trajectory is denoted with capital letters

X = (A0, . . . , At−1, S0, . . . , St).

If the environment of the system is Su = s at time u, and action Au = a is taken, the
probability of moving to environment s′ is Pa(s, s′) = P(Su+1 = s′|Su = s, Au = u), with
an instantaneous reward of Ra(s, s′). If future rewards are discounted by a factor γ, the
total reward, over a time horizon of length t, is

f (x) =
t

∑
u=0

Rau(su, su+1)γ
u.

Let f0 be a lower bound for a trajectory’s total discounted reward to be acceptable,
so that A in (5) is the set of all acceptable trajectories. The agent takes action according
to some policy to make the expected total reward of a trajectory as large as possible. To
this end, consider stationary policies, where the action Au taken by the agent at each
time point u is only determined by the current environment su, according to some matrix
Π = (π(s, a); s ∈ S , a ∈ A) of transition probabilities π(s, a) = P(Au = u|Su = s). For a
completely random policy

π(s, a) = ξa; a = 1, . . . , q,

the action is not influenced by the current environment, and it is completely specified by
the vector ξ = (ξ1, . . . , ξq) of nuisance parameters. Thus, P0(A) = P0ξt( f (X) ≥ f0) is the
probability that an ignorant agent with policy determined by ξ, will have an acceptable
trajectory. An agent who knows the reward function Ra and the dynamics Pa of the
environment will try to take this knowledge into account to formulate a policy that makes
the reward as large as possible. A deterministic policy θ : S → A is a function that takes a
unique action for each environment, so that

π(s, a) = 1{a=θ(s)}.
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Thus, P(A) = Pθt( f (X) ≥ f0) is the probability that an agent with deterministic policy
θ obtains an acceptable trajectory. The active information

I+ = I+(θ, ξ, t) = log
Pθ(∑t

u=0 RAu(Su, Su+1)γ
u ≥ f0)

P0ξ(∑t
u=0 RAu(Su, Su+1)γu ≥ f0)

(71)

quantifies, on a logarithmic scale, how much more likely it is for an agent with policy θ to
obtain an acceptable trajectory, compared to an ignorant agent with policy ξ. The values
ξ and θ are varied during the exploration phase of RI, but they are assumed to be known
during the exploitation phase of RI. Suppose that we want to compute the actinfo (71)
during the exploitation phase. Since P0(A) and P(A) are typically unknown, they have to
be estimated by Monte Carlo. To this end, assume we have two samples (31) and (62) of n
and n0 trajectories available, from Q = Pθt and Q = P0ξt, respectively. Then, Î+ in (63) can
be used to estimate the actinfo (71).

Example 4 (Molecular machines and Moran models [15,30,41]). Suppose that Ω consists of
all 2d binary sequences x = (x1, . . . , xd) of length d, with a null distribution P0(x) that will
be chosen below. The specificity function f is defined as

f (x) =
{

a|x|, x 6= (1, . . . , 1),
1, x = (1, . . . , 1),

(72)

where |x| = ∑d
i=1 xi and a ≤ 1/d is a fixed parameter. We regard x as a molecular machine

with d parts, with xi = 1 or 0 depending on whether part i functions or not. The specificity
f (x) quantifies how well the machine works, for instance, its ability to regulate activity
in vitro or in vivo in a living cell. It is assumed that f (x) is determined by the number
|x| of functioning parts, with a maximal value fmax = f (1, . . . , 1) = 1. Using (8), the most
stringent definition of high specificity, it follows that A = {(1, . . . , 1)} only contains one
element, a molecular machine for which all parts are in shape. The parameter a is crucial. If
0 < a ≤ 1/d, it follows that a molecular machine works better the more the parts that are
in shape. On the other hand, if a < 0, then a molecular machine with some parts in shape,
but not all, functions worse the more parts are in shape, since all units must work in order
for the whole machine to function, and there is a cost −a associated with carrying each part
that is in shape, as long as the whole system does not function.

Each state x is interpreted as a population of N subjects, all having the same variant
x of the molecular machine. With this interpretation, X = Xt is the outcome of a random
evolutionary process where all subjects of the population, at any time point t, have the
same state. However, this state may vary over time when all subjects of population
simultaneously experience the same change. The question of interest is whether this
process can modify the population so that all its members have a functioning molecular
machine. A transition of this process from x is caused by a mutation with distribution
q(x, ·), where q(x, x) = 0. Suppose a mutation from x to y is possible, i.e., q(x, y) > 0. A
mutation from x to y first occurs in one individual and then it either (momentarily) dies out
with probability 1− αθ(x, y) or it (momentarily) spreads to the whole population (becomes
fixed) with probability

αθ(x, y) = C ·
(

eθ f (y)P0(y)q(y, x)
eθ f (x)P0(x)q(x, y)

)1/2

, (73)

where

C =

(
max

x,y

eθ f (y)P0(y)q(y, x)
eθ f (x)P0(x)q(x, y)

)−1/2

(74)
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is a constant assuring that (73) never exceeds 1, and the maximum is taken over all x, y
such that x 6= y and both of q(x, y) and q(y, x) are positive. The Markov chain with
transition probabilities (14) and acceptance probability (73) represent the dynamics of the
evolutionary process.

As shown in Section 7, the equilibrium distribution of this Markov chain is given by
Pθ in (10). In particular, Propositions 2 and 3 remain valid when the Markov chain (14) with
acceptance probabilities (73) are used, rather than (15). We will interpret

s(x) = eθ f (x)/N (75)

as the selection coefficient or fitness of individuals with a molecular machine of type x, that
is, s(x) is proportional to the fertility rate of individuals of type x.

The MH-type Markov chain with acceptance probability (73) and (74) represents an
evolutionary process that closely resembles a Moran model with the selection [46–48],
which is frequently used for describing evolutionary processes (as can be seen in Section 7).
The Moran model is a continuous time Markov chain for a population with overlapping
generations where individuals die at the same rate, and are replaced by the offspring
of individuals in the population proportionally to their selection coefficients s(x). New
types arise when an offspring of parents of type x mutate with probability µ(x). If the
mutation rate is small (µ(x) � N−1 for all x ∈ Ω), then to a good approximation the
whole population will have the same type at any point in time, which is a so-called fixed
state assumption.

Even though the Moran model is specified in continuous time, time can be discretized
as t = 0, 1, 2, . . . by only recording the population when individuals die. If individuals die
at a rate of 1, then the next individual dies at a rate of N, so that time is counted in units
of N−1 generations. The fixed state assumption is motivated by assuming that newborn
offspring with a new mutation either dies out or spreads to the whole population (becoming
fixed in the population) right after birth. In this context, q corresponds to the way in which
mutations change the type of the individual, whereas αθ = αθN is the probability of fixation.
If q(x, y) is the conditional probability that an offspring of a type x parent mutates to y,
given that a mutation occurs, then the proposal kernel of the Moran model is

qMoran(x, y) =
{

µ(x)q(x, y), x 6= y,
1− µ(x), x = y.

(76)

As shown in Section 7, the acceptance (or fixation) probability of the Moran model is

αMoran
θN (x, y) ≈ 1

N

(
1 +

θ[ f (y)− f (x)]
2

)
≈ 1

N

(
eθ f (y)

eθ f (x)

)1/2

(77)

when θ[ f (y) − f (x)] is small. From (76) and (77), the Moran model approximates the
Metropolis–Hastings kernel with acceptance probabilities (73) and (74) with good accu-
racy when (i) µ(x) ≡ µ; (ii) P0 is uniform; and (iii) the proposal kernel q is symmetric
(i.e., q(x, y) = q(y, x)), although the time scales of the two processes are different. More
specifically, if (i)–(iii) hold, a time-shifted version of the Moran model approximates the
MH-type model with acceptance probabilities (73) and (74), so that each time step of the
MH-type Markov chain corresponds to C/µ generations of a Moran model. However, even
under assumptions (i)–(iii), the stationary distribution of the Moran model differs slightly
from Pθ .

The proposal kernel q(x, y) is assumed to be local and satisfying

q(x, y) =


b/[|x|+ b(d− |x|)], y = x + ej, xj = 0,
1/[|x|+ b(d− |x|)], y = x + ej, xj = 1,
0, otherwise,

(78)
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where ej = (0, . . . , 0, 1, 0, . . . , 0) is a row vector of length d with a 1 in position j ∈ {1, . . . , d}
and zeros elsewhere, whereas x + ej refers to component-wise addition modulo 2, corre-
sponding to a switch of component j of x. A change of component j from 0 to 1 is caused by
a beneficial mutation, whereas a change from 1 to 0 corresponds to a deleterious mutation.
Consequently, b > 0 is the ratio between the rates at which beneficial and deleterious
mutations occur.

The kernel q in (78) is symmetric only when beneficial and deleterious mutations have
the same rate (b = 1). The more general case of asymmetric q is handled differently by
the MH-type algorithm and the Moran model. Whereas the MH-type algorithm elevates
the acceptance probability (73) of seldom-proposed states y (those y for which q(x, y) is
small for many x), this is not the case for the acceptance probability (77) of the Moran
model. To avoid that these states y are reached too often by the MH-type algorithm, the null
distribution P0 of no selection has to be chosen so that P0(y) is small for rarely proposed
states (whereas the Moran model needs no such correction). Therefore P0 in (73) will be
chosen as the stationary distribution of a transition kernel (14) for which θ = 0 and all
candidates are accepted (α0(x, y) = 1). That is, if Π̃0 refers to the transition matrix of such
a Markov chain, the initial distribution P0 in (17) is chosen as the solution of{

P0 = P0Π̃0,
∑x∈Ω P0(x) = 1.

(79)

The null distribution P0 = P0b in (79) involves one single nuisance parameter ξ = b.
In the special case, when beneficial and deleterious mutations have the same rate (b = 1),
this procedure generates a uniform distribution P0(x) ≡ 2−d. On the other hand, states
x with many functioning parts will be harder to reach by the Markov process Π̃0 when
beneficial mutations occur less frequently than deleterious ones (0 < b < 1), resulting
in smaller values of P0(x). The distribution under the alternative hypothesis, P = Pθ̃bt,
involves the nuisance parameter b, the time point t at which the state of the population
is recorded, and θ̃ = (a, θ), the two parameters that determine how much background
information the MH-type evolutionary algorithm makes use of. For simplicity, a and b are
here regarded as constants and we only include θ and t in the notation. This gives rise to
an active information

I+(θ, t) = log
Pθ(Xt = (1, . . . , 1))
P0(Xt = (1, . . . , 1))

. (80)

The MH-type algorithm is studied for d = 5, and illustrated in Figures 1–3. Note
that the functional information I f 0 is a decreasing function of b, since it is more surprising
to find a working molecular machine by chance when the rate of beneficial mutations b
is small. Moreover, the active information I+(θ) = limt→∞ I+(θ, t) for the equilibrium
distribution of the Markov chain as well as the active information I+(θ, t) and I+s (θ, t) for a
system in non-equilibrium, without and with stopping, are increasing functions of θ, and
decreasing functions of a and b. The smaller a or b is, the more external information can be
infused to increase the probability of reaching the fine-tuned state of a working molecular
machine (1, . . . , 1). When a is small, to leave this state once it is reached becomes more
difficult, and consequently I+s (θ, t), is only marginally larger than I(θ, t).
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Figure 1. Plot of I+(θ) = limt→∞ I+(θ, t) in (80) as a function of θ for a system of molecular machines
with transition kernel (73), proposal distribution (78), and null distribution (79). The system has
d = 5 components, b = 1.0, and a = −0.2 (dash−dotted), a = 0 (solid) and a = 0.2 (dashed). The
horizontal dotted line corresponds to the functional information I f 0 = 3.47.

Figure 2. Plot of I+(θ) = limt→∞ I+(θ, t) in (80) as a function of θ for a system of molecular machines
with transition kernel (73), proposal distribution (78), and null distribution (79). The system has
d = 5 components, b = 0.5, and a = −0.2 (dash−dotted), a = 0 (solid), and a = 0.2 (dashed). The
horizontal dotted line corresponds to the functional information I f 0 = 5.09.

Figure 3. Plot of I+(θ, t) in (80) (dashed) and I+s (θ, t) (solid) as a function of t for a system of
molecular machines with transition kernel (73), proposal distribution (78), and null distribution (79).
The system has d = 5 components and θ = 2.5. The upper (lower) row corresponds to b = 1 (b = 0.5),
whereas the left (right) column corresponds to a = 0.2 (a = −0.2). The horizontal lines in each figure
illustrate I+(θ) (dash−dotted) and the functional information I f 0 (dotted).
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Example 5 (Evolutionary programming algorithms). Suppose that Ω = ΩN
ind is a set

of genetic variants from some genomic region, x = (x1, . . . , xN), for the members of
a population of size N. That is, xk ∈ Ωind is the variant of this genomic region for
individual k. If, for instance, the region codes for the molecular machine of Example 4,
we let xk = (xk1, . . . , xkd) ∈ {0, 1}d = Ωind, with xkj = 1 or 0 depending on whether
component j of this machine works for individual k. Let g(xk) be the biological fitness, or
the expected number of offspring, of k. In the context of molecular machines, the logarithm
of g(xk) could be a function of the number of functioning parts of a machine of type xk.
The specificity function of a population in state x is the average fitness

f (x) =
1
N

N

∑
k=1

g(xk)

of its individuals. The targeted set A in (5) corresponds to all genetic profiles with an
average fitness at least f0. This type of model is frequently used in genetic programming as
well as in other types of evolutionary programming algorithms to mimic the evolution of N
individuals over time [49,50]. Typically, the output X = Xt of the evolutionary algorithm is
the last step of a simulation {Xs = (Xs1, . . . , XsN)}t

s=0 of the population over t generations.
Once the distributions P0 = P0ξt and P = Pθξt of X are found under the null hypothesis
H0 and the alternative hypothesis H1, the actinfo I+ can be computed, according to (1).
This actinfo quantifies, on a logarithmic scale, how much more likely it is for the average
fitness of the population to exceed f0 at time t, for a population with externally infused
information (H1) compared to an evolutionary process where no such external information
is used (H0). For instance, if a molecular machine needs all its parts in order to function
(g(xk) = 1(|xk| = d)), then the actinfo at time t equals

I+ = I+(θ, ξ, t) = log
Pθξt(|{k; 1 ≤ k ≤ N, Xk = (1, . . . , 1)}| ≥ f0N)

P0ξt(|{k; 1 ≤ k ≤ N, Xk = (1, . . . , 1)}| ≥ f0N)
, (81)

with X = (X1, . . . , XN). Since the state space Ω is very large, it is often complicated to
find explicit, analytical expressions for the actinfo I+ in (81). Suppose that the nuisance
parameters ξ of the null distribution P0 = P0ξ are known. This makes the framework of
Section 4.1 applicable, running the evolutionary algorithm n times. That is, n i.i.d. copies
{Xis}t

s=0 of the population trajectory are generated up to time t for i = 1, . . . , n. Then,
Xi = Xit = (Xit1, . . . , XitN), i = 1, . . . , n, are used for computing an estimate Î+n of the
actinfo, and test for fine-tuning, according to Section 4.1.

Recall the fixed state assumption of Example 4, whereby all individuals of the popu-
lation, at any time point, have the same state. Such an assumption is only realistic when
Nµ� 1, that is, when either the mutation rate µ and/or the population size N is small. This
corresponds to a scenario where P0 and P put all their probability masses along the diagonal

Ωdiag = {x ∈ Ω; x1 = . . . = xN} (82)

of Ω. Since (82) is equivalent to the reduced state space Ωind, the fixed state assumption
greatly simplifies the analysis. For instance, it often makes it possible to find analytical
expressions for the actinfo I+, rather than having to estimate it.

6. Discussion

In this article, a general statistical framework is provided for using active information
to quantify the amount of pre-specified external knowledge an algorithm makes use of,
or equivalently, how tuned the algorithm is. The theory is based on quantifying, for each
state x, how specified it is by means of a real-valued function f (x). An algorithm with
external information either directly makes use of knowledge of f , or at least it incorporates
knowledge that tends to move the output of the algorithm towards more specified regions.
The Metropolis–Hastings Markov chain directly incorporates knowledge of f in terms of
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the acceptance probability of proposed moves. The learning ability of this algorithm was
analyzed by studying its active information, with or without stopping, when the targeted
set of highly specified states is reached. When the independent outcomes of an algorithm
are available, nonparametric and parametric estimators of the actinfo of the algorithm were
also developed, as well as nonparametric and parametric tests of FT.

This work can be extended in different ways. A first extension is to find conditions under
which the actinfo I+(θ, t) of a stochastic algorithm based on a random start (according to
the null distribution of a non-guided algorithm) followed by t iterations of the Metropolis–
Hastings Markov chain (without stopping) is a non-decreasing function of t. We conjecture
that this is typically the case but have not obtained any general conditions on the distribution
q of proposed candidates for this result to hold.

A second extension is to widen the notion of specificity, so that not only the functional-
ity f (x) but also the rarity P0(x) of the outcome x under the null distribution is taken into
account. A class of such specificity functions is

gθ(x) = θ f (x)− log P0(x), (83)

where θ > 0 is a parameter that controls the tradeoff between scenarios where either
functionality or rarity under the null is the most important determinant of specificity. The
case θ = 0 in (83) corresponds to the function having no impact, so that g0(x) reduces to
Shannon’s self information of x. The case g1(x) was proposed in [15], whereas gθ(x) is
solely determined by f (x) in the limit when θ becomes large.

A third extension is to generalize the notion of actinfo to include not only the prob-
ability of reaching a targeted set of highly specified states A under H0 and H1, but also
account for the conditional distribution of the states within A, given that A has been
reached. This is related to the way in which functional sequence complexity generalizes the
functional information [51–54]. Let H(Q) = −∑x Q(x) log[Q(x)] refer to the Shannon
entropy of a distribution Q, whereas H(QA) is the Shannon entropy of the corresponding
conditional distribution QA(x) = Q(x|A), given that A has been reached. The functional
sequence complexity

FSC0 = H(P0)− H(P0A)

= EP0{log[P0(X | A)] | X ∈ A} − EP0{log[P0(X)]}

is the reduction in entropy, under the null hypothesis H0 of the highly specified states in A,
compared to the entropy under H0 of all states in Ω. FSC0 then reduces to the functional
information I f 0 when P0 is uniform over Ω. In a similar vein, the active uncertainty reduction
is introduced:

UR+ = ∑
x∈A

PA(x) log P(x)− ∑
x∈A

P0A(x) log P0(x)

= EP[log P(X)|X ∈ A]− EP0 [log P0(X)|X ∈ A].

Then, UR+ = I+ when P0A and PA are uniformly distributed on A. This happens,
for instance, when P0 has a uniform distribution on Ω and P = Pθ for some θ > 0, and
if (8) holds. The properties of UR+ deserve to be analyzed in more detail, for instance, by
investigating how it differs from the actinfo I+.

A fourth extension would be to apply the concept of actinfo to other genetic models.
For instance, Example 4 is the first time that, to our knowledge, actinfo is applied to the
Moran model. In the past, however, actinfo was used in population genetics to study
fixation times for the Wright–Fisher model of population genetics, a model for which time
is discrete and generations do not overlap [55].
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7. Proofs

Proof of Proposition 1. Introduce

J(θ) = ∑
x∈Ac

exp{θ[ f (x)− f (x0)]}P0(x),

K(θ) = ∑
x∈A

exp{θ[ f (x)− f (x0)]}P0(x),
(84)

when Ω is countable, and replace the sums in (84) by integrals when Ω is continuous. Then

Pθ(A) = exp[θ f (x0)]K(θ)/{exp(θ f (x0))[J(θ) + K(θ)]}
= K(θ)/[J(θ) + K(θ)] (85)

= 1/[J(θ)/K(θ) + 1].

Since P0(A) < 1, it follows that J(θ) is a strictly decreasing function of θ ≥ 0, whereas
K(θ) is a non-decreasing function of θ. From this, it follows that Pθ(A) is a strictly increasing
function of θ, and consequently I+(θ) = log[Pθ(A)/P0(A)] is a strictly increasing function
of θ as well.

Moreover, K(θ) ≥ P0(A) > 0 for all θ ≥ 0, and J(θ) → 0 as θ → ∞ follows by
dominated convergence. In conjunction with (85), this implies that Pθ(A)→ 1 and I+(θ)→
I f 0 as θ → ∞.

Proof of Proposition 2. Equation (20) follows from (17), (19) and the fact that

P0(A) = ∑
x∈A

P0(x) = P0v,

Pθt(A) = ∑
x∈A

Pθt(x) = Pθtvs. = P0Πt
θv,

since v is a column vector of length |Ω| with ones in positions x ∈ A and zeros in positions
x ∈ Ac.

Equation (21) is equivalent to proving that

Pθt(A)→ Pθ(A) as t→ ∞.

However, this follows from the fact that Pθ is the equilibrium distribution of the
Markov chain with transition kernel (18). That is, letting t→ ∞ in (19), we find that

Pθt = P0Πt
θ → Pθ ,

and therefore
Pθt(A) = Pθtvs.→ Pθvs. = Pθ(A), as t→ ∞.

Proof of Proposition 3. Equation (28) follows from the definitions of I+(θ, t) and I+s (θ, t)
in (20) and (27), and the fact that

Pθt(A) = P(Xt ∈ A) ≤ P(Xt∧T ∈ A) = Pθts(A),

where the inequality is a consequence of the definition of T in (22). Since

Pθts(A) = P(T ≤ t) ≤ P(T ≤ t + 1) = Pθ,t+1,s(A),

we proved that I+s (θ, t) is non-decreasing in t. Equation (29) follows from the definition of
I+s (θ, t) and the fact that

lim
t→∞

Pθts(A) = P(T < ∞) = 1. (86)



Entropy 2022, 24, 1323 24 of 30

The last equality of (86) is a consequence of the fact that the Markov chain with
transition kernel Πθ is irreducible, so that any state x ∈ Ω will be reached with a probability
of 1. In particular, the targeted set A will be reached with a probability of 1. In order to
verify (30), we first deduce

P(T > t) = 1− P0(A)eI+s (θ,t)

from (24), and then we make use of the equality

E(T) =
∞

∑
t=0

P(T > t).

Proof of Proposition 4. Since nQ̂(A) ∼ Bin(n, Q(A)) has a binomial distribution, it fol-
lows from the central limit theorem that

√
n(Q̂(A)−Q(A))

L−→ N(0, Q(A)[1−Q(A)]), (87)

as n → ∞. Notice that Î+ = g(Q̂(A)), where g(Q) = log[Q/P0(A)] and g′(Q) = 1/Q.
Equation (38) follows from the Delta method (see, e.g., Theorem 8.12 of [33]) and the
fact that

V = g′(Q(A))2 ·Q(A)[1−Q(A)].

In order to establish (40), to begin with, it follows from (34) and the definition of
pmin that

PH0( Î+ ≥ Imin) = PH0(Q̂(A) ≥ pmin)

= PH0

(
1
n

n

∑
i=1

Yi ≥ pmin

)
,

where Yi = I(Xi ∈ A) ∼ Be(p0) are independent Bernoulli variables under H0 with success
probability p0 = P0(A). It follows from the large deviations theory that (40) holds, with

C = sup
φ>0

[φpmin − λ(φ)] (88)

the Legendre–Fenchel transformation, and

λ(φ) = log E[exp(φY)] = log[1 + p0(eφ − 1)] (89)

the cumulant generating function of Y [56], pp. 529–533. Inserting (89) into (88), it can be
seen that the maximum in (88) is given by (41).

Proof of Proposition 5. In order to verify (46), we will first show that the estimator (42) of
the tilting parameter θ is asymptotically normal

√
n(θ̂n − θ∗)

L−→ N(0, U) as n→ ∞, (90)

with asymptotic variance

U =
VarQ[ f (X)]

Var 2
Pθ∗

[ f (X)]
. (91)

To this end, let ′ refer to the derivatives with respect to the tilting parameter θ. Define
the score function

ψθ(x) =
d log Pθ(x)

dθ
=

P′θ(x)
Pθ(x)
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and its derivative

ψ′θ(x) =
dψθ(x)

dθ
.

It is a standard result from the asymptotic theory of maximum likelihood estimation
and M-estimation (see, e.g., Chapter 6 of [33]) that (90) holds with asymptotic variance

U =
VarQ[ψθ∗(X)]

E2
Q[ψ

′
θ∗(X)]

. (92)

To simplify (92), notice that the score function can be written as

ψθ(x) = f (x)− M′(θ)
M(θ)

= f (x)− EPθ
[ f (X)] (93)

for the exponential family of tilted distributions (10) and (11). From this, it follows that

ψ′θ(x) =
M′′(θ)
M(θ)

−
(

M′(θ)
M(θ)

)2

= VarPθ
[ f (X)]

is a constant, not depending on x. Inserting the last two displayed equations into (92), the
formula in (91) for the asymptotic variance of θ̂ is obtained. As a next step, we notice that

Î+ = g(θ̂), (94)

where

g(θ) = log
Pθ(A)

P0(A)
= log h(θ)− log P0(A), (95)

and

h(θ) = Pθ(A) =
∑x∈A eθ f (x)P0(x)dx

M(θ)
(96)

follows from the definition of Pθ(x) in (10).
Differentiating (96) with respect to θ, we find that

h′(θ) = ∑
x∈A

f (x)eθ f (x)P0(x)dx/M(θ)

−M′(θ) ∑
x∈A

eθ f (x)P0(x)dx/M2(θ).
(97)

Furthermore, it follows from the RHS of (97) that

h′(θ) = EPθ
[ f (X)I( f (X) ≥ f0)]− Pθ(A)EPθ

[ f (X)]

= CovPθ
[ f (X), I( f (X) ≥ f0)].

(98)

Then, we combine (95) and (97), and obtain

g′(θ) =
h′(θ)
h(θ)

=
CovPθ

[ f (X), I( f (X) ≥ f0)]

Pθ(A)
. (99)

Finally, we use the Delta method to conclude that Î+ is an asymptotic normal estima-
tor (38) of I+(θ∗), with asymptotic variance V = g′(θ∗)2U, which, in view of (91) and (99),
agrees with (47).
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In order to prove the large deviation result (48) for the parametric test of FT, let θmin be
the value of the tilting parameter that satisfies Pθmin(A) = pmin = P0(A) exp(Imin). Then,
notice that

PH0( Î+ ≥ Imin) = PH0(Q̂(A) ≥ pmin)

= PH0(θ̂ ≥ θmin)

= PH0(
n

∑
i=1

ψθmin(Xi)/n ≥ 0)

= PH0

(
n

∑
i=1

f (Xi)/n ≥ Epmin [ f (X)]

)
,

where, in the third step, we utilized that θ̂ ≥ θmin is equivalent to the derivative of the log
likelihood of data being non-negative at θmin, and in the fourth step, we made use of (93)
and introduced pmin = Pθmin . However, this last line is a large deviations probability. It
then follows from a large deviations theory that (48) holds, with C the Legendre–Fenchel
transformation in (49).

Proof of Proposition 6. Since the bias corrected empirical actinfo

Î+n − B = log
Q̂(A)

P0ξ(A)
(100)

behaves like (34), with P0 = P0ξ , the asymptotic normality result for the nonparametric
version of the estimator of I+Q follows from Proposition 4.

For the parametric version of the estimator of I+Q , we will (briefly) generalize the
asymptotic normality proof of Proposition 5. It follows from (53) and (55) that

Î+n = g(θ̂, ξ̂),

where

g(θ, ξ) = log
Pθξ(A)

P0max(A)
. (101)

Making use of the delta method, it follows that the asymptotic variance of the para-
metric version of Î+n equals

V = g′(θ∗, ξ∗)AsVar(θ̂, ξ̂)g′(θ∗, ξ∗)T , (102)

with the asymptotic variance of (θ̂, ξ̂) defined through

√
n
(
(θ̂, ξ̂)− (θ∗, ξ∗)

) L−→ N(0, AsVar(θ̂, ξ̂))

as n→ ∞. Since (θ̂, ξ̂) in (56) is an M-estimator, it follows that its asymptotic variance equals

AsVar(θ̂, ξ̂) = E[ψ′θ∗ξ∗(X)]−1E[ψT
θ∗ξ∗(X)ψθ∗ξ∗(X)]E[(ψ′θ∗ξ∗)

T(X)]−1. (103)

The gradient of (101) is

g′(θ, ξ) =
P′θξ(A)

Pθξ(A)
= E[ψθξ(X)|X ∈ A], (104)

where ψθξ = P′θξ(x)/Pθξ(x) is the likelihood score function for the combined parameter
vector (θ, ξ). Putting things together, the asympotic variance formula (59) for the parametric
version of Î+n follows from (102)–(104).
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The significance level of the FT test can be written as

P0ξ( Î+n ≥ Imin) = P0ξ( Î+n − B ≥ Imin − B).

Since pmin = P0ξ(A) exp(Imin), we have that

Imin − B = log
pmine−B

P0ξ(A)
. (105)

From this and (100), it follows that the nonparametric test of FT behaves as the
corresponding nonparametric test of Proposition 4, with the null probability P0(A) replaced
by P0ξ(A), and pmin replaced by pmine−B. Therefore, the large deviation result (61) follows
from (41). In a similar way, the large deviation result for the parametric version of the FT-test
(in the special case when θ is a scalar exponential tilting parameter) follows from (100), (105)
and Proposition 5.

Proof of Proposition 7. Because of (52) and (63), we have that

√
n( Î+nn0

− I+Q ) =
√

n log
Q̂(A)

Q(A)
−
√

n
n0

√
n0 log

P0ξ̂(A)

P0ξ(A)
, (106)

where
√

n log
Q̂(A)

Q(A)
L−→ N(0, V1) as n→ ∞ (107)

and
√

n0 log
P0ξ̂(A)

P0ξ(A)
L−→ N(0, V2) as n0 → ∞ (108)

respectively. It follows from the proofs of Propositions 4 and 5 that the asymptotic variance
for V1 in (107) is the same as V in (39) and (59), for the nonparametric and parametric
versions of Q̂(A), respectively. The asymptotic variance V2 in (108) is given by (67). This
is proven using the delta method (similarly as for Proposition 6), making use of the fact
that ξ̂ is the maximum likelihood estimator of ξ with asymptotic variance that is the
inverse E[ψT

ξ (X)ψξ(X)]−1 of the Fisher information matrix. The asymptotic normality
result (66) then follows from (106)–(108), the fact that n/n0 → λ, and the independence of
the two samples.

The large deviations results are proven in a similar way as in Proposition 6, replacing

P0max(A) by P0ξ̂(A). Using statistical consistency ξ̂
p−→ ξ as n0 → ∞, it follows that the

large deviation rates C of Proposition 7, for the nonparametric and parametric versions of
the FT tests, are the same as in Proposition 6, with bias term B = 0.

Details from Example 4. In order to prove that the Metropolis–Hastings-type Markov
chain (14) with acceptance probabilities (73) has an equilibrium distribution of Pθ , we first
notice that for any pair of states x 6= y, the flow of probability mass

Pθ(x)πθ(x, y)

= Pθ(x)q(x, y)αθ(x, y)

=
P0(x)eθ f (x)

M(θ)
q(x, y) · C

[
eθ f (y)P0(y)q(y, x)
eθ f (x)P0(x)q(x, y)

]1/2

= C

(
eθ f (x)P0(x)q(x, y)eθ f (y)P0(y)q(y, x)

)1/2

M(θ)
(109)

from x to y is symmetric with respect to x and y. Therefore, the flow Pθ(y)πθ(y, x) of
probability mass in the opposite direction, from y to x, is the same as in (109). A Markov
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chain with this property is called reversible [57], pp. 11–12. However, it is well known that
Pθ is a stationary distribution if the Markov chain is reversible with reversible measure
Pθ [58], p. 238. If, additionally, the proposal distribution q is such that it is possible to
move between any pair of states in a finite number of steps, it follows that the Markov
chain is irreducible and hence that Pθ is its unique stationary distribution, which is also the
equilibrium distribution of the Markov chain [58], p. 232.

We will then motivate formula (77) for the acceptance probability of a Moran model.
Assume that the population evolves over time as a Moran model, and that all individuals
have type x. If one individual mutates from x to y, because of (75), the relative fitness
between the N − 1 individuals of type x and the newly mutated individual of type y is

s =
eθ f (y)/N

eθ f (x)/N
= eθ[ f (y)− f (x)]/N . (110)

From the theory of Moran models (e.g., [41,59]), it is well known that the fixation
probability for the newly mutated individual is

βN(s) =
{

(1− s−1)/(1− s−N), s 6= 1,
1/N, s = 1.

(111)

Inserting (110) into (111), we find (when s 6= 1, or equivalently when ∆ = θ[ f (y)−
f (x)] 6= 0) that

βN(s) =
1− e−∆/N

1− e−∆ ≈ 1
N
· ∆

1− e−∆ ≈
1
N
· (1 + ∆

2
),

which is equivalent to (77).
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