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Abstract: In recent years, there has been an exponential growth in sequencing projects due to
accelerated technological advances, leading to a significant increase in the amount of data and
resulting in new challenges for biological sequence analysis. Consequently, the use of techniques
capable of analyzing large amounts of data has been explored, such as machine learning (ML)
algorithms. ML algorithms are being used to analyze and classify biological sequences, despite the
intrinsic difficulty in extracting and finding representative biological sequence methods suitable for
them. Thereby, extracting numerical features to represent sequences makes it statistically feasible
to use universal concepts from Information Theory, such as Tsallis and Shannon entropy. In this
study, we propose a novel Tsallis entropy-based feature extractor to provide useful information to
classify biological sequences. To assess its relevance, we prepared five case studies: (1) an analysis
of the entropic index q; (2) performance testing of the best entropic indices on new datasets; (3) a
comparison made with Shannon entropy and (4) generalized entropies; (5) an investigation of the
Tsallis entropy in the context of dimensionality reduction. As a result, our proposal proved to
be effective, being superior to Shannon entropy and robust in terms of generalization, and also
potentially representative for collecting information in fewer dimensions compared with methods
such as Singular Value Decomposition and Uniform Manifold Approximation and Projection.

Keywords: feature extraction; tsallis entropy; biological sequence; information theory

1. Introduction

The accelerated evolution of sequencing technologies has generated significant growth
in the number of sequence data [1], opening up new opportunities and creating new
challenges for biological sequence analysis. To take advantage of the increased predictive
power of machine learning (ML) algorithms, recent works have investigated the use of
these algorithms to analyze biological data [2,3].

The development of effective methods for sequence analysis, through ML, bene-
fits the research advancement in new applications [4,5], such as understanding several
problems [4,5], e.g., cancer diagnostics [6], development of CRISPR-Cas systems [7], drug
discovery and development [8] and COVID-19 diagnosis [9]. Nevertheless, ML algo-
rithms applied to the analysis of biological sequences present challenges, such as feature
extraction [10]. For non-structured data, as is the case of biological sequences, feature
extraction is a key step for the success of ML applications [11–13].

Previous works have shown that universal concepts from Information Theory (IT),
originally proposed by Claude Shannon (1948) [14], can be used to extract relevant informa-
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tion from biological sequences [15–17]. According to [18], an IT-based analysis of symbolic
sequences is of interest in various study areas, such as linguistics, biological sequence
analysis or image processing, whose relevant information can be extracted, for example, by
Shannon’s uncertainty theory [19].

Studies have investigated the analysis of biological sequences with Shannon entropy
in a wide range of applications [19–21]. Given their large applicability, according to [22],
it is important to explore the possibility of generalized entropies, such as Tsallis [23,24],
which was proposed to generalize the Boltzmann/Gibbs’s traditional entropy to non-
extensive physical systems [25]. This class of generalized entropy has been used for different
problems, e.g., image analysis [25,26], inference of gene regulatory networks [27], DNA
analysis [20] induction of decision trees [28] and classification of epileptic seizures [29].

In [25], the authors proposed a new image segmentation method using Tsallis entropy.
Later, Ref. [26] showed a novel numerical approach to calculate the Tsallis entropic index
feature for a given image. In [27], the authors introduced the use of generalized entropy for
the inference of gene regulatory networks. DNA analysis using entropy (Shannon, Rényi
and Tsallis) and phase plane concepts was presented in [20], while [28] used the concept
of generalized entropy for decision trees. Recently, Ref. [29] investigated a novel single
feature based on Tsallis entropy to classify epileptic seizures. These studies report a wide
range of contributions to the use of Tsallis entropy in different domains. To the best of our
knowledge, this paper is the first work proposing its use as a feature (feature extraction) to
represent distinct biological sequences. Additionally, it presents the first study of different
Tsallis entropic indexes and their effects on classical classifiers.

A preliminary version of this proposal was presented in [5]. Due to the favorable
results obtained, we created a code to extract different descriptors available in a new pro-
gramming package, called MathFeature [13], which implements mathematical descriptors
for biological sequences. However, until now, we have not studied Tsallis entropy in depth,
e.g., its effect, its application to other biological sequence datasets and its comparison with
other entropy-based descriptors, e.g., Shannon. Thus, in this paper, we investigate the
answers to the following questions:

• Question 1 (Q1): Are Tsallis entropy-based features robust for extracting information
from biological sequences in classification problems?

• Question 2 (Q2): Does the entropic index affect the classification performance?
• Question 3 (Q3): Is Tsallis entropy as robust as Shannon entropy for extracting infor-

mation from biological sequences?

We are evaluating robustness in terms of performance, e.g., accuracy, recall and F1
score, of the feature vectors extracted by our proposal on different biological sequence
datasets. Finally, this study makes the following main research contributions: we propose
an effective feature extraction technique based on Tsallis entropy, being robust in terms
of generalization, and also potentially representative for collecting information in fewer
dimensions for sequence classification problems.

2. Literature Review

In this section, we develop a systematic literature review to present and summarize
feature extraction descriptors for biological sequences (DNA, RNA, or protein). This review
aims to report the need and lack of studies with mathematical descriptors, such as entropy,
evidencing the contribution of this article. This section followed the Systematic Literature
Review (SLR) Guidelines in Software Engineering [30], which, according to [30,31], allows
a rigorous and reliable evaluation of primary studies within a specific topic. We base our
review on recommendations from previous studies [30–32].

We propose to address the following problem: How can we numerically represent a
biological sequence (such as DNA, RNA, or protein) in a numeric vector that can effectively reflect
the most discriminating information in a sequence? To answer this question, we reviewed
ML-based feature extraction tools (or packages, web servers and toolkits) that aim, as a
proposal, to provide several feature descriptors for biological sequences—that is, without a
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defined scope, and, therefore, generalist studies. Moreover, we used the following electronic
databases: ACM Digital Library, IEEE Xplore Digital Library, PubMed and Scopus. We
chose the Boolean method [33] to search primary studies in the literature databases. The
standard search string was: (“feature extraction” OR “extraction” OR “features” OR “feature
generation” OR “feature vectors”) AND (“machine” OR “learning”) AND (“tool” OR “web server”
OR “package” OR “toolkit”) AND (“biological sequence” OR “sequence”).

Due to different query languages and limitations between the scientific article databases,
there were some differences in the search strings. Therefore, our first step was to apply
search keys to all databases, returning a set of 1404 studies. Furthermore, we used the
Parsifal tool to assist our review and obtain better accuracy and reliability. Thereafter,
duplicate studies were removed, returning an amount of 1097 titles (307 duplicate studies).

Then, we performed a thorough analysis of the titles, keywords and abstracts, accord-
ing to inclusion and exclusion criteria: (1) Studies in English, (2) Studies with different
feature extraction techniques, (3) Studies with generalist tools and (4) Studies published in
journals. We accepted 28 studies (we rejected, 1069). Finally, after pre-selecting the stud-
ies, we performed a data synthesis, to apply an assessment based on the quality criteria:
(1) Are the study aims specified? (2) Study with different proposals/results? (3) Study with
complete results?

Hence, of the 28 studies, 3 were eliminated, leading to a final set of 25 studies (see
Supplementary Table S1). As previously mentioned, we assessed generalist tools for
feature extraction, since this type of study would provide several descriptors, presenting
an overview of ways to numerically represent biological sequences (which would not
be possible by evaluating studies dedicated to some specific problem). As expected, we
found more than 100 feature descriptors. We chose to divide them into large groups
(16 groups—these were defined based on all studies), as shown in Supplementary Table S2.
Then, we created Table 1 with all the feature descriptors found in the 25 studies (see the
complete table in Supplementary Table S3). As can be seen, no study provides mathematical
descriptors, such as Tsallis entropy, reinforcing the contribution of our proposal.

Table 1. Feature descriptors found in all studies.

Group Descriptor

Nucleic Acid Composition Nucleotide composition
Dinucleotide composition
Trinucleotide composition
Tetranucleotide composition
Pentanucleotide composition
Hexanucleotide composition
Basic k-mer
Reverse complementary k-mer
Increment in diversity
Mismatch
Subsequence
GC-content
AT/GT Ratio
Cumulative skew
kGap
Position-specific nucleotide frequency
Nucleotide content
Conformational properties
Enhanced nucleic acid composition
Composition of k-spaced Nucleic Acid Pairs

TD Topological descriptors

K-Nearest Neighbor K-nearest neighbor for proteins
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Table 1. Cont.

Group Descriptor

Autocorrelation Normalized Moreau–Broto
Moran
Geary
Dinucleotide-based auto-covariance
Dinucleotide-based cross-covariance
Dinucleotide-based auto-cross-covariance
Trinucleotide-based auto-covariance
Trinucleotide-based cross-covariance
Trinucleotide-based auto-cross-covariance

Pseudo Nucleic Acid Composition Type 1 Pseudo k-tuple nucleotide composition
Type 2 Pseudo k-tuple nucleotide composition
Pseudo k-tuple nucleotide composition
Pseudo dinucleotide composition

Numerical Mapping Z-curve theory
Nucleotide Chemical Property
Accumulated Nucleotide Frequency
Electron–ion interaction pseudopotential
Pseudo electron–ion interaction pseudopotential
Binary
Orthonormal encoding
Basic one-hot
6-dimension one-hot method

Amino Acid Composition Amino acid composition
Dipeptide composition
Tripeptide composition
Terminal end amino acid count
Amino acid pair
Secondary structure composition
Secondary structure—amino acid composition
Solvent accessibility composition
Solvent accessibility—amino acid composition
Codon composition
Protein length
Overlapping k-mers
Information-based statistics
Basic k-mer
Distance-based residue
Distance pair
Residue-Couple Model
Composition moment vector
Enhanced amino acid composition
Composition of k-spaced amino acid pairs
Dipeptide deviation from expected mean
Grouped amino acid composition
Enhanced grouped amino acid composition
Composition of k-spaced amino acid group pairs
Grouped dipeptide composition
Grouped tripeptide composition
kGap
Position-specific nucleotide frequency

Pseudo-Amino Acid Composition Type 1 PseAAC
Type 2 PseAAC
Dipeptide (or Type 3) PseAAC
General parallel correlation PseAAC
General series correlation PseAAC
Pseudo k-tuple reduced AAC (type 1 to type 16)

CTD Composition
Transition
Distribution
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Table 1. Cont.

Group Descriptor

Sequence-Order Sequence-order-coupling number
Quasi-sequence-order

Profile-based Features Signal average
Signal peak area
PSSM (Position-Specific Scoring Matrix) profile
Profile-based physicochemical distance
Distance-based top-n-gram
Top-n-gram
Sequence conservation score
Frequency profile matrix

Conjoint Triad Conjoint Triad
Conjoint k-spaced triad

Proteochemometric Descriptors Principal component analysis
Principal component analysis (2D and 3D)
Factor analysis
Factor analysis (2D and 3D)
Multidimensional scaling
Multidimensional scaling (2D and 3D)
BLOSUM and PAM matrix-derived
Biophysical quantitative properties
Amino acid properties
Molecular descriptors

Sequence Similarity Gene Ontology (GO) similarity
Sequence Alignment
BLAST matrix

Structure Composition Secondary structure
Solvent accessible surface area
Secondary structure binary
Disorder
Disorder content
Disorder binary
Torsional angles
DNA shape features

Physicochemical Property AAindex
Z-scale
Physicochemical n-Grams
Dinucleotide physicochemical
Trinucleotide physicochemical

3. Information Theory and Entropy

According to [34], IT can be defined as a mathematical treatment of the concepts,
parameters, and rules related to the transmission and processing of information. The IT
concept was first proposed by Claude Shannon (1948) in the work entitled “A Mathematical
Theory of Communication” [14], where he showed how information could be quantified
with absolute precision. The entropy originating from IT can be considered a measure of or-
der and disorder in a dynamic system [14,25]. However, to define information and entropy,
it is necessary to understand random variables, which, in probability theory, is a mathemat-
ical object that can take on a finite number of different states x1, . . . , xn with previously
defined probabilities p1, . . . , pn [35]. According to [5], for a discrete random variable R tak-
ing values in {r[0], r[1], r[2], . . . , r[N − 1]} with probabilities {p[0], p[1], p[2], . . . , p[N − 1]},
represented as P(R = r[n]) = p[n], we can define self-information or information as [26]

I = −log(p). (1)
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Thus, the Shannon entropy HS is defined by

HS = −
N−1

∑
n=0

p[n] log2 p[n]. (2)

Here, N is the number of possible events and p[n] the probability that event n occurs.
Fundamentally, with Shannon entropy, we can reach a single value that quantifies the
information contained in different observation periods [36]. Furthermore, it is important to
highlight that the Boltzmann/Gibbs entropy was redefined by Shannon as a measure of
uncertainty [25]. This formalism, known as Boltzmann–Gibbs–Shannon (BGS) statistics,
has often been used to interpret discrete and symbolic data [18]. Moreover, according
to [25,37], if we decompose a physical system into two independent statistical subsystems
A and B, the Shannon entropy has the extensive property (additivity)

HS(A + B) = HS(A) + HS(B) (3)

According to [38], complementary information on the importance of specific events
can be generated using the notion of generalized entropy, e.g., outliers or rare events. Along
these lines, Constantino Tsallis [23,24] proposed a generalized entropy of the BGS statistics,
which can be defined as follows:

HT =
1

q− 1

(
1−

N−1

∑
n=0

p[n]q
)

. (4)

Here, q is called the entropic index, which, depending on its value, can represent
various types of entropy. Depending on the value of q, three different entropies can be
defined [25,37]:

• Superextensive entropy (q < 1):

HT(A + B) < HT(A) + HT(B) (5)

• Extensive entropy (q = 1):

HT(A + B) = HT(A) + HT(B) (6)

• Subextensive entropy (q > 1):

HT(A + B) > HT(A) + HT(B) (7)

When q < 1, the Tsallis entropy is superextensive; for q = 1, it is extensive (e.g., leads
to the Shannon entropy), and for q > 1, it is subextensive [39]. Therefore, based on these
differences, it is important to explore the possibility of generalized entropies [22,28,40].
Another notable generalized entropy is the Rényi entropy, which generalizes the Shannon
entropy, the Hartley entropy, the collision entropy and the min-entropy [41,42]. The Rényi
entropy can be defined as follows:

HR =
1

1− q
log2

(
N−1

∑
n=0

p[n]q
)

. (8)

As in the Tsallis entropy, q = 1 leads to Shannon entropy.

4. Materials and Methods

In this section, we describe the experimental methodology adopted for this study,
which is divided into five stages: (1) data selection; (2) feature extraction; (3) extensive
analysis of the entropic index; (4) performance analysis; (5) comparative study.
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4.1. A Novel Feature Extraction Technique

Our proposal is based on the studies of [5,20]. To generate our probabilistic exper-
iment [15], we use a known tool in biology, the k-mer. In this method, each sequence
is mapped in the frequency of neighboring bases k, generating statistical information.
The k-mer is denoted in this work by Pk, corresponding to Equation (9).

Pk(s) =
ck

i
N − k + 1

=

(
c1

1
N − 1 + 1

, . . . ,
c1

4
N − 1 + 1

,

c2
4+1

N − 2 + 1
, . . . ,

ck
i

N − k + 1

)
k = 1, 2, . . . , n.

(9)

Here, each sequence (s) was assessed with frequencies of k = 1, 2, . . . , 24, in which
ck

i is the number of occurrences with length k in a sequence (s) with length N; the index
i ∈ {1, 2, . . . , 41 + . . . + 4k} refers to an analyzed substring (e.g., [{AAAA}, . . . , {TTTT}],
for k = 4). Here, after counting the absolute frequencies of each k, we generate relative
frequencies and then apply Tsallis entropy to generate the features. In the case of protein
sequences, index i is {1, 2, . . . , 201 + . . . + 20k}. For a better understanding, Algorithm 1
demonstrates our pseudocode.

Algorithm 1: Pseudocode of the Proposed Technique
Inputs: S: Biological sequences; ksize: Range k-mer; q: entropic index
Output: Features generated by Tsallis entropy
begin

for seq in S do
for k in range(ksize) do

select k combinations (N − k + 1) of the original sequences;
extract three measures:

(1) absolute frequency;
(2) relative frequency;
(3) Tsallis entropy.

end
end

end

This algorithm is divided into five steps: (1) each sequence is mapped to k− mers;
(2) extraction of the absolute frequency of each k − mer; (3) extraction of the relative
frequency of each k−mer based on absolute frequency; (4) extraction of the Tsallis entropy,
based on the relative frequency for each k − mer—see Equation (4); (5) generation, for
each k−mer, of an entropic measure. Regarding interpretability, each entropic measure
represents a k−mer, e.g., 1-mer = frequency of A, C, T, G. In other words, analyzing the
best measures—for example, through a feature importance analysis—we can determine
which k − mers are more relevant to the problem under study, providing an indication
of which combination of nucleotides or amino acids contributes to the classification of
the sequences.

4.2. Benchmark Dataset and Experimental Setting

To validate the proposal, we divided our experiments into five case studies:

• Case Study I: Assessment of the Tsallis entropy and the effect of the entropic index
q, generating 100 feature vectors for each benchmark dataset with 100 different q
parameters (entropic index). The features were extracted by Algorithm 1, with q
varying from 0.1 to 10.0 in steps of 0.1 (except 1.0, which leads to the Shannon entropy).
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The goal was to find the best values for the parameter q to be used in the experiments.
For this, three benchmark datasets from previous studies were used [5,43,44]. For the
first dataset (D1), the selected task was long non-coding RNAs (lncRNA) vs. protein-
coding genes (mRNA), as in [45], using a set with mRNA and lncRNA sequences (500
for each label—benchmark dataset [5]). For the second dataset (D2), a benchmark set
from [5], the selected task was the induction of a classifier to distinguish circular RNAs
(cirRNAs) from other lncRNAs using 1000 sequences (500 for each label). The third
dataset (D3) is for Phage Virion Protein (PVP) classification, from [44], with 129 PVP
and 272 non-PVP sequences.

• Case Study II: We use the best parameters (q : entropic index—found in case study I)
to evaluate its performance on new datasets: D4—Sigma70 Promoters [46] (2141 se-
quences), D5—Anticancer Peptides [47] (344 sequences) and D6—Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2, 24815 sequences) [13].

• Case Study III—Comparing Tsallis with Shannon Entropy: As a baseline of the
comparison between methods, we use Shannon entropy, as we did not find any article
studying the form of proposed classification with Tsallis entropy and the effect of the
entropic parameter with different classifiers. In this experiment, we use D1, D2, D3,
D4, D5 and D6.

• Case Study IV—Comparing Generalized Entropies: To better understand the effec-
tiveness of generalized entropies for feature extraction, we evaluated Tsallis with the
Rényi entropy. In this case, the evaluations of the two approaches were conducted
by using the experiments from case study I, changing the entropic index for generat-
ing the datasets from 0.1 to 10.0 in steps of 0.1, and inducing the CatBoost classifier.
In addition, the datasets used were D1, D2 and D3.

• Case Study V—Dimensionality Reduction Analysis: Finally, we assessed our pro-
posal with other known techniques of feature extraction and dimensionality reduction,
e.g., Singular Value Decomposition (SVD) [48] and Uniform Manifold Approximation
and Projection (UMAP) [49], using datasets D1, D2, D3 and D5. We also added three
new benchmark datasets provided by [50] to predict recombination spots (D7) with
1050 sequences (it contained 478 positive sequences and 572 negative sequences) and
for the HIV-1 M pure subtype against CRF classification (D8) with 200 sequences
(it contained 100 positive and negative sequences) [51]. In addition, we also used a
multiclass dataset (D9) containing seven bacterial phyla with 488 small RNA (sRNA),
595 transfer RNA (tRNA) and 247 ribosomal RNA (rRNA) from [52]. Moreover, to
apply SVD and UMAP, we kept the same feature descriptor by k-mer frequency.

For data normalization in all stages, we used the min–max algorithm. Furthermore,
we investigated five classification algorithms, such as Gaussian Naive Bayes (GaussianNB),
Random Forest (RF), Bagging, Multi-Layer Perceptron (MLP) and CatBoost. To induce
our models, we randomly divided the datasets into ten separate sets to perform 10-fold
cross-validation (case study I and case study V) and hold-out (70% of samples for training
and 30% for testing—case study II, case study III, and case study IV). Finally, we assessed
the results with accuracy (ACC), balanced accuracy (BACC), recall, F1 score and Area
Under the Curve (AUC). In D9, we considered metrics suitable for multiclass evaluation.

5. Results and Discussion
5.1. Case Study I

As aforementioned, we induced our classifiers (using 10-fold cross-validation) across
all feature vectors generated with 100 different q parameters (totaling 300 vectors (3 datasets
times 100 parameters)). Thereby, we obtained the results presented in Table 2. This table
shows the best and worst parameter (entropic parameter q) of each algorithm in the three
benchmark datasets, taking into account the ACC metric.
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Table 2. The best and worst parameter (q) of each benchmark dataset and classifier, taking into
account the ACC metric.

Dataset GaussianNB RF Bagging MLP CatBoost

q ACC q ACC q ACC q ACC q ACC
D1 2.7 0.9370 0.4 0.9430 2.7 0.9400 2.2 0.9380 2.3 0.9440

9.2 0.4760 9.6 0.7360 9.6 0.7270 10.0 0.5060 9.6 0.747
D2 1.5 0.7980 5.3 0.8220 5.7 0.8080 0.9 0.7800 4.0 0.8300

9.6 0.5210 10.0 0.6510 10.0 0.6170 9.9 0.5060 9.2 0.6800
D3 8.7 0.7008 7.8 0.6910 2.0 0.7157 1.5 0.7184 1.1 0.7282

1.3 0.6062 9.8 0.5985 9.5 0.5962 0.1 0.6860 5.7 0.6610

Thereby, evaluating each classifier, we observed that the CatBoost performed best
in all datasets, with 0.9440 (q = 2.3), 0.8300 (q = 4.0), 0.7282 (q = 1.1) in D1, D2 and
D3, respectively. The other best classifiers were RF, with 0.9430 (q = 0.4 − D1) and
0.8220 (q = 5.3 − D2), followed by Bagging, MLP, and GaussianNB. Furthermore, in gen-
eral, we noticed that the best results presented parameters between 1.1 < q < 5.0, i.e.,
when the Tsallis entropy was subextensive. Along the same lines, it can be observed in
Table 2 that the worst parameters are between 9.0 < q < 10.0, when the Tsallis entropy is
also subextensive. However, for a more reliable analysis, we plotted graphs with the results
of all tested parameters (0.1 to 10.0 in steps of 0.1), as shown in Figure 1.

2 4 6 8 10
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0.7

0.8

0.9

AC
C

Classifier
GaussianNB
RandomForest
Bagging
MLP
Catboost

(a)

2 4 6 8 10
Tsallis Entropies (q)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AC
C

Classifier
GaussianNB
RandomForest
Bagging
MLP
Catboost

(b)
Figure 1. Cont.
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2 4 6 8 10
Tsallis Entropies (q)
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0.64
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0.68
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GaussianNB
RandomForest
Bagging
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(c)
Figure 1. Performance analysis with five classifiers on 100 q parameters of three benchmark datasets
(evaluation metric: ACC). (a) Benchmark D1—ACC; (b) Benchmark D2—ACC; (c) Benchmark D3—
ACC.

A large difference can be observed in the entropy obtained by each parameter q,
mainly in benchmark D3. Thereby, analyzing D1 and D2, we noticed a pattern of robust
results until q = 6, for the best classifiers in both datasets. However, as the q parameter
increases, the classifiers are less accurate. On the other hand, if we look at D3, the entropy
obtained for each parameter q presents a much greater variation, but following the same
drop with parameters close to q = 10. Regarding the superextensive entropy (q < 1),
some cases showed robust results; however, most classifiers behaved better with the
subextensive entropy.

5.2. Case Study II

After substantially evaluating the entropic index, our findings indicated that the best
parameters were among 1.1 < q < 5.0. Thereby, we generated new experiments using
five parameters to test their efficiency in new datasets, with q = (0.5, 2.0, 3.0, 4.0, 5.0), as
shown in Table 3 (sigma70 promoters—D4), Table 4 (anticancer peptides—D5) and Table 5
(SARS-CoV-2—D6). Here, we generated the results with the two best classifiers (RF and
Catboost—best in bold).

Table 3. Performance with different entropic index (q) values for the sigma70 promoter classification
problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D4

0.5 RF 0.6594 0.2556 0.3423 0.6279 0.5647
CatBoost 0.6563 0.1973 0.2848 0.6233 0.5487

2.0 RF 0.6687 0.3094 0.3932 0.6108 0.5845
CatBoost 0.6641 0.2063 0.2987 0.6301 0.5567

3.0 RF 0.6672 0.3049 0.3886 0.6150 0.5822
CatBoost 0.6625 0.2377 0.3282 0.6319 0.5629

4.0 RF 0.6641 0.2825 0.3684 0.6163 0.5746
CatBoost 0.6656 0.2466 0.3385 0.6415 0.5674

5.0 RF 0.6641 0.2825 0.3684 0.6348 0.5746
CatBoost 0.6734 0.2646 0.3598 0.6375 0.5775
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Table 4. Performance with different entropic index (q) values for the anticancer peptide classification
problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D5

0.5 RF 0.7019 0.5952 0.6173 0.7437 0.6847
CatBoost 0.6923 0.3810 0.5000 0.7488 0.6421

2.0 RF 0.7019 0.5476 0.5974 0.7454 0.6770
CatBoost 0.6538 0.4286 0.5000 0.7500 0.6175

3.0 RF 0.7212 0.5714 0.6234 0.7748 0.6970
CatBoost 0.6827 0.4286 0.5217 0.7385 0.6417

4.0 RF 0.7019 0.5238 0.5867 0.7823 0.6732
CatBoost 0.6923 0.4762 0.5556 0.7642 0.6575

5.0 RF 0.7211 0.5476 0.6133 0.7813 0.6932
CatBoost 0.6923 0.4762 0.5556 0.7600 0.6575

Table 5. Performance with different entropic index (q) values for the SARS-CoV-2 (COVID-19)
classification problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D6

0.5 RF 0.9989 0.9992 0.9994 1.0000 0.9985
CatBoost 0.9982 1.0000 0.9990 0.9999 0.9947

2.0 RF 0.9996 1.0000 0.9998 1.0000 0.9990
CatBoost 0.9951 0.9996 0.9971 1.0000 0.9862

3.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 0.9996 1.0000 0.9998 1.0000 0.9990

4.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 0.9996 1.0000 0.9998 1.0000 0.9990

5.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 1.0000 1.0000 1.0000 1.0000 1.0000

Assessing each benchmark dataset, we note that the best results were of ACC: 0.6687
and AUC: 0.6108 in D4 (RF, q = 2.0), ACC: 0.7212 and AUC: 0.7748 in D5 (RF, q = 3.0), and
ACC: 1.0000 and AUC: 1.0000 in D5 (RF and CatBoost, q = 5.0). Once more, the results
confirm that the best parameters are in the range of 1.1 < q < 5.0, indicating a good choice
when using Tsallis entropy. The perfect classification at D6 is supported by other studies
in the literature [53–55]. Nevertheless, after testing the Tsallis entropy on six benchmark
datasets, we noticed an indication that this approach behaves better with longer sequences,
e.g., D1 (mean length ≈ 751 bp), D2 (mean length ≈ 2799 bp), and D6 (mean length ≈
10,870 bp) showed robust results, while D3 (mean length ≈ 268 bp), D4 (mean length ≈
81 bp), and D5 (mean length ≈ 26 bp) showed less accurate results. Nonetheless, Tsallis
entropy could contribute to hybrid approaches, as our proposal achieved relevant results
in four datasets.

5.3. Case Study III—Comparing Tsallis with Shannon Entropy

Here, we used Shannon entropy as a baseline for comparison, according to Table 6.
Various studies have covered the biological sequence analysis with Shannon entropy, in the
most diverse applications. For a fair analysis, we reran the experiments on all datasets (case
study I and II, six datasets), using hold-out, with the same train and test partition for both
approaches. Once more, we used the best classifiers in case study II (RF and CatBoost), but,
for a better understanding, we only show the best result in each dataset.
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Table 6. Performance of the proposed approach (Tsallis) vs. Shannon entropy (best results in bold). A
tie counts one win for each approach.

Dataset Classifier Entropy q ACC Recall F1 Score BACC

D1 CatBoost Tsallis 2.3 0.9420 0.9673 0.9437 0.9421
Shannon - 0.9420 0.9651 0.9435 0.9421

D2 CatBoost Tsallis 4.0 0.8140 0.7760 0.8053 0.8153
Shannon - 0.8080 0.7582 0.7970 0.8115

D3 CatBoost Tsallis 1.1 0.7231 0.3869 0.4724 0.6342
Shannon - 0.7207 0.3886 0.4708 0.6334

D4 RF Tsallis 2.0 0.6687 0.3094 0.3932 0.5845
Shannon - 0.6563 0.2556 0.3403 0.5623

D5 RF Tsallis 3.0 0.7212 0.5714 0.6234 0.6970
Shannon - 0.7115 0.5476 0.6053 0.6851

D6 RF Tsallis 5.0 0.9984 0.9846 0.9915 0.9922
Shannon - 0.9985 0.9888 0.9922 0.9942

Mean - Tsallis - 0.8112 0.6659 0.7049 0.7776
Shannon - 0.8061 0.6507 0.6915 0.7714

Gain - - - 0.51% 1.52% 1.34% 0.62%

Wins - Tsallis - 5 4 5 5
Shannon - 2 2 1 2

According to Table 6, our proposal with Tsallis entropy showed better results of ACC
(5 wins), recall (4 wins), F1 score (5 wins), and BACC (5 wins) than Shannon entropy
in five datasets, falling short only on D6, with a small difference of 0.0002. Analyzing
each metric individually, we observed that the best Tsallis parameters resulted in an F1
score gain compared to Shannon entropy of 5.29% and 1.81% in D4 and D5, respectively.
Other gains were repeated in ACC, recall, and BACC. In the overall average, our proposal
achieved improvements of 0.51%, 1.52%, 1.34%, and 0.62% in ACC, recall, F1 score, and
BACC, respectively. Despite a lower accuracy in D3 and D4, this approach alone deliv-
ered a BACC of 0.6342 and 0.5845, i.e., it is a supplementary methodology to combine
with other feature extraction techniques available in the literature. Based on this, we can
state that Tsallis entropy is as robust as Shannon entropy for extracting information from
biological sequences.

5.4. Case Study IV—Comparing Generalized Entropies

According to the Tsallis entropy results, wherein it overcame Shannon entropy, we
realized the strong performance of generalized entropy as a feature descriptor for biological
sequences. For this reason, we also evaluated the influence of another form of generalized
entropy, such as Rényi entropy [42], as a good feature descriptor for biological sequences.
Here, we investigated the performance of Tsallis and Rényi entropy, changing the entropic
index for D1, D2, and D3. Moreover, we have chosen the best classifier from case study
I (CatBoost).

When considering the same reproducible environment for the experiment, the per-
formance peak was the same for both methods, as we can see in Figure 2, with graphs
containing accuracy performance results for all the entropic index values (from 0.1 to 10.0).
Regarding the best classification performance, for D1 (Figure 2a), we had ACC: 0.9600,
recall: 0.9667, F1 score: 0.9603, and BACC: 0.9600; for D2 (Figure 2b), we obtained ACC:
0.8300, recall: 0.7733, F1 score: 0.8198, and BACC: 0.8300; and for D3 (Figure 2c), we had
ACC: 0.7521, recall: 0.359, F1 score: 0.4828, and BACC: 0.649. As seen earlier, Tsallis entropy
performs poorly from a specific entropy index onwards, but Rényi entropy demonstrates
more consistent performance when compared to Tsallis, representing a possible alternative.



Entropy 2022, 24, 1398 13 of 17

Nevertheless, the results again highlight the promising use of generalized entropies as a
feature extraction approach for biological sequences.
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Figure 2. Performance analysis with generalized entropies on 100 q parameters of three benchmark
datasets (evaluation metric: ACC). (a) Benchmark D1—ACC; (b) Benchmark D2—ACC; (c) Bench-
mark D3—ACC.

5.5. Case Study V—Dimensionality Reduction

In this last case study, we compared our proposal with other known techniques for
feature extraction and dimensionality reduction in the literature, using the same represen-
tation of the biological sequences, the k−mer frequency. In particular, for each DNA/RNA
sequence, we generated k−mers from k = 1 to k = 10, while, for proteins, we generated it
until k = 5, considering the high number of combinations with amino acids. All datasets
used have around 1000 biological sequences, considering the prohibitive computational
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cost to deal with the k−mer approach. In this study, our objective was to use SVD and
UMAP to reduce the dimensionality of the k−mer feature vector by extracting new features,
as we did in our approach. However, high values of k present high computational costs,
due to the amount of generated features, e.g., k = 6 in DNA (4096 features) and k = 3 in
protein (8000 features).

From previous case studies, we realized that the feature extraction with Tsallis entropy
provided interesting results. Thereby, we extended our study, applying SVD and UMAP
in the datasets with k− mer frequencies, reducing them to 24 components, comparable
to the dimensions generated in our studies. Fundamentally, UMAP can deal with sparse
data, as can SVD, which is known for its efficiency in dealing with this type of data [56–58].
Both reduction methods can be used in the context of working with high-dimensional data.
Although UMAP is widely used for visualization [59,60], the reduction method can be
used for feature extraction, which is part of an ML pipeline [61]. UMAP can also be used
with raw data, without needing to adopt another reduction technique before using it [58].
We induced the CatBoost classifier using 10-fold cross-validation. We obtained the results
listed in Table 7.

Table 7. Performance of the proposed approach (Tsallis) vs. SVD vs. UMAP. A tie counts one win for
each approach.

Dataset Reduction ACC Recall F1 Score BACC

D1 Tsallis (q = 2.3) 0.9430 0.9650 0.9438 0.9434
SVD 0.4980 0.0000 0.0000 0.4982

UMAP 0.4980 0.9963 0.6632 0.4981

D2 Tsallis (q = 4.0) 0.8120 0.7718 0.8030 0.8114
SVD 0.5004 0.0016 0.0032 0.5008

UMAP 0.4994 0.0000 0.0000 0.5000

D3 Tsallis (q = 1.1) 0.7307 0.3538 0.4541 0.6310
SVD 0.5389 0.7132 0.4942 0.5834

UMAP 0.3191 0.9933 0.4825 0.4967

D5 Tsallis (q = 3.0) 0.6720 0.5181 0.5515 0.6508
SVD 0.7403 0.7630 0.7752 0.7261

UMAP 0.4021 0.0000 0.0000 0.5000

D7 Tsallis (q = 3.0) 0.7371 0.6711 0.6947 0.7337
SVD 0.5438 0.0000 0.0000 0.4992

UMAP 0.5143 0.1824 0.1147 0.4963

D8 Tsallis (q = 1.1) 0.6500 0.6111 0.6277 0.6525
SVD 0.8023 0.8575 0.7843 0.8171

UMAP 0.6326 0.7728 0.6544 0.6511

D9 Tsallis (q = 9.2) 0.9489 0.9481 0.9507 0.9481
SVD 0.5586 0.6433 0.5517 0.6433

UMAP 0.5992 0.6528 0.6167 0.6528

Mean
Tsallis 0.7848 0.6913 0.7179 0.7673
SVD 0.5975 0.4255 0.3727 0.6097

UMAP 0.4950 0.5139 0.3616 0.5421

Wins
Tsallis 5 3 4 5
SVD 2 2 3 2

UMAP 0 2 0 0

As can be seen, Tsallis entropy achieved five wins, against two for SVD and zero for
UMAP, taking into account the ACC. In addition, in the general average, we obtained a gain
of more than 18% in relation to SVD and UMAP in ACC, indicating that our approach can
be potentially representative for collecting information in fewer dimensions for sequence
classification problems.
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6. Conclusions

In this study, we evaluated the Tsallis entropy as a feature extraction technique, where
we considered five case studies with nine benchmark datasets of sequence classification
problems, as follows: (1) we assessed the Tsallis entropy and the effect of the entropic index;
(2) we used the best parameters on new datasets; (3–4) we validated our study, using the
Shannon and Rényi entropy as a baseline; and (5) we compared Tsallis entropy with other
feature extraction techniques based on dimensionality reduction. In all case studies, we
found that our proposal is robust for extracting information from biological sequences.
Furthermore, the Tsallis entropy’s performance is strongly associated with the length of
sequences, providing better results when applied in longer sequences. The experiments
also showed that Tsallis entropy is robust when compared to Shannon entropy. Regarding
the limitations, we found that the entropic index (q) affects the performance of ML models,
particularly when poorly parameterized. Finally, we highlighted good performance for the
entropic index with q values between 1.1 and 5.0.
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