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Abstract: The emergence and evolution of worldviews is a complex phenomenon that requires strong
and rigorous scientific attention in our hyperconnected world. On the one hand, cognitive theories
have proposed reasonable frameworks but have not reached general modeling frameworks where
predictions can be tested. On the other hand, machine-learning-based applications perform extremely
well at predicting outcomes of worldviews, but they rely on a set of optimized weights in a neural
network that does not comply to a well-founded cognitive framework. In this article, we propose a
formal approach used to investigate the establishment of and change in worldviews by recalling that
the realm of ideas, where opinions, perspectives and worldviews are shaped, resemble, in many ways,
a metabolic system. We propose a general modelization of worldviews based on reaction networks,
and a specific starting model based on species representing belief attitudes and species representing
belief change triggers. These two kinds of species combine and modify their structures through the
reactions. We show that chemical organization theory combined with dynamical simulations can
illustrate various interesting features of how worldviews emerge, are maintained and change. In
particular, worldviews correspond to chemical organizations, meaning closed and self-producing
structures, which are generally maintained by feedback loops occurring within the beliefs and triggers
in the organization. We also show how, by inducing the external input of belief change triggers,
it is possible to change from one worldview to another, in an irreversible way. We illustrate our
approach with a simple example reflecting the formation of an opinion and a belief attitude about a
theme, and, next, show a more complex scenario containing opinions and belief attitudes about two
possible themes.

Keywords: worldviews; emergence; chemical organization theory

1. Introduction

Over the last two decades, we have witnessed the explosion of communications in
media such as social networks and real-time messaging systems. We are currently subjected
to a massive and permanent input of facts, opinions and ideas from diverse sources, and we
are able to tell to the world what is on our mind, at any time [1]. This situation is completely
novel in history, and deserves our deep scientific attention [2].

Nearly ten years before the rise of real-time digital communications, scholars and
politicians spoke about a process of globalization, where worldviews will become closer
and more compatible due to the new possibilities driven by massive communications, and
the world will somehow tend toward a unified form of organization [3,4].

However, over the last decade, we have witnessed various cases of social and political
polarization, with a tendency toward social outbreaks (e.g., Arab spring, Gillette jaunes in
France, Chilean outbreak) [5]. The latter has been severely influenced by public opinions
in the new realm of digital communications, either intentional or spontaneously. Under-
standing the way that worldviews are shaped and evolve in the new context of permanent
information input is a fundamental question for producing a deeper understanding of our
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collective activities, as well as potential policy-making and technologies to improve our
performance as a society.

The modeling of opinions and worldviews is an active field in complex systems, mostly
studied under the frameworks of networks and agent-based model systems [6]. These
models are well-suited to study the evolution of opinions, and serve in study optimization
and control processes [7]. However, they are not well-suited to study the foundational
question of how worldviews emerge [8].

Therefore, in this article, we propose a formal approach used to investigate the emer-
gence of worldviews and their evolution, not focusing on the agents but on the dynamics
underlying the establishment of beliefs. To achieve this, we recall that the realm of ideas,
where opinions, perspectives and worldviews are shaped, resemble, in many ways, a
metabolic system. In simple terms, the analogy states that basic ideas, which we can asso-
ciate to beliefs reached through deduction, external influences or gathered by experience,
play the role of biochemical species, and that worldviews play the role of more robust
biochemical machinery, such as cells. Indeed, simple ideas (being molecular species in the
metabolic side of the analogy) float around, stick with others when there is affinity (bond-
ing), form complex structures (polymers) and, when large enough, become a self-sustaining
whole, or worldview (cell), that evolves developing internal mechanisms of preservation
and defense against other ideas; however, it is still always possible that a simple small idea
(mutant DNA) can enter into a complex structure and, after a while, change it completely
(major transition in evolution).

In light of this analogy, the foundational question of the emergence of worldviews is
equivalent to the emergence of metabolic systems, i.e., the beginning of life.

Researchers in biochemistry have explained the assemblage of the first forms of life by
integrating the thermodynamics of open chemical systems with a theory of self-production
and self-maintainance [9]. Namely, molecules combine forming reaction pathways such
that the species consumed in each part of the reaction pathway are produced at another part
of the reaction pathway [10]. Simple biochemical systems able to operate self-producing
pathways in the right environments, so called-autopoietic systems [11], are thus candidates
to be the first life forms.

The theory of autopoiesis inspired human sciences to look at the social realm as an
autopoietic system [12], where, instead of molecules, we consider communications to
be the fundamental entities in interactions, and where people are mere transmitters and
replicators of these communications. Thus, this approach claims that social systems are not
formed by people and their ideas, but are autopoietic processes of communication.

The formalization of this idea has been explored very little in the literature [13,14].
However, recent results about the emergence of resilience in self-producing systems, and
particularly regarding structural features explaining the emergence of goal-directedness
in metabolic-like systems [15,16], suggest that the formal analogy between ideas and
biochemical realms can give profound insights toward our understanding of the cognitive
and social phenomena.

We will introduce a theoretical framework to study the emergence and stability of
worldviews, develop examples to illustrate our approach and conclude with a roadmap for
incorporating empirical data to our modeling.

2. Modeling Social Systems as Metabolisms

The use of autopoietic systems as a conceptual framework to study social systems
was proposed by Luhmann [17]. He introduced the notion of communication as the basis
of societies’ structuring and ordering [12]. The concept of communication is defined
as the flow produced by the exchange of social symbols, such as economical, legal and
political, and the communication flow is carried out through a media representing these
symbols, such as money, justice and power, respectively. Since, in a general social system,
these structures overlap, communications in one social symbol area may affect the others,
and eventually produce feedback mechanisms that tend to regulate the behaviour of the
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communications as a whole. In [14], a reaction network that represents a toy model of
a political system based on Luhmann’s concept of communication was introduced. In
it, major social aspects, such as decision powers, law enforcement and public needs, are
introduced as general social communications, and, by applying chemical organization
theory (see Section 3), they derive various forms of potentially stable social organization,
resembling either a monarchy, a state-managed system or an community social system.
However, the model’s variables are very abstract and difficult to measure, implying that
the model has no direct application.

A different approach that aims to complement more traditional social modeling rep-
resented evolutionary game theoretical situations using reaction networks [18]. Since
evolutionary game theory is a framework that allows us to study problems associated to
individual and collective decision making, the reaction network model has the advantage of
prescinding from the typical agents used to model these systems, and provides a dynamical
description of the evolution of decisions rather than of the agents deciding.

In particular, a strategy in an agent-based model is an algorithm used to perform
decisions, whereas, in the reaction network framework, a strategy is a reaction network
with a particular response structure to perturbations. Hence, a change in strategy is reflected
by the change from one stable reaction network to another.

Although it is possible to reconstruct fundamental results regarding the dilemma of the
emergence of cooperation when applying such a framework, and despite various proposals
to utilize this framework in more general decision-making situations [19], as a framework
used to study sustainability [20] and resilience [21], there have not been sufficient efforts
to clarify the representational advantages of reaction networks over traditional networks
and agent-based models, possibly because the real-world interesting applications require
complex reaction networks of a large size, which are difficult to build and analyze.

Specifically, self-producing structures require a minimum level of complexity to behave
in ways that differ from what can be obtained when modeling with traditional networks,
especially with regard to acquiring self-producing features. Namely, interactions in a
reaction network consume and produce elements, and are not one-to-one but many-to-
many, implying that reactions combine, creating pathways that can form loops and reach
closure in intricate ways that cannot be built using traditional networks [22]. Moreover,
since self-producing structures are non-linear complex dynamical systems, and, in a realistic
model, they are permanently subjected to perturbations, it is not trivial to know whether
they will remain the same or evolve into something different, and, when they evolve into
something different, it is also difficult to predict what other structure they will evolve to.

For this reason, we propose applying chemical organization theory (COT) to study the
emergence of worldviews as a form of emergence of goal-directedness [16]. COT allows for
the identification of sub-networks of a reaction network that can operate self-producing
pathways, skipping non-linear aspects of the dynamics, and thus can operate at a relatively
low computational cost. The set of organizations of a reaction network is a reduction
in all of the behavioral possibilities of the reaction network to those that can operate as
autopoietic systems in the long run [23]. Although there are a number of caveats necessary
to build a direct relation between organizations and stable non-linear complex dynamical
systems, and we refer to [24–26] for detailed studies on these issues, we will show in
the next section that COT provides a first approximation to unveil the establishment of
self-producing structures in a general way.

3. Reaction Networks and Chemical Organizations

A reaction network is defined by a set of species
M = {s1, . . . , sn} and a set of reactionsR = {r1, . . . , rk}. Each reaction ri represents a

transformation between collections of species:

ri = ci1s1 + · · ·+ cinsn → pi1s1 + · · ·+ piksn, (1)
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where cij and pij are non-negative integer numbers representing the amount of reactants
and products of the species type sj, j = 1, . . . , n. When cij = 0 and pij = 0, we have that the
species sj does not participate in the reaction at all, if cij = 0 and pij > 0, we have that sj is
produced and not consumed, if cij > 0 and pij = 0, we have that sj is consumed and not
produced and when cij > 0 and pij > 0, sj is both consumed and produced.

In order to specify the net-production of species by the reactions, we introduce the
stoichiometry matrix S = (sij) = pij − cij. S is a matrix with (n× k) entries. Hence, sj is
produced by reaction i if sij > 0, or consumed if sij < 0.

In general, the concentrations of the species change over time and are represented by
a vector s(t) = (s1(t), . . . , sn(t)).

Species change their concentration due to the occurrence of reactions. Therefore, we
introduce a representation of a reaction pathway by a process vector v of dimension k
(the number of reactions), where the coordinate i of v represents the number of times
that reaction ri is occurring in the pathway. Normally, the process vector depends on the
concentration of species, as it is more likely that abundant reactants react more often. Thus,
the process vector is a function of the species concentration v(s(t)).

From here, it is possible to obtain an equation for the change in concentration of the
species by the application of a reaction pathway v(s(t)):

ds
dt

= S · v(s(t)), (2)

As an example, consider the reaction networkM = {a, b} andR:

r1 :∅→ s1

r2 :s1 + s2 → 2s2

We have that s11 = 1 − 0, s21 = 0 − 0, s12 = 0 − 1 and s22 = 2 − 1. Thus, the
stoichiometric matrix is

S =

(
1 0
−1 1

)
Now, if we apply the processes v1 = (2, 1) and v2 = (1, 2), we observe that

Sv1 =

(
1 0
−1 1

)
(1, 2) = (1− 2, 0 + 2) = (−1, 1)

and

Sv2 =

(
1 0
−1 1

)
(2, 1) = (2− 1, 0 + 1) = (1, 1)

Hence, we can see that v1 is a process that does not self-produce the system, because
species s1 is consumed more than produced and s2 is produced more than consumed,
whereas v2 is a process that does self-produce the system. Indeed, v2 overproduces the
species of the reaction network.

In order to relate the structure of the reaction network based on a subset of species
X ⊆ M and its possible potential to be persistent and dynamically stable, we define
RX ⊆ R as the set of all reactions r ∈ R such that the reactants of the r are in X.RX is the
set of reactions that can be triggered by X:

• X is closed if the products of all reactions in RX are in X. This means that now no
species can be generated.

• X is self-maintaining if there exists a process vector v such that S · v ≥ 0 with v[i] > 0
for all i such that ri is in RX. This means that the reaction network that is triggered
when species in X are present is able to operate in a way where all of its reactions are
active, while no species decrease in concentration.
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An organization is a set X that is closed and self-maintaining. Organizations do not
produce any novel species (closed) and their species are able to persist in the long-term
(self-maintaining). In a reaction network dynamical system (2), it has been proven that
fixed points and periodic orbits correspond to organizations [23,25], in the sense that the
species with a positive concentration in the long-term dynamics will be organizations, and
a slightly more complex notion called distributed organization maps to all stable behaviors
in the phase space in dynamics, including spatial-dependent concentrations [26].

COT has been advanced in many fronts, including applications in chemical systems
of diverse nature [27,28], computer-science-related applications [29,30] and for modeling
ecological systems [15,31,32]. Theoretically, the relation between organizations and dy-
namical attractors has been extended to more complicated cases, such as limit cycles and
heterocyclic orbits [24–26], and to cases where the reaction network structure is able to
change [22,33].

We will not deepen the more advanced theoretical aspects of COT, but will show
how the basic aspects of dynamical systems formed by reaction networks can be applied
to model opinion formation in simple cases, as well as how COT allows us to derive a
view of worldview landscapes in situations where multiple possible themes and opinions
are possible.

Before we introduce specific models, it is very important to formalize the relation
between states and the structure of a reaction networks in a dynamical context.

Given a state s(t), we define its ε-abstraction Ω(s(t)) as the set of species that have a
concentration larger than ε. This corresponds to the condition

si ∈ Ω(s(t)) if and only if s(t)[i] > ε

The reverse notion allows us to obtain dynamical states from abstractions, so we say
that s(t) is an ε-instance of a set of species X if and only if, for all species si ∈ X, we have
s(t)[i] > ε, and, for all other species, we have s(t)[i] < ε.

4. A Basic Model of Worldview Fixation and Change

In order to develop a clear and simplified model of a worldview, we will consider a
belief system with respect to a unique theme to have an opinion about. For fixing ideas,
consider this theme can be, for example, vaccination, and the worldview of the individual
will consider such policies as a solution to a problem, or as a problem in itself.

To be more specific, we will consider three possible states S, U and D, describing
satisfaction, uncomfortability and discontent with the theme in question, and call these
species belief attitudes. We will assume that the total belief attitude is a constant number
and thus the three states are zero-sum. Extreme attitudes S = 1, U = 1 and D = 1 represent
total satisfaction, uncomfortability and discontent, respectively. In general, the belief
attitude is a weighted (convex) combination of these three belief states that evolves over
time and can eventually reach stable states, reflecting a stable worldview. Formally, we
represent the zero-sum condition over time as S(t) + U(t) + D(t) = 1.

In order to represent how belief attitudes can be influenced, we consider two species
s and p representing our interpretation of facts we are informed about of the theme in
question. Species s means that we interpret the fact as a solution, and p as a problem (e.g.,
vaccination is a solution/problem). Different to belief attitudes, belief change triggers are
not zero-sum, and can grow indefinitely.

Therefore, if, for example, we are in a situation at time t1 where S(t1) = 1 (and thus
D(t1) = U(t1) = 0), and where p(t1) � s(t1), it means that the worldview at time t1 is
entirely satisfied with regard to belief attitude, but, simultaneously, it interprets the theme
much more as a problem than as a solution. We would expect, then, in this situation, a
change in the belief attitude, so, at some posterior time t2 > t1, we shall have that S(t2) < 1
and thus U(t2) + D(t2) > 0. The species s, p are thus called belief change triggers. They
can be produced from an internal reflection, or by an interaction with the external world
(e.g., people and media).
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Belief change triggers can establish positive feedback loops with some belief attitudes,
implying that such a belief change trigger would grow autocatalytically in the presence of
that belief attitude. In our case, we will consider positive feedback loops between S and s,
representing that the belief state of satisfaction reinforces our belief that the state of affairs
is more a solution than a problem, and between D and p, representing that the state of
discontent reinforces the belief that the state of affairs is more a problem than a solution.

Additionally, since belief change triggers represent information that we acquire or
produce to reinforce or change our belief attitude, this information might be forgotten
after some time. Hence, species s and p tend to disappear after some time in our model.
Therefore, the permanence of belief change triggers is either obtained through feedback
loops with belief attitudes or by an external input.

We structure these ideas in a set of hypotheses that will help us to build a reaction
network model more precisely:

Hypothesis 1. In the absence of belief change triggers, spontaneous belief attitudes from D to U
and from U to S are possible.

Hypothesis 2. S and D catalyze the reproduction of s and p, respectively.The reproduction rate is
larger for D than for S.

Hypothesis 3. s induces a change from U to S and from D to U, whereas p induces the opposite
change. Under equal concentration values, these change rates are equal.

Hypothesis 4. Belief change triggers decay over time.

Following the previous assumptions, we define a reaction network

r0 :D
k0=0.1−−−→ U , (Hyp. 1)

r1 :U
k1=0.1−−−→ S , (Hyp. 1)

r2 :S + s
k2=0.2−−−→ S + 2s , (Hyp. 2)

r3 :D + p
k3=0.3−−−→ D + 2p , (Hyp. 2)

r4 :S + p
k4=0.3−−−→ U + p , (Hyp. 3)

r5 :U + p
k5=0.3−−−→ D + p , (Hyp. 3)

r6 :D + s
k6=0.3−−−→ U + s , (Hyp. 3)

r7 :U + s
k7=0.3−−−→ S + s , (Hyp. 3)

r8 :2p
k8=0.15−−−−→ p , (Hyp. 4)

r9 :2s
k9=0.15−−−−→ s , (Hyp. 4)

(3)

The rates ki, i = 1, . . . , 9 specify the rate constant of the reactions. These choices are
consistent with the hypothesis, and serve as a reference to observe the dynamical properties
of the system, but do not play a specific role in the results that we will show here.

We will now illustrate some general properties of the network regarding the establish-
ment of worldviews.

Calculations of organizations of the reaction network, as well as the simulations
shown in the following sections, are built using a software developed by the authors and
is available in github https://github.com/pmaldona/pyRN/ (accessed on 29 September
2022).

As shown in Figure 1, the organizations of this reaction network are O1 = {s, S},
O2 = {p, S, U, D} and O3 = {s, p, S, D, U}. They form a hierarchy of increasingly more

https://github.com/pmaldona/pyRN/
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complicated dynamics, where O1 represents a situation of complete satisfaction (simple
dynamics), and O2 represents a situation where, although the three belief attitudes are
present, there is only a sense of a problem (less simple dynamics), and, in this sense, O2
is the opposite worldview to O1. Finally, O3 represents a situation where both senses of
a solution and problem coexist, implying a wider understanding of the theme (complex
dynamics). It is important to remark that different instances of the organizations reflect
different ways in which an organization is established.

{'D' 'S' 'U' 'p' 's'}

{'D' 'S' 'U' 'p'}

{'S' 's'}

Figure 1. Organizations of the reaction network (3).

Therefore, we will simulate the dynamics of the system for identifying the frequency of
the different abstractions, being organizations or not, and illustrating the kinds of instances
that are most likely to be observed. To achieve this, we built the differential equations for
this reaction network, applying the mass action kinetic law [34], a common dynamical law
in chemistry and also used regularly in ecology, populations and epidemiology models:

Ṡ = k1U − k4Sp + k7Us

U̇ = k0D− k1U + k4Sp− k5Up + k6Ds− k7Us

Ḋ = −k0D + k5Up− k6Ds

ṗ = k3Dp− k8 p2

ṡ = k2Ss− k9s2

S(0) = S0, U(0) = U0, D(0) = D0, p(0) = p0, s(0) = s0

(4)

4.1. No External Influence as Infinite Reflection (with Finite Memory)

In order to get familiarized with the model, let us analyze the simplified situation
of starting from certain initial conditions s(0) = (S0, D0, 1− S0 − D0, 1− p0, p0), which
reduce the initial parameters to 3.

By simulating the deterministic evolution of Equation (4), we can identify how different
initial states evolve to the different worldviews, represented in our model as organizations.

The plots in Figure 2 show four examples of the dynamics of the system starting from
different initial conditions. We see that only when p0 � s0 and U0 � S0 do the dynamics
tend to large values for p and D, and to small values of S and s, reflecting a tendency
toward O2. For initial conditions where S0 and s are larger or comparable to D0 and p, the
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dynamics tend to very small values for D and p, implying a tendency toward O1. We see
in these cases that U is still larger than zero, but, if the dynamics are computed for longer
time, U will end up decaying as well due to r1.
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Figure 2. Plots of different initial conditions denoting the tendency for S to dominate over U and D, and
for s to dominate over p, except in circumstances where p0 and D0 are very large in relation to s0 and S0.

For having a better view on the tendency of O1 to dominate the dynamics in the space
of initial conditions, we calculated the distribution of end states abstractions for N = 1000
initial conditions, sampled randomly according to our three-parametric situation. We
calculated the abstractions considering ε to be the 10% of the total concentration for belief
attitudes and for belief change triggers. At the top of Figure 3, we see that the worldview
generally begins in a state where all or most species are above the threshold, and it evolves
into a state where {S, s} (Figure 3 center) or {p, D, U} (Figure 3 bottom) dominates in
frequency. Therefore, we confirm that O1 and O2 are the most likely end states.

Moreover, we found that the proportion of dominance is strongly dependent on the
parameters k8 and k9, representing the memory of the belief change triggers. Namely, if
these parameters become smaller, meaning that the memory of problems and solutions is
larger, we observe a tendency to increase the final state where {p, D, U} dominates.

Figure 3. Cont.
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Figure 3. Plots of different initial conditions denoting the tendency for O1 dominating over O2 when
k8 and k9 are large enough, and noting that such a tendency for dominating is reduced when memory
increases, i.e., when k8 = k9 = k becomes smaller.

4.2. The Emergence of Discontent

Since we see that the parametric situation of the center of Figure 3 (k8 = k9 = 0.15)
shows the majority of initial conditions that the system evolves towards O1, we will
show that, by allowing a frequent and strong enough external input of p, representing
communications that foster the sense of a problem regarding the theme, the system can
transit from O1 toward O2 or O3, reflecting the visibilization of problems and discontent.

To this end, we incorporated every tp day an input λp of species p. tp and λp are
random variables normally distributed with an average of 7 and standard deviation of 1,
and homogenously distributed between 0 and λp = 0.25, respectively.

In Figure 4, we show a representative example of the dynamics that are obtained
in these conditions. Namely, the left plot shows that the input of problems generate
oscillations in all variables, implying that the system is kept at O3, which we know already
from the previous analysis, where it is not a stable dynamical regime in the absence of
an input. Over a period of time (which varies between hundreds and a few thousands of
iterations), the perturbations generate this oscillatory regime. At a certain point in time, we
observe an increase in D up to a value where the transition from O3 to O2 occurs, and thus
the values of S and p become insignificant compared to D and p. In Figure 4, we observe
that such a transition occurs between times 1000 and 1500, but this value is dependent on
the random time-series obtained for p. In order to see the transition between O3 and O2
more cleary, we stopped the input of p when D(t) > 2S(t) in our simulation. In this way,
we confirm that O2 does not need a permanent input of p to stay stable.

The latter analysis demonstrate that worldviews can have radical and non-reversible
changes if perturbed in an appropriate way. Further studies regarding the size and fre-
quency of the perturbation, as well as the interplay of inputs of type s and p, which will
reflect communication campaigns dynamics, could be possible.
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Figure 4. Left: Part of the dynamics of the evolution of worldview in situation of satisfaction
perturbed with problems; the transition to discontent is not visible. Right: Full dynamics; the
emergence of discontent occurs between times 1000 and 1500.

However, we prefer to focus on the emergence of worldviews in complex scenarios,
which is the core subject of this work.

5. Modeling a Complex Reaction Network Scenario

In order to exemplify the type of analysis that can potentially be made with these novel
methods, we introduce a more complex reaction network, which extends the hypotheses of
the reaction network in the previous section, bringing a larger repertoire of possibilities.

Hypothesis 5. Each belief attitude species is bonded with a belief change trigger about a specific
theme, forming a compound belief about a theme.

Hypothesis 6. Compound beliefs about different themes are bonded with each other.

For simplicity, we will consider only two themes, implying that our belief change
triggers are s1, s2, p1, p2 instead of s and p. Moreover, Hypotheses 5 and 6 imply that our
belief attitudes are compounds formed by belief attitudes and belief change triggers about
different themes. For example, Sp1Us2 is a species reflecting that, with respect to theme 1
(which can be the legalization of abortion, for example), the belief attitude is satisfaction
and is bonded with a perception of a problem (for example, just reading about problems
with the legalization of abortion), and with respect to theme 2 (which can be gun policy),
there is a sense of uncomfortability bonded with a perception of a solution (for example,
reading in the news that the analysis of gun policies shows a decrease in crime rate). Thus,
if this compound encounters a species of the kind p1 (hearing a story about how bad it is
to not improve abortion policies), it will possibly change into Up1Ss2 (Hypothesis 3), if it
encounters p2 (hearing a story about how bad it is to not improve gun policies), it might
evolve into Sp1Up2 (Hypothesis 3) and, if it does not encounter anything (so not thinking
about the themes), it should evolve into a state closer to satisfaction, being either Sp1Ss2, or
to Ss1Us2 (Hypothesis 1).

The full list of species and reactions of this reaction network is given in Appendix A,
its organizational structure is depicted in Figure 5 and a full description of the organizations
is given in Table 1.

First, we notice that the set of organizations is extremely small compared with the
total set of subsets of the reaction network. Indeed, since the number of species is 40, the
total number of possible abstractions is 240.

The simplest organizations O1 and O2 reflect satisfaction with respect to one theme
and no reactivity with respect to the other theme. Indeed, we see that there is a belief
change trigger for one solution in each case. O3 reflects satisfaction with respect to the
two themes. Next, we see that O4 and O5 incorporate p1 and p2, respectively, meaning
that, with respect to one theme, there is a coexistence of a problem and solution, and, with
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respect to the other, there is no reactivity. Next, O6 and O7 incorporate reactivity for s2 and
s1, respectively, implying a sense of a problem and solution in one side, and only a solution
in the other. Finally, O7 contains all of the species in the set, meaning that the two themes
have enough structure for the coexistence of the solution and problematization.

O7

O6O5

O4 O3

O2

O1 O0

N=40

N=9

N=8

N=3

N=2

Figure 5. Hasse diagram of the different organizations of the complex model, described in Table 1.

Table 1. List of organizations of complex reaction network. Each organization represents a different
worldview. Columns 1–4 represent the organization, species in it, belief change triggers that are
reactive in it and its size.

Org. Species Triggers Size

O0 Ss1Ss2, s1 s1 2
O1 Ss1Ss2, s1 s2 2
O2 Ss1, Ss2, s1, s2 s1, s2 3

O3
O1 ∪

Dp1Ss2, Ds1Ss2, Sp1Ss2, Up1Ss2, Us1Ss2, p1 s1, p1 8

O4
O2 ∪

Ss1Dp2, Ss1Ds2, Ss1Sp2, Ss1Up2, Ss1Us2, p2
s2, p2 8

O5 O3 ∪ s2 s1, p1, s2 9
O6 O4 ∪ s1 s2, p2, s1 9
O7 M (all species) s1, p1, s2, p2 40

In order to visualize the dynamics of changes in worldviews in this setting, we
developed a similar simulation to the one in Section 4.2, with 1000 perturbations every tp
number of days (normal distributed with an average of 7 and standard deviation of 3.5)
and with the size of the perturbation homogeneously distributed between 0 and λp = 0.3,
the perturbations including species p1 and p2 only. In Figure 6, we plot the concentrations
of Ss1Ss2 and Dp1Dp2 to illustrate how the two most extreme belief compounds change
over time in the dynamics. We notice that there is a permanent transition, where Ss1Ss2
reaches extremely high values and drops radically, whereas Dp1Dp2 grows but does not
reach values larger than 0.6. The latter means that the other composed species, e.g., Sp1Us2
and Up1Dp1, also reach significant values over that process (remember that the total belief
change attitudes is a constant number). This suggests that the dynamics is very rich in state
changes and in what species dominate over time.
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Figure 6. Example of dynamical evolution of species Ss1Ss2 and Dp1Ds2. Transitions from dominance
of satisfaction and discontent are visible.

In order to have a better view on what species dominate the dynamics, we developed
an illustration in Figure 7 that shows the size of the abstractions reached during the
dynamics, and the abstractions are connected by a semitransparent blue line so it is possible
to trace the time evolution (the starting abstraction is O3 at the bottom left). In this way,
we can picture the structural changes that are possible in the dynamics. The color of
the point indicates the relative frequency of the abstraction, and the size of the point
indicates a measure of change d(X1, X2) between abstractions X1 and X2 according to the
following function:

d(X1, X2) =
|(X1 ∪ X2)− (X1 ∩ X2)|

|X1 ∪ X2|
.

Figure 7. Illustration of the structural evolution of the complex reaction network.

The diagonal in the plot indicates that there is no change in size between two successive
abstractions, but, still, if we see points of different sizes lying in the diagonal, it means that
structural changes do not change the size of the reaction network (e.g., changing from O3
to O4). Additionally, points above the diagonal imply that the dynamical process increases
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the size of the active reaction network (dynamical expansion), whereas points below the
diagonal imply that the abstraction has reduced its size (dynamical contraction).

The total number of different abstractions visited by the dynamics in the plot is 1208.
This is a large number compared with the set of organizations, but still very small compared
with the total number of abstractions. The most visited abstraction by far is the full set,
as the green points (most frequent) are at the extreme of the X-axis, but, analogous to the
previous section, the full set seem unstable and thus leads to several other states, which
obviously reflect contractions of the full abstraction. Interestingly, we observe that such
contractions are unstable as well, as they reach back to the O7.

Therefore, the perturbed dynamics simulated here moves around O7, but, different to
the simulation found in the previous section, it is not possible to reach a transition where
solution species decay, meaning that either s1 or s2 remain active.

6. Conclusions

We have introduced a novel method used to study the formation of worldviews
following the analogy between ideas and biochemical species, where worldviews are
represented as stable metabolisms. We applied the formalism of reaction networks, and
especially COT, to formalize a structural description that is scalable to large and complex
reaction networks, where complex themes with multiple possible opinions and belief
change repertoires are possible. In our framework, a worldview is an organization,
meaning a reaction network that is closed and self-maintaining. We find that belief
attitudes ensure their presence by establishing positive feedback loops with belief change
triggers. Moreover by applying numerical simulations within the range of the parameters
of our hypotheses, we conclude that worldviews where satisfaction is dominant are more
likely to be obtained than worldviews where discontent is dominant. However, in the
context of a permanent input of information, even though the satisfaction is a robust
attractor, it is possible to have irreversible transitions to discontent. These rare, but, afters
some time, almost certain transitions represent the phenomena of emergent massive
waves of discontent observed today in various parts of the world.

We believe that this approach could be extended further in several directions. First, for
the simple case analyzed in Section 4, it would be interesting to study further conditions
between the expected time for the transition from O1 and O2 to happen as a function of
the perturbation parameters and the memory, as well as considering other belief change
triggers, not just associated to a solution and problem, but also to other sensations, such as
how important the theme is (very necessary, unnecessary), or how complex the problem is.
Additionally, belief attitudes and belief change triggers can be complemented with other
relevant aspects of worldview formations, such as how to decide what actions to carry out,
how to build a view on the consequences of such actions, and others.

Referring back to the analysis of the more complex case (Section 5), note that the
pairs O4 and O5 and O6 and O7 are indeed contradictory perspectives in increasingly more
complex ways. The first case sees a problem in one theme and does not have any dynamics
in the other, whereas, in the second case, in one theme, it reaches the complexity necessary
for problematization, whereas, in the other, it only has satisfaction dynamics. This shows
that the emerging worldviews can have an unawareness of themes, or completely opposite
views on what is problematic. This indicates that worldviews can not only be opposite, but
can also have different kinds of complexities, meaning that they might be compatible or
incompatible in some respects (those in which the opposite species of the same type are
present), while non-comparable in other respects.

Moreover, if we allow a larger set of belief change triggers in the more complex
case, we would indeed provide a way to enrich the descriptive capacity of the model
because, in our model, themes 1 and 2 do not interact. Therefore, it would be interesting
to incorporate interactions between belief change triggers. For example, if p1 fosters
the reproduction of p2, we will see a tendency toward an increase in Dp2 when Dp1 is
present, whereas this is not necessarily the case for the other way around. The latter



Entropy 2022, 24, 1476 14 of 16

paves the way for developing causal and correlational structures driving the formation of
worldviews, and thus certain features of a theme could imply other features for other belief
change triggers. This would eventually allow for explaining how extremist worldviews,
such as anti-vaccination or racist views, tend to explain a variety of social phenomena
following very simple precepts, even when they are not properly justified. We believe that
such opinion dynamics can be explained by the establishment of positive feedbacks that
reinforce their belief attitudes and ensure the permanence of belief change triggers that
accommodate the actual worldview (organization).

Regarding a more empirical side for this research, it is necessary to study data re-
garding opinions, such as polls and social network sentiment analysis data. In this way,
it is possible to test this kind of model and contrast it with data. We are still in an early
stage of development regarding how to measure complex opinions using natural language
processing and other tools [35,36], but we suggest that the qualitative power of COT could
be applied to develop novel methods used to measure public opinion.

We believe that the metabolic modeling of opinions and worldviews can be a powerful
new scheme for understanding the emergence and dynamics of worldviews.
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Appendix A. Complex Reaction Network

Appendix A.1. Species Set

We built the set of species following all possible combinations that follow Hypotheses 5 and 6
(Section 5). The last four species in the set correspond to the belief change triggers for two
themes of the worldview.

M = {Dp1Dp2, Dp1Ds2, Dp1Sp2, Dp1Ss2, Dp1Up2, Dp1Us2,

Ds1Dp2, Ds1Ds2, Ds1Sp2, Ds1Ss2, Ds1Up2, Ds1Us2,

Sp1Dp2, Sp1Ds2, Sp1Sp2, Sp1Ss2, Sp1Up2, Sp1Us2,

Ss1Dp2, Ss1Ds2, Ss1Sp2, Ss1Ss2, Ss1Up2, Ss1Us2,

Up1Dp2, Up1Ds2, Up1Sp2, Up1Ss2, Up1Up2, Up1Us2,

Us1Dp2, Us1Ds2, Us1Sp2, Us1Ss2, Us1Up2, Us1Us2, p1,

p2, s1, s2}

Appendix A.2. Reactions Set

We organized the reactions in groups according to the hypothesis that they are a
consequence of:

• Reactions {r0, · · · , r59} correspond to reactions according to Hypothesis 1
• Reactions {r60, · · · , r119} correspond to reactions according to Hypothesis 2
• Reactions {r120, · · · , r143} correspond to reactions according to Hypothesis 3
• Reactions {r144, · · · , r147} correspond to reactions according to Hypothesis 4.

https://github.com/pmaldona/pyRN
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r0 : Ds1 Ds2
k0=0.1
−−−−−→ Us1 Ds2 r54 : Ss1 Dp2

k0=0.1
−−−−−→ Ss1 Ds2 r108 : Ss1Sp2 + p2

k0=0.3
−−−−−→ Ss1Up2 + p2

r1 : Ds1 Dp2
k0=0.1
−−−−−→ Us1 Dp2 r55 : Sp1 Dp2

k0=0.1
−−−−−→ Sp1 Ds2 r109 : Sp1Sp2 + p2

k0=0.3
−−−−−→ Sp1Up2 + p2

r2 : Ds1Us2
k0=0.1
−−−−−→ Us1Us2 r56 : Us1 Dp2

k0=0.1
−−−−−→ Us1 Ds2 r110 : Us1Sp2 + p2

k0=0.3
−−−−−→ Us1Up2 + p2

r3 : Ds1Up2
k0=0.1
−−−−−→ Us1Up2 r57 : Up1 Dp2

k0=0.1
−−−−−→ Up1 Ds2 r111 : Up1Sp2 + p2

k0=0.3
−−−−−→ Up1Up2 + p2

r4 : Ds1Ss2
k0=0.1
−−−−−→ Us1Ss2 r58 : Ds1 Dp2

k0=0.1
−−−−−→ Ds1 Ds2 r112 : Ds1Sp2 + p2

k0=0.3
−−−−−→ Ds1Up2 + p2

r5 : Ds1Sp2
k0=0.1
−−−−−→ Us1Sp2 r59 : Dp1 Dp2

k0=0.1
−−−−−→ Dp1 Ds2 r113 : Dp1Sp2 + p2

k0=0.3
−−−−−→ Dp1Up2 + p2

r6 : Us1 Ds2
k0=0.1
−−−−−→ Ss1 Ds2 r60 : Ss1Ss2 + p1

k0=0.3
−−−−−→ Sp1Ss2 + s1 r114 : Ss1Up2 + p2

k0=0.3
−−−−−→ Ss1 Dp2 + p2

r7 : Us1 Dp2
k0=0.1
−−−−−→ Ss1 Dp2 r61 : Ss1Sp2 + p1

k0=0.3
−−−−−→ Sp1Sp2 + s1 r115 : Sp1Up2 + p2

k0=0.3
−−−−−→ Sp1 Dp2 + p2

r8 : Us1Us2
k0=0.1
−−−−−→ Ss1Us2 r62 : Ss1Us2 + p1

k0=0.3
−−−−−→ Sp1Us2 + s1 r116 : Us1Up2 + p2

k0=0.3
−−−−−→ Us1 Dp2 + p2

r9 : Us1Up2
k0=0.1
−−−−−→ Ss1Up2 r63 : Ss1Up2 + p1

k0=0.3
−−−−−→ Sp1Up2 + s1 r117 : Up1Up2 + p2

k0=0.3
−−−−−→ Up1 Dp2 + p2

r10 : Us1Ss2
k0=0.1
−−−−−→ Ss1Ss2 r64 : Ss1 Ds2 + p1

k0=0.3
−−−−−→ Sp1 Ds2 + s1 r118 : Ds1Up2 + p2

k0=0.3
−−−−−→ Ds1 Dp2 + p2

r11 : Us1Sp2
k0=0.1
−−−−−→ Ss1Sp2 r65 : Ss1 Dp2 + p1

k0=0.3
−−−−−→ Sp1 Dp2 + s1 r119 : Dp1Up2 + p2

k0=0.3
−−−−−→ Dp1 Dp2 + p2

r12 : Ds1 Ds2
k0=0.1
−−−−−→ Ds1Us2 r66 : Us1Ss2 + p1

k0=0.3
−−−−−→ Up1Ss2 + s1 r120 : Ss1Ss2 + s1

k0=0.2
−−−−−→ Ss1Ss2 + 2s1

r13 : Dp1 Ds2
k0=0.1
−−−−−→ Dp1Us2 r67 : Us1Sp2 + p1

k0=0.3
−−−−−→ Up1Sp2 + s1 r121 : Ss1Sp2 + s1

k0=0.2
−−−−−→ Ss1Sp2 + 2s1

r14 : Us1 Ds2
k0=0.1
−−−−−→ Us1Us2 r68 : Us1Us2 + p1

k0=0.3
−−−−−→ Up1Us2 + s1 r122 : Ss1Us2 + s1

k0=0.2
−−−−−→ Ss1Us2 + 2s1

r15 : Up1 Ds2
k0=0.1
−−−−−→ Up1Us2 r69 : Us1Up2 + p1

k0=0.3
−−−−−→ Up1Up2 + s1 r123 : Ss1Up2 + s1

k0=0.2
−−−−−→ Ss1Up2 + 2s1

r16 : Ss1 Ds2
k0=0.1
−−−−−→ Ss1Us2 r70 : Us1 Ds2 + p1

k0=0.3
−−−−−→ Up1 Ds2 + s1 r124 : Ss1 Ds2 + s1

k0=0.2
−−−−−→ Ss1 Ds2 + 2s1

r17 : Sp1 Ds2
k0=0.1
−−−−−→ Sp1Us2 r71 : Us1 Dp2 + p1

k0=0.3
−−−−−→ Up1 Dp2 + s1 r125 : Ss1 Dp2 + s1

k0=0.2
−−−−−→ Ss1 Dp2 + 2s1

r18 : Ds1Us2
k0=0.1
−−−−−→ Ds1Ss2 r72 : Ds1Ss2 + p1

k0=0.3
−−−−−→ Dp1Ss2 + s1 r126 : Dp1Ss2 + p1

k0=0.3
−−−−−→ Dp1Ss2 + 2p1

r19 : Dp1Us2
k0=0.1
−−−−−→ Dp1Ss2 r73 : Ds1Sp2 + p1

k0=0.3
−−−−−→ Dp1Sp2 + s1 r127 : Dp1Sp2 + p1

k0=0.3
−−−−−→ Dp1Sp2 + 2p1

r20 : Us1Us2
k0=0.1
−−−−−→ Us1Ss2 r74 : Ds1Us2 + p1

k0=0.3
−−−−−→ Dp1Us2 + s1 r128 : Dp1Us2 + p1

k0=0.3
−−−−−→ Dp1Us2 + 2p1

r21 : Up1Us2
k0=0.1
−−−−−→ Up1Ss2 r75 : Ds1Up2 + p1

k0=0.3
−−−−−→ Dp1Up2 + s1 r129 : Dp1Up2 + p1

k0=0.3
−−−−−→ Dp1Up2 + 2p1

r22 : Ss1Us2
k0=0.1
−−−−−→ Ss1Ss2 r76 : Ds1 Ds2 + p1

k0=0.3
−−−−−→ Dp1 Ds2 + s1 r130 : Dp1 Ds2 + p1

k0=0.3
−−−−−→ Dp1 Ds2 + 2p1

r23 : Sp1Us2
k0=0.1
−−−−−→ Sp1Ss2 r77 : Ds1 Dp2 + p1

k0=0.3
−−−−−→ Dp1 Dp2 + s1 r131 : Dp1 Dp2 + p1

k0=0.3
−−−−−→ Dp1 Dp2 + 2p1

r24 : Sp1Ss2
k0=0.1
−−−−−→ Ss1Ss2 r78 : Ss1Ss2 + p2

k0=0.3
−−−−−→ Ss1Sp2 + s2 r132 : Ss1Ss2 + s2

k0=0.2
−−−−−→ Ss1Ss2 + 2s2

r25 : Sp1Sp2
k0=0.1
−−−−−→ Ss1Sp2 r79 : Sp1Ss2 + p2

k0=0.3
−−−−−→ Sp1Sp2 + s2 r133 : Sp1Ss2 + s2

k0=0.2
−−−−−→ Sp1Ss2 + 2s2

r26 : Sp1Us2
k0=0.1
−−−−−→ Ss1Us2 r80 : Us1Ss2 + p2

k0=0.3
−−−−−→ Us1Sp2 + s2 r134 : Us1Ss2 + s2

k0=0.2
−−−−−→ Us1Ss2 + 2s2

r27 : Sp1Up2
k0=0.1
−−−−−→ Ss1Up2 r81 : Up1Ss2 + p2

k0=0.3
−−−−−→ Up1Sp2 + s2 r135 : Up1Ss2 + s2

k0=0.2
−−−−−→ Up1Ss2 + 2s2

r28 : Sp1 Ds2
k0=0.1
−−−−−→ Ss1 Ds2 r82 : Ds1Ss2 + p2

k0=0.3
−−−−−→ Ds1Sp2 + s2 r136 : Ds1Ss2 + s2

k0=0.2
−−−−−→ Ds1Ss2 + 2s2

r29 : Sp1 Dp2
k0=0.1
−−−−−→ Ss1 Dp2 r83 : Dp1Ss2 + p2

k0=0.3
−−−−−→ Dp1Sp2 + s2 r137 : Dp1Ss2 + s2

k0=0.2
−−−−−→ Dp1Ss2 + 2s2

r30 : Up1Ss2
k0=0.1
−−−−−→ Us1Ss2 r84 : Ss1Us2 + p2

k0=0.3
−−−−−→ Ss1Up2 + s2 r138 : Ss1 Dp2 + p2

k0=0.3
−−−−−→ Ss1 Dp2 + 2p2

r31 : Up1Sp2
k0=0.1
−−−−−→ Us1Sp2 r85 : Sp1Us2 + p2

k0=0.3
−−−−−→ Sp1Up2 + s2 r139 : Sp1 Dp2 + p2

k0=0.3
−−−−−→ Sp1 Dp2 + 2p2

r32 : Up1Us2
k0=0.1
−−−−−→ Us1Us2 r86 : Us1Us2 + p2

k0=0.3
−−−−−→ Us1Up2 + s2 r140 : Us1 Dp2 + p2

k0=0.3
−−−−−→ Us1 Dp2 + 2p2

r33 : Up1Up2
k0=0.1
−−−−−→ Us1Up2 r87 : Up1Us2 + p2

k0=0.3
−−−−−→ Up1Up2 + s2 r141 : Up1 Dp2 + p2

k0=0.3
−−−−−→ Up1 Dp2 + 2p2

r34 : Up1 Ds2
k0=0.1
−−−−−→ Us1 Ds2 r88 : Ds1Us2 + p2

k0=0.3
−−−−−→ Ds1Up2 + s2 r142 : Ds1 Dp2 + p2

k0=0.3
−−−−−→ Ds1 Dp2 + 2p2

r35 : Up1 Dp2
k0=0.1
−−−−−→ Us1 Dp2 r89 : Dp1Us2 + p2

k0=0.3
−−−−−→ Dp1Up2 + s2 r143 : Dp1 Dp2 + p2

k0=0.3
−−−−−→ Dp1 Dp2 + 2p2

r36 : Dp1Ss2
k0=0.1
−−−−−→ Ds1Ss2 r90 : Ss1 Ds2 + p2

k0=0.3
−−−−−→ Ss1 Dp2 + s2 r144 : 2s1

k0=0.15
−−−−−−→ s1

r37 : Dp1Sp2
k0=0.1
−−−−−→ Ds1Sp2 r91 : Sp1 Ds2 + p2

k0=0.3
−−−−−→ Sp1 Dp2 + s2 r145 : 2s2

k0=0.15
−−−−−−→ s2

r38 : Dp1Us2
k0=0.1
−−−−−→ Ds1Us2 r92 : Us1 Ds2 + p2

k0=0.3
−−−−−→ Us1 Dp2 + s2 r146 : 2p1

k0=0.15
−−−−−−→ p1

r39 : Dp1Up2
k0=0.1
−−−−−→ Ds1Up2 r93 : Up1 Ds2 + p2

k0=0.3
−−−−−→ Up1 Dp2 + s2 r147 : 2p2

k0=0.15
−−−−−−→ p2

r40 : Dp1 Ds2
k0=0.1
−−−−−→ Ds1 Ds2 r94 : Ds1 Ds2 + p2

k0=0.3
−−−−−→ Ds1 Dp2 + s2

r41 : Dp1 Dp2
k0=0.1
−−−−−→ Ds1 Dp2 r95 : Dp1 Ds2 + p2

k0=0.3
−−−−−→ Dp1 Dp2 + s2

r42 : Ss1Sp2
k0=0.1
−−−−−→ Ss1Ss2 r96 : Sp1Ss2 + p1

k0=0.3
−−−−−→ Up1Ss2 + p1

r43 : Sp1Sp2
k0=0.1
−−−−−→ Sp1Ss2 r97 : Sp1Sp2 + p1

k0=0.3
−−−−−→ Up1Sp2 + p1

r44 : Us1Sp2
k0=0.1
−−−−−→ Us1Ss2 r98 : Sp1Us2 + p1

k0=0.3
−−−−−→ Up1Us2 + p1

r45 : Up1Sp2
k0=0.1
−−−−−→ Up1Ss2 r99 : Sp1Up2 + p1

k0=0.3
−−−−−→ Up1Up2 + p1

r46 : Ds1Sp2
k0=0.1
−−−−−→ Ds1Ss2 r100 : Sp1 Ds2 + p1

k0=0.3
−−−−−→ Up1 Ds2 + p1

r47 : Dp1Sp2
k0=0.1
−−−−−→ Dp1Ss2 r101 : Sp1 Dp2 + p1

k0=0.3
−−−−−→ Up1 Dp2 + p1

r48 : Ss1Up2
k0=0.1
−−−−−→ Ss1Us2 r102 : Up1Ss2 + p1

k0=0.3
−−−−−→ Dp1Ss2 + p1

r49 : Sp1Up2
k0=0.1
−−−−−→ Sp1Us2 r103 : Up1Sp2 + p1

k0=0.3
−−−−−→ Dp1Sp2 + p1

r50 : Us1Up2
k0=0.1
−−−−−→ Us1Us2 r104 : Up1Us2 + p1

k0=0.3
−−−−−→ Dp1Us2 + p1

r51 : Up1Up2
k0=0.1
−−−−−→ Up1Us2 r105 : Up1Up2 + p1

k0=0.3
−−−−−→ Dp1Up2 + p1

r52 : Ds1Up2
k0=0.1
−−−−−→ Ds1Us2 r106 : Up1 Ds2 + p1

k0=0.3
−−−−−→ Dp1 Ds2 + p1

r53 : Dp1Up2
k0=0.1
−−−−−→ Dp1Us2 r107 : Up1 Dp2 + p1

k0=0.3
−−−−−→ Dp1 Dp2 + p1
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