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Abstract: Crowd evacuation has gained increasing attention due to its importance in the day-to-day
management of public areas. During an emergency evacuation, there are a variety of factors that
need to be considered when designing a practical evacuation model. For example, relatives tend
to move together or look for each other. These behaviors undoubtedly aggravate the chaos degree
of evacuating crowds and make evacuations hard to model. In this paper, we propose an entropy-
based combined behavior model to better analyze the influence of these behaviors on the evacuation
process. Specifically, we utilize the Boltzmann entropy to quantitatively denote the degree of chaos
in the crowd. The evacuation behavior of heterogeneous people is simulated through a series of
behavior rules. Moreover, we devise a velocity adjustment method to ensure the evacuees follow a
more orderly direction. Extensive simulation results demonstrate the effectiveness of the proposed
evacuation model and provide useful insights into the design of practical evacuation strategies.

Keywords: crowd simulation; entropy; evacuation behavior; small social groups

1. Introduction

Crowd evacuation in congested indoor scenes (e.g., due to emergencies) is an impor-
tant issue, which should be considered in building designs and the day-to-day management
of public areas. Because it is difficult to conduct practical exercises and there is a lack of
data on crowd populations, computer simulation is widely adopted in the study of crowd
evacuation problems.

Evacuation models based on computer simulations typically include two types: macro
evacuation, which considers the population as a homogeneous flow [1,2], and micro evacu-
ation, which analyzes the behavior characteristics of individuals during crowd evacuation.
In particular, micro evacuation models have gained more attention due to fact that they can
better investigate the crowd’s evolution trend. Classic micro evacuation models include
the social force models [3], cellular automaton models [4], agent simulation models [5],
and hybrid models [6,7]. These models are utilized for optimizing escape strategies and
routes, improving guidance information, identifying building bottlenecks, and predicting
evacuation times [8–14].

However, the existing works have two main limitations. First, these works do not
consider the impact of crowd disorder on the evacuation process, which is an implicit
but important indicator in many real-world evacuation scenarios. For example, if the
crowd is more chaotic, the evacuees would be more likely to behave irrationally, leading
to a longer evacuation time or even a mass stampede. Therefore, the degree of crowd
disorder can affect individual decision making. Second, these works often focus on a single
evacuation behavior, lacking a comprehensive mechanism to describe the various behaviors
of heterogeneous crowds, which is why it is difficult to model an evacuation in practice.
For example, there are various factors that affect an evacuation simultaneously, such as
environmental familiarity, the social relationships of individuals among small social groups,
and individuals in heterogeneous populations, making the dynamics of crowd evacuation
more complex, which in turn, also influences crowd disorder.
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To address these limitations, in this paper, we propose an Entropy-based Combined
Behavior Model (ECBM), which incorporates the degree of crowd chaos into an evacuation.
In particular, we adopt the Boltzmann entropy to quantify the degree of crowd chaos and
utilize the chaos degree to adjust the velocities of a variety of evacuation behaviors. This
novel design allows us to better capture the behaviors of individuals in the evacuation
process, making it more realistic and accurate. Furthermore, we investigate the influence of
kinship relationships and guides by carefully analyzing their effects on different evacuation
behaviors and integrating them into the evacuation model. Specifically, we make the
following contributions:

• We propose an entropy-based combined behavior model ECBM that combines a
variety of evacuation behaviors, making crowd evacuation more realistic.

• We integrate the crowd chaos based on the Boltzmann entropy into the ECBM and
present a velocity adjustment method to ensure the evacuees follow a more orderly
direction.

• We implement the ECBM and conduct extensive experiments using simulations to
evaluate the ECBM. The simulation results validate the effectiveness of our evacuation
model.

The rest of this paper is organized as follows. Section 2 introduces the related work. In
Section 3, we introduce the detailed design of the ECBM. We demonstrate the effectiveness
of the ECBM through simulations in Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

During an evacuation process, individuals have some typical behaviors. For example,
Konstantara et al. [15] classified an evacuation crowd according to the moving speed of
pedestrians and proposed a cellular automaton model to study the role of professionals in
assisting the elderly with weak mobility during an evacuation. Considering the disability of
pedestrians, Mitsopoulou et al. [16] divided the evacuation crowd into six categories, estab-
lished an agent-based model to simulate the evacuation process of heterogeneous crowds,
and analyzed the impact of the physical and psychological attributes of disabled people
on crowd evacuation. In particular, small social groups have gained increasing attention
in relation to crowd evacuation. There are significant differences in the micro-behavioral
characteristics of small social groups and individuals [17,18]. Behavioral interactions within
social groups can affect the overall evacuation dynamics of the population [19]. Although
some models consider the behavior of slowing down and waiting for lagging members in
small groups [20], most studies only focus on simulating the gathering behavior of small
social groups during an evacuation by introducing the leader–follower mechanism or group
attraction force [21]. Aiming at the kinship-related small social groups that commonly exist
in evacuating populations, Yang et al. [22] described the behavioral interactions within
small groups, such as gathering and backtracking, through kinship attraction. However,
in their model, members of the same group are globally visible without considering the
limitations of the individual’s field of vision. In addition, for evacuees familiar with the
building environment and exit locations, the moving target is often clear and they can
also guide others to evacuate through information sharing. In most crowd evacuation
models, the behavior of such evacuees is often reflected in the guiding behavior [23]. Some
evacuation models simulate the behavioral interactions between guides and non-guides
by introducing a guiding attraction force [24,25]. However, these models only consider
one specific behavior, lacking a comprehensive description of the various behaviors of
heterogeneous evacuation crowds; thus, these models are not realistic enough to simulate
crowd evacuation.

For the heterogeneous evacuation crowd composed of small social groups, guides, and
individuals, the diversity and complexity of behavior also affect the crowd’s chaos degree
and evacuation efficiency. Some studies showed that people with stable relationships
(e.g., friends or lovers) have obvious characteristics in an emergency evacuation [26]. In
addition, some existing works found that the evacuation time increases if each group size
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is small (e.g., two or three) [27–29], whereas the time decreases when the group size further
increases (e.g., larger than three) [30,31]. The research shows that the presence of guides
also has a dual effect on crowd evacuation and is closely related to visibility and local
crowd density [24,25,32,33]. Nevertheless, these studies only investigated the evacuation
efficiency from a single perspective, without considering the comprehensive effect of these
small social groups and guides on the evacuation time and crowd disorder.

The complex evacuation behavior of heterogeneous crowds significantly impacts
the crowd evacuation dynamics. At the same time, local crowd chaos also interferes
with the behavior in the movement of individuals. Entropy is one of the most common
methods used for measuring crowd disorder in an evacuation [34–37]. For instance, Rangel-
Huerta et al. [35] utilized entropy to denote the heterogeneity of evacuees, Zhao et al. [36]
used Shannon entropy to evaluate population mutations, and Huang et al. [37] adopted
the attenuation of velocity entropy to identify congestion areas. However, considering the
limited perceptual range of evacuees, it is almost impossible for evacuees to accurately
calculate the dynamics of the global crowd disorder. Thus, in the ECBM, we utilize local
disorder to reflect the influence of crowd disorder on evacuation individuals.

3. ECBM Model

In this section, we present our entropy-based combined behavior model (ECBM),
which incorporates the indicator of crowd chaos into the evacuation process. The ECBM
framework is illustrated in Figure 1. We consider the multi-agent simulation method, where
an individual (i.e., agent) is represented as a circular particle with a set of attributes (e.g.,
velocity, visual field). To make the model more realistic, we consider three types of agents:
(1) individuals who make the decision independently; (2) individuals who have pairwise
kinship relationships, i.e., small social groups; and (3) individuals who are familiar with
the structure of the scene, that is, they can act as guides to lead the evacuation. We further
design five modules to describe the various behaviors of agents based on the agent type
and the Boids rules [38], which we detail in Section 3.1. Given the agent behaviors, in
Section 3.2, we present the detailed ECBM algorithm, including the Boltzmann entropy
calculation that quantifies the chaotic level of the visible crowd from the perspective of
each agent as well as the velocity adjustment of individuals so that the simulated agents
can evacuate in a more orderly direction.

FIGURE 1. Framework of ECBM.
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Figure 1. The ECBM framework.
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3.1. Behavior Modules

For each step of an evacuation, we need to calculate the velocity (i.e., moving speed and
moving direction) of each agent toward the exit. In particular, we consider five behaviors in
the ECBM, including the three basic behaviors (escaping, evading, and cohering) for all the
agents, the seeking behavior for agents in small social groups, and the guiding behavior for
guides. In the following subsections, we present the design of each behavior, respectively.

Escaping behavior. The escaping behavior refers to the behavior of an individual
moving toward the exit. During an indoor evacuation, humans usually rely on their
memory of the exits to distinguish the desirable direction in which to escape. The escaping
of agents in the ECBM is based on an escape floor field, similar to the static field in the floor
field model. The evacuation scene is discretized into a one-meter-square grid. The value of
the escape floor field for individuals is equal to the distance from each square to the center
of the exit, as in Figure 2a.

0

10

20

30

FIGURE 3.  The escape floor field.  (a)



 FIGURE 4.  Escaping behavior of agents.

(b)
Figure 2. Illustration of escaping behavior. (a) Escape floor field; (b) Escaping behavior.

Figure 2b gives an illustration of this behavior. It can be seen that some studies only
focus on the field of view radius and do not limit the field of view angle, which is set to
360° [39]. However, during an evacuation, pedestrians usually pay more attention to the
front environment than the rear or sides. Therefore, several models set the field of view
angle to 180° [40] or 170° [41]. Considering that panic may lead to the narrowing of the
pedestrian’s field of vision [42], we assume that the visual field of the agent is a sector with
an angle of 160° and a radius of dvision. Agents prefer to choose the lowest escape floor
field in the visible area as the escape direction. The steering angle we in Figure 2b suggests
that individuals deflect as much as possible to the optimal goal. In the ECBM, we set the
extreme value for this parameter Φe. This threshold reflects the attraction of the exit to
individuals or the individual’s ability to remember the exits.

Evading behavior. The evading behavior refers to the action of evacuees in avoiding
obstacles (e.g., walls or other evacuees). That is, this behavior prevents agents from colliding
or overlapping with other evacuees, especially when the population density is high. In the
ECBM, we define the exit area as a semi-circle with a radius around the exit. If an agent is
close to the exit area, it only avoids overlapping with the obstacles because it aims to escape
from the exit quickly. On the contrary, if an agent is far from the exit area, it tends to deflect
as soon as it sees the obstacles. Figure 3 gives an example of the evading behavior. When
facing the obstacles, non-guides (illustrated in the gray circle) deflect a stochastic angle ∂o
within a maximum angle Φo toward one of the available neighboring grids to avoid the
collision. However, guides (illustrated in the green circle) can choose the direction with a
lower escape field value in the visible area instead of turning randomly.
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FIGURE 6.  Evading behavior of guides and nonguides.





Figure 3. Evading behavior.

Cohering behavior. Evacuees also tend to gather with the surrounding neighbors
during an evacuation. In particular, the cohering behavior is often highlighted in studies
on the herding behavior of evacuating crowds. The aggregation criteria in the Boids
theory can describe this phenomenon. Specifically, the Boids theory [38] describes the
self-organized phenomenon of bird flocks through the three basic rules of separation,
alignment, and aggregation. The classical Boids model and its variants are widely used in
flock simulations [43,44]. Similarly, agents in the ECBM turn toward the average position
of nearby individuals (as shown in Figure 4). The parameter Φc is the peak of the steering
angle wc. When Φc’s value is larger, the phenomenon of evacuating together is more
obvious.

𝜔

Average Location

Figure 4. Cohering behavior.

Guiding behavior. If there are some people familiar with the architectural structure
of the scene, they can directly move toward the exit instead of the lowest escape field.
The guides always set the moving target of the escaping behavior as the exit direction
rather than the direction with the lowest escape field in the vision field adopted by the
non-guides. Because they know the location of the exits clearly and spread this information
to the surrounding crowd, nearby agents within the voice scope can remain consistent with
the guide. If there are non-guides within the sound range of the guide, the non-guides
will follow the guide to move. Other non-guides not within the voice range of guides will
not be guided and will show cohering behavior due to herd mentality. In the ECBM, we
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assume that guides in the crowd do not have a distinctive mark for visual recognition, but
they can lead others by turning their head to expand their voice range. Thus, the influence
range of guides is a circular area with a radius of sound propagation distance rather than
the agent’s fan-shaped sound domain. Figure 5 shows an example of this behavior. The
limit of angle wg is Φg. The ECBM can simulate different lead–follow abilities of agents
during an evacuation by adjusting the angle threshold.

  FIGURE 5.  Illustration of guiding behavior. 

Direction to Exit

௩







Figure 5. Guiding behavior.

Seeking behavior. The seeking behavior is the particular actions of relatives in pairs.
When the distance between two relatives exceeds a threshold, the agents seek their relatives
instead of escaping toward the exit. Specifically, we consider that people intend to look for
each other by sound, especially when sight is limited. We denote the sound propagation
radius as dvoice. Figure 6 gives an illustration of the seeking behavior. When the distance is
less than the comfort range dease (e.g., the pink-colored agents), they do not seek each other.
Therefore, their behavior rules are the same as those of independent agents. In contrast,
when the distance is no less than dease, the agents will detect whether their relatives are
within their voice range or not. If so, the agents turn toward their partners as much as they
can (e.g., the yellow-colored agents). Otherwise, the agents will turn randomly and keep
seeking (e.g., the red-colored agents). The maximum of stochastic seeking angle ∂s is Φs.

FIGURE 2.  Schematic diagram of seeking families.
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Figure 6. Illustration of the seeking behavior.

3.2. ECBM Algorithm

Based on the above five behavior modules, we introduce the proposed ECBM algo-
rithm flow, as shown in Figure 7. After initialization, the agents iteratively execute the
following steps until all the agents leave the exit.
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Figure 7. Algorithm flow of ECBM.

Entropy calculation. We first calculate the Boltzmann entropy for each agent given
its visible range. Let N be the number of individuals in the m-th agent’s visible range.
Given the magnitude and direction of velocity [45], we divide the space into a velocity
distribution space with a 4 × 8 grid (as illustrated in Figure 8).

FIGURE 8.  The velocity distribution of visible agents.
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Figure 8. The velocity distribution of visible agents.

According to the definition, the Boltzmann entropy of a system reflects the degree of
chaos of the system, and its calculation formula is: BE = kB ∗ ln W, where kB is a constant
and W represents the number of microscopic states of the system. For the evacuees, their
micro-states are obtained by counting the probability distribution of pedestrian speed.
Thus, we can calculate the velocity distribution of the N agents by W = Cn1

N ∗ Cn2
N−n1

∗ · · · ∗
Cnk

N−n1−···−nk−1
, where {∑k

i=1 ni = N}, ni is the number of agents in the i-th grid cell, and
k is the number of cells with non-zero values. Then, at time t, the degree of chaos in the
perspective of the m-th agent is:

Em(t) = kB · ln
(

Πk
i=1Cni

N−∑i−1
j=1 nj

)
. (1)

The larger the entropy value, the higher the disorder level of the crowd. We explain how
to utilize this entropy value to reflect crowd chaos and update the agent’s velocity below.
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Radius update. Then, we update the vision and voice radius based on the calculated
entropy. The rationale is that the chaotic environment can affect humans’ sound range
and visual field, which fluctuate at every time step. Typically, the radius is restricted if the
crowd is more chaotic. Let S and L denote the sound and light propagation distances in the
room, respectively. Thus, the parameters dvoice and dvision are updated as follows.

dvoice(t) = S/[1 + Em(t)], (2)

dvision(t) = L/[1 + Em(t)]. (3)

Direction determination. Next, each agent determines the evacuation direction for
the next time step. Specifically, each agent first checks whether it is in the exit area and
adjusts the parameters (e.g., destination and turning angles). Considering the influence
of the exit visibility and high-density congestion on individual evacuation behavior, this
paper sets parameter adjustments to make pedestrian evacuation behavior more realistic.
When the distance of the pedestrian exit is less than 5 m, it means entering the visible area
of the exit. In this exit area, the moving target of all pedestrians’ escaping behaviors is the
exit center. Because of the sense of security brought by the visibility of the exit and the
pressure caused by the high density of arched congestion, the pedestrians’ herd mentality
is weakened. Therefore, the value of the pedestrians’ aggregation angle is halved in the
exit area. To avoid overlapping between pedestrians and obstacles, pedestrians in the exit
area still have evading behavior when moving and may change the direction of movement
to stay away from the nearest obstacle. Then, if the agent has a relative, it will seek the
relative, where the seeking behavior determines the direction (see Section 3.1). If the agent
does not have a relative or its relative is within the comfort range dease, we further check
whether the agent is familiar with the evacuation environment. If so, the guiding behavior
will be triggered. Otherwise, the agent will perform the cohering behavior, i.e., gather with
the nearby individuals (moving toward the direction of the average position). Finally, we
calculate the direction of the escaping behavior (i.e., the direction to the exit) for each agent
and aggregate it to obtain the final direction.

Velocity calculation and adjustment. After determining the direction through behavior
rules, we now calculate each agent’s velocity. There are two designs. First, we observe
that evacuees tend to show unilateral preference when moving. However, the unilateral
preference considered in existing studies is mainly a right-sided preference [46,47] and
experiments have shown that a right-sided preference may lead to an increase in the crowd
congestion density and a decrease in moving speed [48]. Thus, considering the evacuees’
perceptions of the chaos degree of the visible agents, we let each agent move in a direction
that avoids local chaos in the visual field. Figure 9 illustrates this design, where the agent
deflects to the more orderly side (according to the calculated Boltzmann entropy). The
range of the drift angle ∂m is [0, Φm], where Φm is the maximum modification angle.

FIGURE 9.  Schematic diagram of direction modification based on entropy.

𝜕

Figure 9. Illustration of direction modification based on entropy.
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Second, we also take the entropy into the calculation of each agent’s next step velocity.
Let V(t) and Vaver(t) be the current velocity of an agent and the average velocity of
its neighbors. Specifically, we update the velocity of the agent as follows based on the
exponential smoothing method.

V(t + 1) = [1− Em(t)] ∗V(t) + Em(t) ∗Vaver(t), (4)

which means that the individual speed is influenced by an entropy (i.e., crowd chaos
degree) and the average speed of neighboring agents. Note that the velocity calculation is
more consistent with the real-world scenario: when Em(t) is larger, the environment is more
chaotic and individuals will tend to follow the crowd to move; when Em(t) is smaller, the
environment is more orderly and individuals can move according to the previous decision.

Evading and moving. Before moving to the next position, the last step is to ensure
that there are no collisions with the obstacles. Specifically, each agent checks whether an
obstacle (including other agents and walls) is nearby and deflects with a random angle, as
discussed in Section 3.1. As a consequence, each agent moves to the designated position
and continues the next iteration until it leaves the exit.

4. Simulation and Analysis

Now, we evaluate the ECBM evacuation model using simulations. We implemented
the evacuation model and simulated the evacuation process based on NetLogo 6.2.2
https://ccl.northwestern.edu/netlogo/ (accessed on 1 July 2022), which is a multi-agent
programmable modeling environment. We conducted the experiments on a machine that
runs Windows 10 with an Intel (R) Core (TM) i5-8265U CPU @ 1.60 GHz and 8.00 GB of
RAM. Table 1 gives the default experimental parameters. The evacuation scene was a
31× 31 m2 room. There was an exit with a width of 3 m. The default total agent number in
the simulation was 200, and the agent’s radius was 0.4 m. The individual had a visual field
with a radius of 5 m [41]. Because the hearing radius was not blocked by other pedestrians
unlike the visual radius, it was slightly higher than the visual radius and set to 8 m. The
comfortable distance and individual speed limit followed the settings used in previous
research [49], with values of 2 m and 2 m/s, respectively.

Table 1. Experimental parameters.

Notation Description Default Value

S sound propagation distance in evacuation scenario 8 m
L light propagation distance in evacuation scenario 5 m
dease the distance to determine whether seeking relatives 2 m
Φm the maximum angle of entropy modification 10°
Φs the maximum angle of seeking relatives 150°
Φe the maximum angle based on the escaping field 90°
Φg the maximum deflection angle when being guided 180°
Φc the maximum angle toward the nearby groups 20°
Φo the maximal turning angle to avoid obstacles 20°
vmax the maximal speed of evacuees 2 m/s

In the following, we first investigate the effect of entropy on the evacuation process in
Section 4.1. Then, we evaluate the effects of the seeking behavior and guiding behavior in
Sections 4.2 and 4.3, respectively. Finally, we explore the impact of the behaviors’ parameter
values on an evacuation in Section 4.4.

4.1. Effect of Entropy on Evacuation

In this set of experiments, we set all the evacuees in the ECBM as independent agents
and varied the number of evacuees (100, 200, 300, 400, and 500). Figure 10 shows a com-
parison of the evacuation time for the evacuation with a modified velocity by entropy (i.e.,

https://ccl.northwestern.edu/netlogo/
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Equation (4)) and the evacuation without modification. There are two main observations.
First, the evacuation time increased as the number of evacuees increased, which is reason-
able because it should take a longer time to evacuate more people. Second, the evacuation
time was shorter when applying our entropy-based velocity calculation and adjustment
method. The reason is that the agent tended to avoid the chaotic area during the evacuation,
making the overall evacuation more efficient and demonstrating our evacuation model’s
effectiveness. Figure 11 illustrates the chaos level of the room and the exit area for the above
two methods. We can see that the maximum Boltzmann entropy of the exit area with our
proposed velocity calculation method was smaller than the method without modifications.
Moreover, the more evacuees in the room, the better the effect of the entropy-based velocity
method. This phenomenon also shows that if people are able to avoid chaotic areas during
the escape, the evacuation will be more efficient and orderly.

Figure 10. Comparison of evacuation time for the proposed entropy-based velocity adjustment
method and the method without entropy adjustment.

Figure 11. Comparison of crowd entropy for the whole room and exit area for the proposed entropy-
based velocity adjustment method and the method without entropy adjustment.

4.2. Effect of Seeking Behavior on Evacuation

In this set of experiments, we considered the paired small social groups (also known
as mates) in the evacuees. Figure 12 shows the remaining number of evacuees in the room
with respect to the evacuation timestamps for the different numbers of small social groups
(i.e., 0, 20, 40, and 60). We observed that as the number of paired mates increased, the
time for the evacuation process was longer, indicating that the seeking behavior directly
increased the evacuation time. This is because more evacuees looked for each other instead
of following the escape routes. In addition, the falling speed of the remaining crowd slowed
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down from the 50th second. However, when more paired mates were in the crowd, more
people left at the 50th second, and thus, the longer they took to complete the evacuation.

Figure 12. The number of remaining evacuees in the room.

We also reported the maximum entropy of the evacuees during the first 200 s, as
depicted in Figure 13. From the 20th to the 40th seconds, we observed that the crowd was
the most chaotic and the peak value of the entropy increased with more pairs of small
social groups. This shows that small social groups can aggravate the disorder level of the
crowd. Moreover, the higher the proportion of small social groups in the crowd, the greater
the fluctuation in the range of entropy, indicating that small social groups also increase the
uncertainty of the crowd chaos degree.

Figure 13. The maximum entropy of evacuees.

Based on the above simulation results, we confirm that the seeking behavior of social
groups is a critical factor affecting evacuation efficiency. In some special scenarios, such
as children’s indoor amusement parks, the behavior of searching for relatives makes the
behavior characteristics of the crowd different to general scenes. We highlight the necessity
of designing more suitable emergency plans for these scenarios.

4.3. Effect of Guiding Behavior on Evacuation

In this subsection, we consider a scenario where some people in the crowd are familiar
with the evacuation scene such as staff and residents; they can quickly determine the
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direction of the exits and convey the message to others around them. It is worth noting
that, unlike guidance signs or professional rescuers, the guides in this paper keep moving
toward the exit while guiding others rather than stopping or retreating. Figure 14 illustrates
the evacuation process concerning different numbers of guides (i.e., 0, 10, 20, and 30), where
gray agents represent individuals; green agents represent guides; and pink, yellow, and
red agents represent the members of the social groups in the early, middle, and late stages.
The simulation showed that the existence of guides could effectively reduce the number of
agents searching for relatives. Specifically, we observed that guides could lead the crowd to
gather at the exits faster during the early stage of an evacuation, and the number of people
seeking relatives in the room also decreased significantly. Furthermore, we observed that
the model reproduced the typical exit arch congestion phenomenon of crowd evacuation,
demonstrating the effectiveness of our evacuation model. This qualitative verification,
that is, the reproduction of the phenomenon of the self-organization of the evacuation
population [50], is one of the most commonly used verification methods in micro evacuation
models. In our future work, we plan to further study the quantitative verification of the
model, analyze the fundamental diagram [51,52] of the pedestrian flow in the corridors,
and compare the errors in the model simulation data and the real evacuation drill data [53].

(a) the evacuation progress of 200 evacuees including 30% social groups

(b) the evacuation progress of 200 evacuees including 30% social groups and 5% guides

(c) the evacuation progress of 200 evacuees including 30% social groups and 10% guides

(d) the evacuation progress of 200 evacuees including 30% social groups and 15% guides

Figure 14. The early, middle, and late stages (from left to right) of evacuation for 200 people with
60 paired small social groups and 0, 10, 20, and 30 (from top to bottom), respectively, guides.
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Figure 15 shows that the improvement in the evacuation time tended to be saturated
with the increase in the number of guides. The evacuation time could be reduced when
there were guides in the crowd. For example, when the number of guides was less than
40, the more guides in the crowd, the higher the evacuation efficiency. However, when the
number of guides exceeded 60, the evacuation time was almost unchanged. That is, the
effect was saturated because the guides already exceeded 30% of the population (given 200
evacuees in the simulation).

Figure 15. Average egress times under different guide proportions.

4.4. Effect of Parameter Values on Evacuation

We further analyzed the influence of the maximum angle parameters in the ECBM
on individual evacuation behavior. Figure 16 shows the crowd evacuation trajectories
under different parameter conditions. Unless noted otherwise, the maximum angle for the
escaping behavior Φe = 90 and the other parameter values are 0 by default.

Figure 16a–d shows the evacuation trajectories of 100 individuals. Specifically,
Figure 16a illustrates the crowd evacuation trajectories by varying Φe ∈ {0, 10, 30, 90},
respectively, whereas the other parameters are 0. When Φe = 10, based on the escape
field in the visual field, the evacuee’s turning and moving processes from the initial speed
direction to the exit direction were slower and formed a circular arc trajectory, which was
not reasonable. In contrast, this phenomenon disappeared when Φe ≥ 90. Therefore, the
value range of this parameter is [90, 360].

Figure 16b shows the crowd evacuation trajectories when Φo ∈ {0, 20, 40, 80}, respec-
tively. As the value of Φo increased, the evacuation trajectory showed a zigzag pattern.
When Φo ≥ 40, a large zigzag trajectory range appeared, which is not in line with the
actual movement of the crowd. Therefore, the value range is [0, 40]. In addition, with
the increase in Φo, it was observed that the range of the arched areas with dense moving
tracks near the exit increased. This is because the larger the obstacle avoidance angle, the
greater the tendency of pedestrians to maintain distance between each other, leading to the
distribution of people near the exit being more dispersed.

Figure 16c shows the crowd evacuation trajectory given Φc ∈ {0, 10, 50, 80}, respec-
tively. When Φc = 10, we observed a relatively obvious crowd cohering phenomenon. In
addition, as the value of Φc increased, the degree of cohering intensified. When Φc = 50,
a detour occurred due to excessive cohering, and the detour became more severe as Φc
continued to increase. Therefore, the value range of Φc is [10, 50], which is more consistent
with an actual evacuation situation.

Figure 16d shows the crowd evacuation trajectory given Φm ∈ {0, 30, 50, 80}, respec-
tively. As Φm increased, the evacuee trajectory became more scattered and zigzagging, and
the space utilization on both sides of the exit became higher. However, when Φm = 120,
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the trajectory was abnormally curly, indicating that the velocity adjustment was excessive
and the individual turned too frequently. Since the velocity adjustment is related to the
individual’s visual field (the default visual angle was 170 in this paper), it is reasonable
that the one-sided preference deflection angle was less than 85 degrees. The parameter Φm
reflects the preference intensity of individuals to avoid local chaos and its value range is [0, 85].

(a) 100 individuals,  𝛷 , 𝛷 , 𝛷 , 𝛷  and 𝛷   is 0，𝛷  is 0, 10, 30 and 90 respectively.

(b)100 individuals,  𝛷 , 𝛷 , 𝛷  and 𝛷  𝑖𝑠 0，𝛷  is 90,  𝛷  is 0, 20, 40 and 80 respectively.

(c) 100 individuals,  𝛷 , 𝛷 , 𝛷  𝑎𝑛𝑑 𝛷  𝑖𝑠 0，𝛷  is 90,  𝛷  is 0, 10, 50 and 80 respectively.                    

(d) 100 individuals,  𝛷 , 𝛷 , 𝛷  𝑎𝑛𝑑 𝛷  𝑖𝑠 0, 𝛷  is 90, 𝛷  is 0, 40, 80 and 120 respectively.

(f) 30 individuals, 10 guides and 30 paired groups, 𝛷  𝑖𝑠 90,  𝛷 , 𝛷 , 𝛷  and 𝛷  𝑖𝑠 0，𝛷  is 
0, 10, 50 and 90 respectively.

(e) 40 individuals and 30 paired social groups, 𝛷  𝑖𝑠 90,  𝛷 , 𝛷 , 𝛷  and 𝛷  𝑖𝑠 0，𝛷  is 0, 
20, 90 and 150 respectively.

Figure 16. Evaluation of different parameter values of maximum angles in ECBM.
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Figure 16e shows the evacuation trajectories of a heterogeneous crowd composed
of 40 individuals and 30 paired small groups when Φs ∈ {0, 20, 90, 150}, respectively.
We observed that the direction of the seeking trajectories changes less when Φs ≤ 20.
Meanwhile, when Φs = 90, many arc-shaped seeking tracks could be seen. The seeking
trajectories may be densely folded when Φs ≥ 150. Φs represents the maximum range
in which small social groups can move in search of unseen companions. The larger the
Φs value, the higher the uncertainty of the distribution range and duration of the tracing
trajectory of the small group. The suggested value range of this parameter is [30, 200],
considering the turning limit of evacuees within one second.

Figure 16f shows the evacuation trajectories of a heterogeneous crowd composed of
40 individuals, 10 guides, and 30 paired small groups when Φg ∈ {0, 10, 50, 90}, respectively.
When Φg = 0, the seeking trace was straight because Φs was 0. When Φg = 10, some
evacuees seeking relatives were guided, thus forming many arc-shaped steering trajectories.
As Φg increased to 50, the arc trajectory disappeared. Through simulations, we observed
that the steering angle caused by the guiding behavior was usually less than 90. Therefore,
the value range of Φg is [50, 90]. Adjusting this parameter can change the guiding effect of
the guides.

5. Conclusions

In this paper, we proposed an entropy-based combined behavior model ECBM for
crowd evacuation. The proposed model incorporates crowd chaos into the evacuation
process, which is measured by the Boltzmann entropy. Meanwhile, we simulate the evac-
uee’s evacuation through a combination of five behavior rules. Furthermore, we devise a
velocity adjustment method to calculate the agent’s velocity based on the crowd chaos level,
which is more consistent with realistic evacuation scenarios. Finally, we conduct extensive
simulation experiments, demonstrating the effectiveness of the proposed evacuation model
and providing practical information for the design of evacuation strategies.
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