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Abstract: This review paper is devoted to a brief overview of results and models concerning flows in
networks and channels of networks. First of all, we conduct a survey of the literature in several areas
of research connected to these flows. Then, we mention certain basic mathematical models of flows
in networks that are based on differential equations. We give special attention to several models
for flows of substances in channels of networks. For stationary cases of these flows, we present
probability distributions connected to the substance in the nodes of the channel for two basic models:
the model of a channel with many arms modeled by differential equations and the model of a simple
channel with flows of substances modeled by difference equations. The probability distributions
obtained contain as specific cases any probability distribution of a discrete random variable that takes
values of 0, 1, . . . . We also mention applications of the considered models, such as applications for
modeling migration flows. Special attention is given to the connection of the theory of stationary
flows in channels of networks and the theory of the growth of random networks.

Keywords: network; flow in a network; network channel; probability distribution; differential
equations; random networks growth; migration flows; traffic flow; flow in pipelines; flows in supply
chain networks

1. Short Overview of Selected Areas of Research on Flows in Networks

In this review paper, we briefly discuss several areas of the vast research field devoted
to flows in networks and mention selected results from these areas. First, we mention
several areas of research with an overview of the literature. Our focus is on the models
of flows in networks based on differential and difference equations. We present several
such models from different areas connected to the theory of flows in networks. Our special
attention is devoted to models of flows of substances in channels of networks. We discuss
such models containing differential or difference equations. Here, we focus on stationary
flows and on the probability distributions connected to the amount of a substance in nodes
that belong to a network channel. Finally, we consider a relation between the stationary
flow of a substance in a network channel and the theory of growth of random networks.

In 1962, Ford and Fulkerson [1] wrote an influential book devoted to flows in networks.
The book contains many results for maximal flows and for minimal-cost flows. It became
very popular due to the possible applications of the discussed topics to transportation
problems. Over the years, the number of areas of application of the theory started to
grow. Results from the research of Ford and Fulkerson have been used to solve problems
connected to computer vision and graph theory [2–6]. In mathematical social dynamics, the
ideas of Ford and Fulkerson have been used in studies of conflicts in small groups [7], social
structures in networks [8], and social influence [9]. Recently, the methodologies and ideas
of the theory of flows in networks have found applications in the planning of networks of
charging stations for electric vehicles [10], evacuation planning [11–14], chemical reaction
networks [15], ecology [16], assembly line design [17], etc.

One large area of research on flows in networks is devoted to traffic flows and trans-
portation problems in networks. This includes vehicular traffic on urban roads [18–33],
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inclusive traffic jams [34,35], railway networks [36–38], and air traffic management [39,40].
Flows in pipeline networks, such as oil and gas flows in their corresponding transportation
networks [41–49], are also often studied. One interesting topic in this research area is the
control of material flows or traffic flows in networks [50–55].

The aspects of fluid dynamics and hydrology of flows in networks are another vast
area of research. This research includes, for an example, flows in networks of microfluidic
channels [56,57], flows in networks of irrigation channels [58], and, especially, optimal
operation and control of multireservoir systems [59–65], debris flows in river networks [66],
flows in porous media [67–69], calibration of water flows in network models [70–72], etc.

Economic and biological aspects of network flows are also often modeled. Supply
chains were studied in [73–79], in addition to the studies of commodity networks for
energy management [80] and flows in financial networks [81–86]. There have also been
studies in the areas of forest management [87], disaster relief operations [88], and other
applications [89–99]. Very important from the technical and economic points of view
are studies of telecommunication, electrical, and computer networks [100–107]. In the
areas of medicine and biology, research on network flows concerns topics such as the
blood circulatory system in humans [108]—especially the modeling of arterial flows in
networks [109,110]—and metabolic networks [111–114]. The theory of network flows can
also be applied to population and epidemic problems [115,116], especially for problems of
human migration. Additional areas of research can be found in [117–121].

The mathematical aspects of network flow modeling are also of primary interest [122–130].
There has been special interest in research on the maximum flow problem [131–135] and
finding the shortest path [136–138]. The algorithmic aspects of flows in networks also attract
great attention [139–149]. Especially interesting are the results on algorithms for mini-
max transport problems [150–153], algorithms for convex-cost network flows [154–156],
algorithms for multicommodity networks [157–162], e.g., for high-school timetabling [163],
parallel algorithms for network flows [164–167], and distributed computation [168]. There is
research on flows in dendritic and looped networks [169]. The Riemann problems [170–175]
are a very current topic connected to numerical solutions of a system of model equations for
network flows. Let us note also that the mathematical parts of these studies are connected
to graph theory, combinatorics, and linear programming [176–180].

Below, we will concentrate our attention on a discussion on mathematical models of
flows in networks based on differential equations, with an emphasis on models of flows
in network channels and distributions of substances at the nodes of the channels for the
state of a stationary flow. The kind of flowing substance can be, for example, a resource
that flows through the nodes of the channel. The possible applications are, e.g., (I) to
cause a substance to flow in a channel in order to be part of an industrial process in some
nodes of the channel or (II) the evaluation and prognosis of migration flows of humans and
animals. Application (II) is interesting, as probability and deterministic models of human
migration [181–185] are often used to make decisions about the economic development
of parts of a country [186–190]. In addition, the above models were used for the analysis
of processes of migration [191–199], for the analysis of ideological struggles [200,201],
for the description of waves and distributions in population systems [202–207], etc. For an
example, in [199], the motion of a substance in a finite channel of a network that split into
two arms in a node of the network was discussed. In addition, one more split existed in the
secondary arm of the channel. For this configuration of the channel, analytical relationships
were obtained for the distribution of the substance in the nodes of the channel for the case
of a stationary regime of the motion of the substance. The application of the obtained
results was to the motion of migrants in a chain of countries with different probabilities for
their obtaining permission to stay in the different countries of the channel. Migrants in a
country earn money and send some of it to their home countries. The existence of analytical
relationships for migrant distributions allows us to evaluate the amount of this money. An
evaluation can be performed for a selected country of the channel. Such evaluations can be
performed for several countries of the channel at once.
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Another kind of problem was discussed in [201]. There, a model of ideological
competition was described. In this model, the migration of populations was taken into
account. The model described interactions between global populations of non-believers
and followers of different ideologies in the presence of the possibility for conversion
from one ideology to another by means of the influence of mass media and interpersonal
relationships. In addition, different birth rates could exist for the followers of different
ideologies. Competition among ideologies may happen in one or several regions in a space.

Some of the models mentioned below can be connected to urn models. By means of
this connection, the discussed models can be applied to a wide range of problems from the
area of genetics, through the areas of clinical trials and biology, and to the areas of social
dynamics or military theory [208–210].

2. Models of Network Flows Containing Differential Equations

Differential equations are widely used in models of flows in networks. Below, we
mention a small selection of basic models. First of all, we consider several models of
vehicular traffic. Modeling vehicular traffic [211–228] is an important task as this traffic is
connected to large social problems, such as environmental pollution and the congestion of
cities. It is important froman economic and social point of view to have rational planning
and management of vehicle flows. Such planning and management are not possible only
on the basis of simple experimental approaches. Thus, vehicular traffic leads not only
to interesting engineering tasks, but also to different mathematical problems. We must
mention the microscopic models of vehicular traffic [215,218,226]. In these models, each
single vehicle is modeled, and the dynamics are based on a system of ordinary differential
equations of the second order. In macroscopic and kinetic models, one uses a continuum
hypothesis. The motion of single cars is not of interest for these models. This leads to simple
models based on several partial differential equations. These models are appropriate for
modeling the motion of a large number of cars, and in this case, we can introduce quantities
that are continuous functions of space, such as macroscopic density or kinetic distribution
functions.

The basic idea of macroscopic modeling comes from Lighthill, Whitham, and Richards.
The idea is that the Euler and Navier–Stokes equations (known from fluid dynamics) may
also describe motion of cars along a road. The cars are modeled as small particles, and the
density of these particles is the main quantity of the mode [18,19]. The model is based on
the equation

∂ρ(x, t)
∂t

+
∂ f [ρ(t, x)]

∂x
= 0. (1)

In (1), ρ(x, t) is the density of cars, t is the time, and x is the position. f (ρ) = ρv(ρ)
denotes the flux of the cars. v(ρ) depends only on ρ. This density can be in the interval
ρ ∈ [0, ρmax] [20,229]. Models based on Equation (1) are called first-order macroscopic
models.

Roads form junctions. A junction is a point where we have n1 incoming roads and
n2 outgoing roads. The incoming roads are described by the interval (−∞, 0), and the
outgoing roads are described by the interval (0,+∞). Thus, the flow through a junction is
modeled by n1 + n2 differential equations:

∂ρi(x, t)
∂t

+
∂ f [ρi(t, x)]

∂x
= 0; x ∈ (−∞, 0); i ∈ {1, . . . , n1}, (2)

for the case of incoming roads, and

∂ρi(x, t)
∂t

+
∂ f [ρi(t, x)]

∂x
= 0; x ∈ (0, ∞); i ∈ {n1 + 1, . . . , n1 + n2}, (3)
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for the case of outgoing roads. The junction is at x = 0, and the preservation of the number
of cars is assumed:

n1

∑
i=1

f [ρi(t, 0)] =
n1+n2

∑
i=n1+1

f [ρi(t, 0)]. (4)

Additional conditions have to be applied to obtain a unique solution of (2)–(4). One
often-used condition is connected to the preferences of drivers. The preferences pkl ∈ [0, 1]
are the percentages of traffic that come from the incoming road l and go to the outgoing road
k. They form the matrix P = {Pkl} with elements Pkl = pn1+k,l , k = 1, . . . , n2; l = 1, . . . , n1.
This matrix connects the vectors of fluxes:

(φn1+1, . . . , φn1+n2)
T = A · (φ1, . . . , φn1)

T , (5)

where φi is the flux entering the i-th incoming road or the flux that enters the i-th outgoing
road. The additional condition is the condition for flux maximization through the junction

max(φ1 + · · ·+ φn1).

Thus, the solution of the Riemann problem for the junction is unique, and the Cauchy
problem has a solution that is entropy-admissible for every time interval [0, T] [229].

One can use a more complicated equation than (1). One possibility is to add a diffusion
term [230,231]:

∂ρ(x, t)
∂t

+
∂ f [ρ(t, x)]

∂x
+ α

∂[κ(ρ)∂ρ/∂x]
∂x

= 0. (6)

In (6), the parameter α > 0 accounts for the strength of the diffusion. The nonlinear dif-
fusion coefficient is denoted as κ(ρ). For the specific case when κ(ρ) = κ > 0, Equation (6)
coincides with the linear heat equation with added nonlinear advection.

If the traffic on the network intensifies, one has to use models containing nonlinearities
with respect to ρ. One such model is the famous Aw–Rascle–Zhang model [232–239].
The model is based on two equations:

∂ρ

∂t
+

∂(ρv)
∂x

= 0,
∂[v + p(ρ)]

∂t
+ v

∂[v + p(ρ)]
∂x

= 0. (7)

ρ(x, t) is the density of the flow and v(x, t) is the velocity of the flow. p(ρ) has to be a
smoothly increasing function. Aw and Rascle chose it as follows:

p(ρ) = ργ, γ > 0. (8)

Thus, the system of the model equation for a junction that has n1 incoming roads and
possesses n2 outcoming roads can be written as

∂ρ

∂t
+

∂(y− ργ+1)

∂x
= 0,

∂y
∂t

+
∂(y2/ρ− yργ)

∂x
= 0. (9)

where y = ρv + ργ+1 is the generalized momentum. The system of the model equation for
the junction is as follows. For the incoming roads (x < 0, i = 1, . . . , n1),

∂ρi
∂t

+
∂(yi − ρ

γ+1
i )

∂x
= 0,

∂yi
∂t

+
∂(y2

i /ρi − yiρ
γ
i )

∂x
= 0. (10)

For the outgoing roads (x > 0, i = n1 + 1, . . . , n1 + n2), we have again the system
of Equation (10). In order to have a unique solution of this model, one has to require as
additional conditions the maximization of the velocity of the cars, the minimization of
the density, and the minimization of the full variation of the solution [239]. Other sets of
additional conditions are also possible [240]. Different kinds of traffic models, such as a
phase transition model, can also be considered. For several examples, see [241–247].
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Another class of flows in networks that are modeled by differential equations are data
flows in communication networks [100,248–251]. In this class of models, the nodes represent
the servers and the edges represent the connections between the nodes. Transmission
of information packets happens between the nodes. This transmission is modeled by
the equation

∂ρ

∂t
+

∂g(ρ)
∂x

= 0. (11)

The density of the packets above is denoted by ρ, and g(ρ) is connected to the constant
velocity of the packets v and to the maximum density ρmax of the packets as follows:

g(ρ) = vρ, 0 ≤ ρ ≤ µ;

g(ρ) = vµ
ρmax − ρ

ρmax − µ
, µ ≤ ρ ≤ ρmax. (12)

The parameter µ ∈ (0, ρmax) accounts for the probability of packet loss. In order to
complete the model for a single transmission line, an equation for a traffic-type function
π(x, t) should be added [248]:

∂π

∂t
+ v(ρ)

∂π

∂x
= 0. (13)

The model can be extended for the situation in which the junctions have n1 incoming
lines and n2 outgoing lines. A unique solution at a nodal point can be obtained with
additional conditions on the flux passing through the junction. This flux should have the
maximum possible value. After the determination of the flux through the junction, the flux
is distributed among the transmission lines by means of appropriate priority coefficients.

Our next example is connected to models of flows in open channels [252–254]. The
model equations are the Saint Venan equations:

∂a
∂t

+
∂(va)

∂x
= 0,

∂v
∂t

+
∂(V2/2 + gH(a))

∂x
+ S(a, v) = 0. (14)

In (14), g is the acceleration of gravity, v denotes the velocity, and a denotes the wet
cross-section with the corresponding height of the water H(a). S(a, v) accounts for the
slope of the channel and for the friction because of the slope. Equation (14) describes a
single channel. For the case of a node that is a junction among m channels, we need m
equations of the same kind as (14) with additional conditions at the node [252,255]:

m

∑
i=1

aivi = 0,
v2

i
2

+ gh(ai) =
v2

1
2
− gh(a1), i = 1, . . . , m. (15)

Our next example is connected to supply chain networks [256–258]. Let us consider
a network of supply chains that connect m suppliers. We consider a single node in this
network. l is the number of incoming suppliers and m − l is the number of outgoing
suppliers. The structure of an outgoing supplier consists of a processor, and there is a
queue in front of it. Only a processor forms the incoming supplier. The model for the work
done by a processor is

∂ρi(x, t)
∂t

+
∂viρi(x, t)

∂x
= 0. (16)

where i = 1, . . . , n, and x and t are nonnegative real numbers. vi is the constant processing
velocity. The density of goods in the i-th processor is denoted by ρi. vi < 0 for i = 1, . . . , l.
vi > 0 for i = l + 1, . . . , m. There, the conservation of mass for the load qk of goods (which
are stored in the k-th queue) is

dq
dt

= f in
k [u(0, t), t]− f out

k (qk), k + l + 1, . . . , m. (17)
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In (17), f in
k and f out

k denote the inflow and the outflow from the queue attached to the
k-th processor. This queue is fueled as follows:

f in
k [ρ(0, t), t] =

l

∑
j=1

ajk(t)vjρj(0, t), k + l + 1, . . . , m. (18)

In (18), ajk(t), j = 1, . . . , l, k = l + 1, . . . , m are elements of a distribution matrix and
represent the percentages of goods going out of the processor j and coming to the queue in
the quantity k. The outflow is modeled as

f out
k (q) = min

(
qk(t)

ν
, µk

)
, k = l + 1, . . . , m, (19)

where ν > 0 is a (small) relaxation parameter. µk is the maximum capacity of the k-th processor.
Finally, we present an example of a model of flow of gas in a pipeline network [45].

We write the variant of the model for the case of a horizontal pipeline network. In this case,
the model equations for the gas flow are:

−∂p
∂x

=
∂(ρw)

∂t
+

λ

2D
ρw2 +

∂(ρw)2

∂x
; −∂p

∂t
= c2 ∂(ρw)

∂x
. (20)

In (20), c is the speed of sound in the gas. The gas velocity averaged over the cross-
sectional area of the pipeline is denoted by w(x, t). ρ(x, t) is the density of the gas averaged
over the cross-sectional area of the pipeline; λ is the friction coefficient for the fluid in
the pipeline; D is the pipeline diameter; p(x, t) is the gas pressure averaged over the
cross-sectional area of the pipeline.

The node pressures in the pipeline network are computed by the equations

dmj

dt
=

n

∑
i=1

BijQm(ij) −Qm(j). (21)

where n in (21) is the number of pipes connected to the node. m is the mass of the gas in
the node; Qm(j) is the mass flow of the gas in the j-th node; Qm(ij) is the flow into or out of
the j-th node in the i-th pipe connected to the j-th node; Bij = 1 if the flow Qm(ij) goes into
the j-th node; Bij = −1 if the flow Qm(ij) goes out of the j-th node.

The list of the differential equation models for flows in networks can be continued.
A nice overview of such models can be found in [256]. Additional models can be seen
in [231,259–264].

Models of flows in networks can contain numerous differential equations. As a
consequence, one often has to solve these equations numerically [265–276]. There are cases
in which the corresponding model equations are not large in number, or we are interested
in the situation in just one or several nodes of the network. In such cases, one can search
for exact solutions of the model equation(s). One powerful methodology for obtaining
exact solutions for the case of nonlinear model differential equations is the SEsM (Simple
Equations Method) [277–291]. We have only mentioned this methodology here, as it will
be discussed in detail in other feature paper of this special issue.

3. Differential and Difference Equations for Modeling Flows in Channels of
Networks: Selected Results

The focus below is on models of flows in network channels that are based on differ-
ential equations (in the case of continuous time) and difference equations (in the case of
discrete time).
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3.1. Flow of a Substance in a Channel Constructed from Arms with an Infinite Number of
Nodes Each

This is an example of a model based on differential equations. We consider the motion
of a substance in a network channel that contains many arms. The model of the motion of a
substance through the channel is an extension of the model from [195,206]. The channel
consists of chains of nodes of a network; see Figure 1.

Figure 1. The network and the channel. Solid lines denote nodes and edges that belong to the channel.
Dashed lines denote the other nodes and edges of the network.

The numbering of the nodes of the channel is shown in Figure 2. The notation N a,b
i,j is

used for a node of the channel. The position of a node in the current arm is specified by the
lower indexes. i is the number of the arm of the channel. j denotes the number of nodes of
the i-th arm. The upper indexes denote the origin of arm i. a is number of the parent arm
from which arm i splits. b is the number of the node of arm a at which this split happens.
N 2,3

4,6 indicates the sixth node of arm 4, which splits at node 3 of arm 2.

0,1

0,2

0,p

1,0

1,1

1,q2,r 3,s 4,t5,u 6,v

0,p+1

0,0

4,0

2,0 3,0 5,0 4,1

i+1,0
i+2,0

6,0

7,0

7,1

Figure 2. Numbering of the nodes of the channel. The lower two indexes of the numbers of the nodes
are shown.
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It is assumed that a substance can enter the channel from the environment. This
happens only through the 0-th node of the main arm of the channel. This arm has a label of
q = 0. The motion of the substance is only in one direction: from nodes with smaller values
of index j to nodes with larger values of index j. Most nodes in an arm of the channel are
connected to only two neighboring nodes. There are special nodes. There, a split of an arm
happens. These nodes can be connected to additional nodes. The substance can leak from
the channel. It can leave the nodes of channel and move into the environment.

The first node at which arm i begins is denoted as the 0-th node of the i-th arm. The 0-
th node is the first one after the splitting of arm a at node b. The 0-th node of arm 0 is the
“environment” from which a substance flows towards the 0-th node of arm 1.

Let us have an arm q that splits at node (aq, bq) of the network. An amount x
aq ,bq
q of a

substance is present in the nodes of this arm. We denote as x
aq ,bq
q,i the amount of the substance

that is in the i-th node of the q-th arm of the channel. Then, x
aq ,bq
q =

∞
∑

i=0
x

aq ,bq
q,i . The fractions

y
aq ,bq
q,i = x

aq ,bq
q,i /x

aq ,bq
q can be thought of as values of the probability distribution of a discrete

random variable ζq. They describe the probability y
aq ,bq
q,i = p

aq ,bq
q (ζq = i), i = 0, 1, . . . . p

aq ,bq
q

is the probability that the random variable has the value i. The full amount of the substance

in the studied channel is x =
M
∑

q=0
x

aq ,bq
q =

M
∑

q=0

∞
∑

i=0
x

aq ,bq
q,i . Here, M + 1 is the number of arms

of the channel. Then, the distribution of the substance in the channel is z
aq ,bq
q,i =

x
aq ,bq
q,i
x .

The amount x
aq ,bq
q,i of the substance can change. For example, the amount sa,b

q of the
substance can enter arm q from the external environment through the 0-th cell of the arm.
For the arm where q = 0, the substance s0,0

0 enters the arm from the environment. For the
arms with numbers q 6= 0, the substance in the amount of sa,b

q is part of the substance from
node (a, b) of the parent arm.

Another process occurs when a transfer of a substance between the nodes of the
channel is possible. Then, the amount f a,b

q,i from xa,b
q,i moves from the i-th node to the i + 1-th

node of the q-th arm. The amount ga,b
q,i of xa,b

q,i leaks out of the i-th node of the q-th arm
into environment of the arm of the channel. Two kinds of leakage are taken into account.
The first kind is leakage into the environment. This leads to loss of the substance for the
channel. Another kind of leakage is leakage into other arms of the channel, which begins
from the node b of arm a. This leakage is connected to the substance sa,b

q , which enters
corresponding child arm of the channel that splits from node b of arm a.

The process of motion of the substance is assumed to be continuous in time. The
motion of the substance among the nodes of the q-th arm is modeled mathematically with
a system of ordinary differential equations:

dxa,b
q,0

dt
= sa,b

q − f a,b
q,0 − ga,b

q,0;

dxa,b
i,q

dt
= f a,b

q,i−1 − f a,b
q,i − ga,b

q,i , i = 1, 2, . . . . (22)

We discuss the stationary regime of the flow of the substance. For this regime,
dxa,b

i,q /dt = 0, i = 0, 1, . . . . The corresponding quantities are marked with ∗. The fol-
lowing forms of amounts of substances are assumed in (22) (αi, βi, γi, σ0 are parameters):
s0,0

0 = σ0x0,0
0,0 > 0; sa,b

q = δqxc,d
a,b; 1 ≥ δq ≥ 0; f a,b

q,i = (αa,b
q,i + iβa,b

q,i )xa,b
q,i ; 1 > αa,b

q,i > 0,

1 ≥ βa,b
q,i ≥ 0; ga,b

q,i = γ∗a,b
q,i xa,b

q,i ; 1 ≥ γ∗a,b
q,i ≥ 0. Indexes c and d describe the parent arm and

the parent node of arm c for arm q. βa,b
q,i accounts for the conditions that help the substance

to leave node i more quickly. γ∗a,b
q,i = γa,b

q,i + ∑
p∈(q,i)

δa,b
p,q,i accounts for the leakages in cells.
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γa,b
q,i is the leakage from the i-th node of the q-th arm into the environment. δa,b

p,q,i denotes the
leakage into the nodes splitting from the i-th node of the q-th arm. The notation p ∈ (q, i)
denotes all arms that arise from node i of arm q.

The model system of Equation (22) for the q-th arm of the channel is

dxa,b
q,0

dt
= sa,b

q − αa,b
q,0xa,b

q,0 − γ∗a,b
q,0 xa,b

q,0;

dxa,b
q,i

dt
= [αa,b

q,i−1 + (i− 1)βa,b
q,i−1]x

a,b
q,i−1 − (αa,b

q,i + iβa,b
q,i + γ∗a,b

q,i )xa,b
q,i ; i = 1, 2, . . . (23)

The solution of (23) with increasing time tends to the solution for the stationary case.
Then,

x∗a,b
q,0 =

sa,b
q

αa,b
0,q + γ∗,a,b

0,q

, x∗q,m
r,0 =

δa,b
r,q,m

α
q,m
r,0 + γ

q,m
r,0

x∗c,d
q,m , x∗a,b

q,i =
αa,b

q,i−1 + (i− 1)βa,b
q,i−1

αa,b
q,i + iβa,b

q,i + γ∗a,b
q,i

x∗a,b
q,i−1, i = 1, 2, . . . . (24)

Equation (24) leads to (i = 1, 2, . . . ):

x∗a,b
q,i =

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ∗a,b

q,i−j

] x∗a,b
q,0 (25)

The amount of the substance in all of the nodes of arm q is x∗a,b
q =

∞
∑

i=0
x∗a,b

q,i = x∗a,b
q,0 +

∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

] x∗a,b
q,0 . Then, the probability distribution y∗a,b

q,i = x∗a,b
q,i /x∗a,b

q is

y∗a,b
q,0 =

1

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]
; y∗a,b

q,i =

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]
i = 1, 2, . . . (26)

The probability distribution corresponding to the distribution of a substance in a
channel containing M arms (M = 1, 2, . . . ) can also be written. The amount of the substance

in the arms of the channel reads x∗ =
M
∑

q=0
x∗a,b

q,0

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]
. Then,

for the 0-th node of the p-th arm of the channel, as well as for the i-th node of the p-th arm
of the channel, we have (i = 1, 2, . . . ):

z
∗ap ,bp
p,0 =

x
∗,ap ,bp
p,0

M
∑

q=0
x∗a,b

q,0

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]


, (27)
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z
∗ap ,bp
p,i =

i−1
∏
j=0

[
αa,b

p,i−j−1+(i−j−1)βa,b
p,i−j−1

]
i−1
∏
j=0

[
αa,b

p,i−j+(i−j)βa,b
p,i−j+γ∗a,b

p,i−j

] x∗a,b
p,0

M
∑

q=0
x∗a,b

q,0

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]


(28)

If the channel contains only one arm, the probability distributions written above
reduce to the distribution discussed in [195]. This distribution is related to the distribution
of Waring, which is a long-tailed distribution.

The model discussed here leads to many possible kinds of probability distributions.
The most simple of them are for a channel that has a single arm. Such distributions are
described in [183,191,192,195]. They can be connected to the Zipf distribution, Waring
distribution, binomial distribution, Yule–Simon distribution, etc.

This model has many applications. It can be applied to the motion of a substance
in technological systems or for the study of the motion of goods in logistic networks.
This model can also be applied for the study of the motion of migrants in channels of
human migration [292].

3.2. Model of a Flow in a Channel of a Network Based on Difference Equations

Difference equations are used to model flows of a substance in channels of networks
for the case of discrete time. A basic model is as follows [293]. We consider a channel of
a network that is a chain of N + 1 nodes (labeled from 0 to N) connected by edges. Each
edge connects two of the nodes, and each of the nodes is connected to two edges, with
the exception of two nodes. These nodes are the 0-th node and the N-th node. They are
connected to one edge. A substance can move along the channel. In addition to motion,
there are processes of exchange of substances between the channel, the environment of the
network, and the rest of the network; see Figure 3. The i-th node exchanges substance with
nodes that have numbers (i− 1) and (i + 1). Node i can also obtain and send a substance
to other nodes of the network that are outside the channel. The same can happen between
node i and the environment of the network. There can be a motion of a substance from a
channel node to a node of the network. This process is called leakage. Leakage is also the
motion of a substance from a node of the channel toward the environment of the network.
There can be also inflow of a substance; this is the motion of the substance from a network
node that does not belong to the channel to a node of the channel. Inflow is also the motion
of the substance from the environment of the network toward a node of the channel. There
can be additional exchanges of substances connected to the flows between the nodes. These
exchanges are denoted in Figure 3 by arrows with dashed or dot-dashed lines.

The time in the model is divided into time intervals. At each time interval, the sub-
stance in a node may participate in several processes. First of all, the substance may remain
in the same node. Then, the substance may move from node m to node m + 1 or from node
m to node m− 1. Finally, the substance may leak from node m. There is a possibility for a
leakage from node m to the nodes of the network. Another possibility is a leakage from
node m to the environment of the network. An inflow of the substance into a node is also
possible. The inflow can be of two kinds. The first kind is an inflow from other nodes of the
network into node m of the channel. The second kind of inflow is from the environment of
the network into the channel node m.



Entropy 2022, 24, 1485 11 of 30

i i+1i−1

of the network

of the network

Node Node Node 

Flows to and from the environment

Flows to and from other nodes

Figure 3. Flows connected with the i-th node of the channel. Nodes 0 and N exchange substances
with only one of the other nodes of the channel. There is a possibility for an exchange of substances
among flows between the nodes and (i) the network (arrows with dashed lines) or (ii) the environment
of the network (arrows with dot-dashed lines).

Additional kinds of processes are possible for flows between nodes of a channel. First
of all, a substance may move from the flow to a node of the network that is external to the
channel (in Figure 3, such flows are denoted by arrows with a dashed line pointing from
the flow). Then, the substance may move from a node of the network that is external to the
channel to the flow between two nodes of the channel (in Figure 3, such flows are denoted
by arrows with a dashed line pointing to the flow). As a third possibility, the substance
may move from the flow to the network environment (in Figure 3, such flows are denoted
by arrows with a dot-dashed line pointing from the flow). Finally, the substance may move
from the network environment to the flow between two nodes of the channel (in Figure 3,
such flows are denoted by a dot-dashed line pointing to the flow).

Next, we write the equations of the model. The discrete time is denoted as tk,
k = 0, 1, 2, . . . . xi(tk) is the amount of the substance in the i-th node of the channel at
the occurrence of the time interval [tk, tk + ∆t]. The model equations are [293]:

x0(tk+1) = x0(tk) + ie
0(tk)− oe

0(tk)− oc
0(tk) + ic

0(tk)− on
0 (tk) + in

0 (tk)− he
0(tk)−

hn
0 (tk) + pe

0(tk) + pn
0 (tk),

xi(tk+1) = xi(tk) + ie
i (tk)− oe

i (tk) + oc
i−1(tk)− ic

i−1(tk)− oc
i (tk) + ic

i (tk)− on
i (tk) + in

i (tk)−
he

i (tk)− hn
i (tk) + pe

i (tk) + pn
i (tk)− f e

i−1(tk)− f n
i−1(tk) + ge

i−1(tk) + gn
i−1(tk),

i = 1, . . . , N − 1

xN(tk+1) = xN(tk) + ie
N(tk)− oe

N(tk) + oc
N−1(tk)− ic

N−1(tk)− on
N(tk) + in

N(tk)− f e
N−1(tk)−

f n
N−1(tk) + ge

N−1(tk) + gn
N−1(tk). (29)

Above, ie
n(tk) and oe

n(tk) denote the amounts of inflow and outflow of the substance
from the environment to the n-th channel node. The upper index e marks the fact that the
quantities are in the environment. Next, the amount of outflow of the substance from the
n-th node to the (n + 1)-th node is denoted as oc

n(tk). The upper index c marks the fact that
the quantity is for the channel. ic

n(tk) denotes the amount of inflow of the substance from
the (n + 1)-th node to the n-th node. on

n(tk) and in
n(tk) denote the amounts of outflow and

inflow of the substance between the n-th node and the network. The upper index n marks
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the fact that the quantities are for the network. f e
n(tk) denotes the amount of the outflow of

the substance from the flow between the n-th and n + 1-th nodes to the environment of the
network. f n

n (tk) denotes the amount of outflow of the substance from the flow between
the n-th and n + 1-th nodes to the network. ge

n(tk) denotes the amount of the inflow of the
substance to the flow between the n-th and n + 1-th nodes from the environment of the
network. gn

n(tk) denotes the amount of the inflow of the substance to the flow between the
n-th and n + 1-th nodes from the network. he

n(tk) denotes the amount of the outflow of the
substance from the flow between the n + 1-th and n-th nodes to the environment of the
network. hn

n(tk) denotes the amount of the outflow of the substance from the flow between
the n + 1-th and n-th nodes to the network. pe

n(tk) denotes the amount of the inflow of the
substance to the flow between the n + 1-th and n-th nodes from the environment of the
network. pn

n(tk) denotes the amount of the inflow of the substance to the flow between the
n + 1-th and n-th nodes from the network.

Equation (29) presents a general model of the motion of a substance in a chain of
nodes of a network. As an example, we present results for a specific case of (29): Linear
relationships connect the exchanges between the nodes of the channel, and the amounts of
substance in the nodes are given by linear relationships. These relationships are:

ie
0(tk) = σ0(tk)x0(tk); oe

0(tk) = µ0(tk)x0(tk)

ie
i (tk) = σi(tk)xi(tk); oe

i (tk) = µi(tk)xi(tk), i = 1, . . . , N − 1

ie
N(tk) = σN(tk)xN(tk); oe

N(tk) = µN(tk)xN(tk)

in
0 (tk) = ε0(tk)x0(tk); on

0 (tk) = γ0(tk)x0(tk)

in
i (tk) = εi(tk)xi(tk); on

i (tk) = γi(tk)xi(tk), i = 1, . . . , N − 1

in
N(tk) = εN(tk)xN(tk); on

N(tk) = γN(tk)xN(tk)

oc
0(tk) = ϕ0(tk)x0(tk); ic

0(tk) = δ1(tk)x1(tk)

oc
i (tk) = ϕi(tk)xi(tk); ic

i (tk) = δi+1(tk)xi+1(tk), i = 1, . . . , N − 2

oc
N−1(tk) = ϕN−1(tk)xN−1(tk);

ic
N−1(tk) = δN(tk)xN(tk)

f e
n(tk) = ζn(tk); f n

n (tk) = θn(tk);

ge
n(tk) = κn(tk); gn

n(tk) = λn(tk)

he
n(tk) = νn(tk); hn

n(tk) = πn(tk)

pe
n(tk) = ρn(tk); pn

n(tk) = τn(tk) (30)

Moreover, a lack of inflow from the (i + 1)-th node to the i-th node of the channel will
be assumed. For the stationary motion of the substance, xi(tk+1) = xi(tk), i = 0, . . . , N.
The node parameters are assumed to be independent of time: σi(tk) = σ; µi(tk) = µi;
γi(tk) = γi; εi(tk) = εi; f0(tk) = f0; i = 0, . . . , N. Equation (29) becomes[

σ0 − µ0 − ϕ0 − γ0 + ε0

]
x0 = 0[

µi + ϕi + γi − σi − εi

]
xi = ϕi−1xi−1 + (−ζi−1 − θi−1 + κi−1 + λi−1), i = 1, . . . , N − 1

[
µN + γN − σN − εN

]
xN = ϕN−1xN−1 + (−ζN−1 − θN−1 + κN−1 + λN−1) (31)

From (31), one obtains the following relationships (δi,j denotes the Kronecker delta
symbol):

ϕ0 = σ0 − µ0 − γ0 + ε0,
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xk = x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

(1− δk1)
k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

, k = 1, . . . , N − 1,

xN = x0
ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN
, (32)

and

x =
N

∑
k=0

xk = x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN
. (33)

Equations (32) and (33) are connected to a class of probability distributions. One
can construct a probability distribution yi = xi/x that is connected to the amount of the
substance in the channel nodes. yi are probability values of the distribution of a random
variable ω: yi = p(ω = i), i = 0, . . . , N. One obtains the following for yi:

y0 = x0

/{
x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}
, (34)
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yk =

{
x0

k

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+ (1− δk1)
k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

}/{
x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+

ϕN−1
µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+
κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}
,

k = 1, . . . , N − 1, (35)

yN =

{
x0

ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}/
{

x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}
. (36)

The following interesting theorem can be proved [293].

Theorem 1. Any truncated discrete probability distribution of the random variable ω that can take
values 0, 1, . . . , N is a specific case of the probability distribution (34)–(36).

The corresponding probability distribution for a channel possessing an infinite number
of nodes is [293]:
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y0 = x0

/{
x0

[
1 +

∞

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

∞

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]}
,

yk =

{
x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+ (1− δk1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

}/{
x0

[
1 +

∞

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

∞

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]}
, k = 1, . . . , ∞ (37)

The following theorem can be proved [293].

Theorem 2. Any discrete probability distribution of the random variable ω that can take the values
0, 1, . . . is a specific case of the probability distribution (37).

The discrete model of substance flow in a network of channels considered here leads
to an analytical relationship for the distribution of the substance for a stationary flow in a
channel containing an arbitrary nonnegative number of nodes (this number can be finite or
infinite). This distribution possesses all possible distributions of a random variable that
can take the discrete values 0, 1, . . . , N as specific cases. Here, numerous famous named
distributions are included. In addition, entire families of distributions, such as the families
of distributions of Katz, Ord, Kemp, etc. [294–307], are included.

The theory discussed above has many applications. The problems of human migration
stimulated the beginning of this research [195–199]. In [195], a mathematical model of
a migration channel was discussed on the basis of the truncated Waring distribution.
The model was applied for the case of motion of migrants through a channel consisting of
a finite number of countries or cities. The number of migrants in this channel depended
heavily on the number of migrants that entered the channel through the country of entrance.
If the final destination country is very popular, then according to the model, a large
percentage of migrants might concentrate there. A theory for the motion of two substances
in a channel was discussed in [196]. In [197], the problem of the motion of a substance in
a channel of a network was studied for the case of a channel that had two arms. For the
case of the stationary flow of the substance, analytical relationships for the substance
distribution in the nodes of the arms of the channel were obtained. These distributions
were in connection with technological applications of the model, such as the motion of
substances such as water in complex technological facilities. In [198,199], the motion of
a substance was studied in a channel of a network that had three arms. For the case of
the stationary flow of a substance, one obtains probability distributions for the amount of
the substance in the nodes of the channel that contain famous long-tail distributions, such
as the Yule–Simon distribution and the Zipf distribution, as specific cases. The obtained
results were discussed from the point of view of the motion of the substance in a complex
technological system and for the case of human migration.

In addition, the above theory can be used to study numerous additional situations in
the area of substance flow in systems that possess network structures.



Entropy 2022, 24, 1485 16 of 30

4. Connection between the Theory of Flows in Networks and the Theory of Growth of
Random Networks

One of the specific cases of the above general discrete model has an interesting rela-
tionship with the theory of growth of random networks [308]. For this specific case, one
considers the integer l, which can take values 0, 1, . . . , and then one labels the nodes of the
channel as l, l + 1, . . . . The substance moves along nodes of the channel. The following
four events can happen in a unit of time. The substance in a node may remain in the same
node. The second possible event is the motion of the substance from node m to node m + 1.
The third possible event is leakage, where the substance may leave the channel. The final
possible event is the entrance of a substance from the environment into the node under
consideration.

The following notations are used. ie
n(tu)/oe

n(tu) are the amounts of inflow/outflow of
the substance from the environment to the n-th mode/from the n-th node of the channel
to the environment. ocn

n (tu) is the outflow of the substance from the n-th to the (n + 1)-th
node. icn

n (tu) is the inflow of the substance from the (n + 1) node to the n-th node.
Node l is the point of entrance of the substance. The substance moves from node l in

the direction of nodes with numbers l + 1, . . . . Leakage of the substance is possible in any
of the nodes of the channel. The corresponding model equations are:

xl(tu+1) = xl(tu) + ie
l (tu)− ocn

l (tu)− oe
l (tu)

xi(tu+1) = xi(tu) + ocn
i−1(tu)− ocn

i (tu)− oe
i (tu), i = l + 1, . . . (38)

The following specific case for relationships of the quantities is studied below: ie
l (tu) =

σ(tu)xl(tu); ocn
l (tu) = fl(tu)xl(tu); oe

l (tu) = εl(tu)xl(tu); ocn
i−1(tu) = fi−1(tu)xi−1(tu);

ocn
i (tu) = fi(tu)xi(tu); oe

i (tu) = εi(tu)xi(tu); i = l + 1, . . . . We assume that: σ(tu) = σ;
αi(tu) = αi, i = l, . . . ; εi(tu) = εi, i = l, . . . , fi(tu) = fi, i = l, . . . . Then, (38) becomes:

xl(tu+1) = xl(tu) + σxl(tu)− fl xl(tu)− εl xl(tu)

xi(tu+1) = xi(tu) + fi−1xi−1(tu)− fixi(tu)− εixi(tu) i = l + 1, . . . (39)

For the stationary state, xi(tu) = x∗i (occurs when xi(tu+1) = xi(tu)), and one obtains
the following from the system of Equation (39) (σ = fl + εl , and because of this, x∗l becomes

a free parameter): x∗i =
fi−1

fi+εi
x∗i−1, i = l + 1, . . . Then,

x∗i = x∗l
i

∏
j=l+1

f j−1

f j + εj
, i = l + 1, . . . (40)

The amount of the substance in all of the channel nodes is x∗ = x∗l

[
1+

∞
∑

k=l+1

k
∏

j=l+1

f j−1
f j+εj

]
.

pi = x∗i /x∗ is the probability distribution of the amount of the substance along the channel
nodes. One obtains

pl =
1

1 +
∞
∑

k=l+1

k
∏

j=l+1

f j−1
f j+εj

, pi =

i
∏

j=l+1

f j−1
f j+εj

1 +
∞
∑

k=l+1

k
∏

j=l+1

f j−1
f j+εj

, i = l + 1, . . . (41)
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The specific case of (41) in which εi = ε is of interest for us in the following. In this
case, (41) is

pl =
1

1 +
∞
∑

k=l+1

k
∏

j=l+1

f j−1
f j+ε

, pi =

i
∏

j=l+1

f j−1
f j+ε

1 +
∞
∑

k=l+1

k
∏

j=l+1

f j−1
f j+ε

, i = l + 1, . . . (42)

Specific values of fi lead to various distributions. For the case in which fi = α = const
(α > 0) (case of stationary flow where the transfer of the substance between the channel
nodes is the same for all nodes of the channel), (41) is reduced to

pl =
1

1 + α/ε
; pi =

(
α

α+ε

)i−l

1 + α/ε
, i = l + 1, . . . (43)

Equation (43) is a geometric distribution: pi = q(1− q)i−l , q = ε
α+ε , i = l, . . . .

The next possibility is f j+r = f j + βr, where β > 0 and r is an integer. A solution of the
above relationship is f j = α + (j− s)β > 0. s is an integer. An additional assumption is that
s < l + 1. For the specific relationships a = α/β and b = ε/β, we obtain the probability
distribution

pi = pl

i

∏
j=l+1

f j−1

f j + ε
= pl

fl . . . fi−1

( fl+1 + ε) . . . ( fi + ε)
= pl

(a + l − s) . . . (a + i− s− 1)
(a + b + l + 1− s) . . . (a + b + i− s)

=

pl
Γ(a + i− s)
Γ(a + l − s)

Γ(a + b + l + 1− s)
Γ(a + b + i + 1− s)

. (44)

In (44), Γ(x) is the Gamma function. Equation (44) can be written by means of the Beta
function: pi = pl

B(a+i−s,b+1)
B(a+l−s,b+1) . The asymptotic behavior of the Beta function for large values

of x is B(x, y) ' x−yΓ(y). Thus, pi ' pl
Γ(b+1)

B(a+l−s,b+1) (a + i − s)−(b+1). For large enough
values of i,

pi ∝ i−(b+1). (45)

Equation (45) exhibits a power law behavior of pi for large values of i.
The value of the parameter b = ε/β controls the balance between the leakage (ac-

counted for by ε) and the transfer of the substance between the channel nodes (accounted
for by β). For example, if ε = 2β, then the asymptotic power law becomes pi ' 1/i3.

We can consider many other cases for fi [308]. Selected results are given in the
following. First of all, let f j+r = f j + ε (r is an integer). In addition, β > 0 and α > −(l− s)β.
The solution is f j = α + (j− s)β, β = ε/r. Here, α and β are real parameters and s is
an integer. The assumption r < l + 1 and s < l + 1 and the relationships a = α/β;
b = ε/β lead to an asymptotic power law relationship: pi ∝ i−(1+r). r must be an integer.
In addition, r = ε/β. The lack of leakage (ε = 0) is equivalent to pi ∼ 1/i. The last
power law relationship estimates the maximum possible amount of the substance in the
i-th channel node.

Next, we consider the case in which f j = jγ, ε > 0. Here, ε and γ are constants. It
follows from (41) that:

pi = pl
lγ . . . (i− 1)γ

[(l + 1)γ + ε] . . . [iγ + ε]
=

lγ

iγ

1
[1 + ε/(l + 1)γ] . . . [1 + ε/iγ]

(46)
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Equation (46) can be written as pi =
pl lγ

iγ exp

{
−

i
∑

j=l+1
ln
(

1 + ε
jγ

)}
An approximate

evaluation of the last relationship [308] leads to

pi ∼ i−γ exp

{
m

∑
s=1

(−1)s

s
εs i1−γs

1− γs

}
,

1
m + 1

< γ <
1
m

, m = 1, . . . (47)

Finally, we consider the case in which f j = jγ, γ < 0, ε > 0. The specific case
f j = 1/j−γ is related to the motion of the substance between the nodes, which decreases
with increasing node number j. In this case, we set γ̂ = −γ. The result for pi is

pi ∼ pl
Γ(l)

Γ(i)γ̂εi−l exp

{
m

∑
s=1

(−1)s

s
1
εs

i1−γ̂s

1− γ̂s

}
,

1
m + 1

< γ̂ <
1
m

, m = 1, . . . (48)

The connection between the theory of the motion of a substance in a channel and the
theory of growth of random networks is that the probability connected to the distribution
of a substance for the stationary motion of that substance in a channel contains, as a specific
case, the degree distribution for the nodes of large degrees in a growing random network.
In several more words, let us set εi = ε, l = c, ε = µ/c, fi = ai, and

ac = ε
∞

∑
k=c+1

k

∏
j=c+1

aj−1

aj + ε
, (49)

Then, (42) becomes

pc =
µ/c

ac + µ/c
, pk =

ak−1
ak + µ/c

pk−1, k = c + 1, . . . . (50)

Equation (49) defines ac for the case of the motion of a substance in a channel. For the
case of fixed ac, Equation (49) is an equation for ε. Equation (49) can be rewritten as

∞

∑
k=c

µ

cak

k

∏
j=c

(
1 +

µ

caj

)−1

=
∞

∑
k=c

pk = 1. (51)

Equation (51) is an equation for µ. The specific case

µ =
∞

∑
i=c

piai, (52)

is of interest for this discussion. Taking into account that pi =
µ

cai

i
∏
j=c

(
1 + µ

caj

)−1
, (52) leads

to a simplification of (51):
∞

∑
k=c

k

∏
j=c

(
1 +

µ

caj

)−1

= c (53)

The relationships (49)–(53) are the connection between the theory of growth of random
networks and the theory of the flow of a substance in a network channel [309–311]. ai
is the attachment kernel, which gives the (nonlinear in the general case) dependence
of the probability of obtaining a new node of degree i. The attachment kernel has the
same value for all nodes of the same degree. A basic assumption of the theory is that the
average number of edges of the nodes attached to the growing network is c. The theory
describes a case with a very large size of the growing network. The average value of the
attachment kernels with respect to the number of edges is µ = ∑

i
ai pi. This is the parameter

µ from (49)–(53).
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For the case of the stationary motion of a substance in a channel, ε = µ/c. ε is the
leakage parameter, and it is equal to the ratio between the average number of edges of
the nodes attached to the growing network and the averaged attachment kernel. Another
part of the connection is given by the relationship fi = ai; in other words, the parameter fi,
which regulates the flow of the substance into the nodes, is analogous to the attachment
kernel in the model of a growing network.

Results for specific cases of growing random networks with the connection to the above
results from the theory of substance flow in a network are given in the following. For the
specific case in which fi = 1, there is an attachment without a preference. The solution
of (53) is µ = αc

c−1 . Then, ε = µ/c = α
c−1 . The distribution (43) becomes (l = c):

pc = 1
c , pi =

(c−1)i−c

ci−c+1 , i = c + 1, . . . . There is no dependence on α in this distribution.

For i >> c, pi ∼ 1
c

(
1− 1

c

)i
.

Several results for the growth of a random network in the presence of preferential
attachment are given in the following. The first case is ai ∼ i. For this case, fi = ai =
αi + (i − c)βi, i = c + 1, . . . . βi and αi are constants. Let us choose αi = α, βi = β, and
α/β = c. The probability of attachment to a node of degree i is Pri =

α+(i−c)β

∑
j
[α+jβ] = i

∑
j

j . From

(53), one obtains for the case in which µ = σcβ and σ is an integer:

c =
∞

∑
k=c

k

∏
j=c

[
1 +

σ

c + j

]−1
=

∞

∑
k=c

c . . . (c + σ− 1)
(k + 1) . . . (k + σ)

, σ = 2, . . . (54)

σ = 2 is the solution of (54). Then, µ = 2βc, and the distribution (41) becomes

pc =
2

c + 2
;

pi = pc

i

∏
k=c+1

α + (k− c− 1)β

α + (k− c)β + µ/c
=

2
c + 2

i

∏
k=c+1

k− 1
k + 2

=
2c(c + 1)

i(i + 1)(i + 2)
, i = c + 1, . . . (55)

For asymptotic values of i, pi approaches the power law pi ≈ i−3.
Another case is that in which αi = α, βi = β, and α/β 6= c. Then, ai = αi + (i− c)βi =

α + (i− c)β. We set a = α/β and b = µ/(βc). Equation (41) becomes (ac = α):

pc =
b

a + b
, pi = pc

(a)[i−c−1]

(a + b)[i−c]
, i = c + 1, . . . (56)

In (56), (u)[j] = (u+j)!
u! = (u + j) . . . (u + 1) (u—real positive number, j—integer).

Equation (56) is the Waring distribution for c = 0. Thus, for the problem of a growing
random network, we arrive at a specific case of the Waring distribution. The case is specific,
as the condition (53) has to be satisfied.

The distribution (56) can be written with Gamma functions: pc = b
a+b ,

pi = b
a+b

Γ(a+i−c)
Γ(a)

Γ(a+b)
Γ(i−c+a+b+1) , i = c + 1, . . . Here, µ = bβc, and this satisfies (53). The

behavior of the distribution’s asymptotic values of i is pi ' aΓ(a+b+1)
(a+b)2Γ(a) (i − c)−(b+1). The

asymptotic behavior of pi for very large values of i is

pi ∝ i−(b+1) (57)

For the Barabasi–Albert case, b = 2. Thus, pi ∝ i−3.
The next specific case is that in which f j = jγ and ε > 0. We set fi = ai = iγ. 0 < γ < 1 is

a constant [309]. From (42), one obtains (ε = µ/c; l = c): pi =
pccγ

iγ exp

{
−

i
∑

j=c+1
ln
(

1 + µ
cjγ

)}
.

By the assumption that µ/(cjγ) << 1, log
(

1 + ε
jγ

)
can be represented as a Taylor series.
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Thus, pi =
pccγ

iγ exp

{
∞
∑

s=1

(−1)s

s
( µ

c
)s i

∑
j=l+1

j−γs

}
. An approximate evaluation of this relation-

ship leads to

pi ∼ i−γ exp

{
m

∑
s=1

(−1)s

s

(µ

c

)s i1−γs

1− γs

}
,

1
m + 1

< γ <
1
m

, m = 1, . . . (58)

Let us consider as an example 1/2 < γ < 1. Then, we obtain for pi:

pi ∼ i−γ exp
(
− µi1−γ

c(1− γ)

)
, (59)

For large values of i, (59) describes a stretched exponential distribution.
Finally, let f j = jγ, γ < 0, and ε > 0; in addition, γ̂ = −γ. The result for pi is

pi ∼ pc
Γ(c)

Γ(i)γ̂(µ/c)i−c exp

{
m

∑
s=1

(−1)s

s
1

(µ/c)s
i1−γ̂s

1− γ̂s

}
,

1
m + 1

< γ̂ <
1
m

, m = 1, . . . , (60)

The difference with respect to the case γ > 0 is connected to the first term from the
right-hand side of (60). The corresponding term in (58) is proportional to i−γ. The term in
(60) is proportional to Γ(i)−γ̂(µ/c)−(i−c), which, for the same values of the parameters γ
and γ̂, is larger than i−γ. Thus, the expected number of nodes of a large degree for γ < 0 is
smaller than the expected number of nodes of the same degree from γ > 0.

5. Concluding Remarks

In this review paper, we considered selected aspects from the research on flows in
networks. A list of references containing basic results and interesting applications was
given. The research area of network flows is very large, and this list of references covers only
a small part of the research since the publication of the classic book by Ford and Fulkerson.
The focus of this article is connected to models of network flows based on differential
and difference equations. There are many such models, and we chose to mention only
a few of them. These were basic macroscopic models of vehicular traffic, data flows in
communication networks, flows in open channels, supply chain networks, and gas flow in
pipeline networks.

A large part of this paper considered flows in channels of a network. The channels
could be simple ones, such as a channel with a single arm. There are much more complicated
channels that possess many arms. A mathematical model of substance flow in such a
channel that was based on differential equations was presented in the text. The focus
was on obtaining analytical results, and this was the reason for considering stationary
substance flow in the channel. Many long-tailed probability distributions connected to the
distribution of a substance in the channel nodes can be derived with this model.

The flow of a substance in a channel of a network can also be modeled by using
difference equations. A basic model was discussed in this paper, and the emphasis was on
the stationary flow of the substance. For this case, analytical results could be obtained. It
was shown that the general form of the distribution of the substance in the channel that
was obtained contained many named probability distributions, such as the probability
distributions of Zifp, Yule–Simon, Waring, the binomial distribution, and entire classes
of probability distributions (for example, the classes of probability distributions of Katz,
Ord, Kemp, etc.), as specific cases. It was the consequence of a theorem that the derived
probability distribution contained any probability distribution of a random variable that
could take the values of 0, 1, . . . as a specific case.

The importance of the obtained results was shown by means of the relation between
the theories of (i) stationary flow of a substance in a network channel and (ii) the growth
of random networks. The model equations for the stationary motion of a substance in the
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channel have, as a specific case, model equations for changes in the degrees of the nodes
of a large and growing random network. In such a way, one can relate the probability
distributions for different cases of stationary motion of a substance in a channel to the
probability distributions for the node distributions in growing random networks (including
the preferential attachment case studied by Barabasi and Albert).

All of the above shows that research on flows in networks is very promising from the
point of view of mathematics and from the point of view of its applications to natural and
social systems. We hope that this feature paper will contribute to an increase in the interest
in this research and to its practical applications.
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