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Abstract: Automatic speech recognition (ASR) in children is a rapidly evolving field, as children
become more accustomed to interacting with virtual assistants, such as Amazon Echo, Cortana, and
other smart speakers, and it has advanced the human–computer interaction in recent generations.
Furthermore, non-native children are observed to exhibit a diverse range of reading errors during
second language (L2) acquisition, such as lexical disfluency, hesitations, intra-word switching, and
word repetitions, which are not yet addressed, resulting in ASR’s struggle to recognize non-native
children’s speech. The main objective of this study is to develop a non-native children’s speech recog-
nition system on top of feature-space discriminative models, such as feature-space maximum mutual
information (fMMI) and boosted feature-space maximum mutual information (fbMMI). Harnessing
the collaborative power of speed perturbation-based data augmentation on the original children’s
speech corpora yields an effective performance. The corpus focuses on different speaking styles of
children, together with read speech and spontaneous speech, in order to investigate the impact of
non-native children’s L2 speaking proficiency on speech recognition systems. The experiments re-
vealed that feature-space MMI models with steadily increasing speed perturbation factors outperform
traditional ASR baseline models.

Keywords: non-native children speech recognition; data augmentation; speed perturbation; discrimi-
native models; mutual information

1. Introduction

Automatic speech recognition (ASR) technology for adults has become popular in
many applications owing to the accessibility of large volumes of data and substantial
computational capabilities, and new studies have already shown that ASR systems can
accomplish quality standards similar to human transcriptions for some tasks [1]. However,
ASRs proved their ability to recognize English spoken by adults or children with a native
accent. They, on the other hand, continue to struggle due to the coexisting variability of
non-native and children’s speaking characteristics, which include the following:

• A lack of accessibility to a large amount of training data for non-native children’s
speech [2];

• Reading miscues, such as lexical disfluency, hesitations, intra-word switching (combin-
ing two languages within a single word), incomplete words, and filled interruptions,
word repetitions, word boundary errors, and the adoption of some native language
sounds and phonology are among them.

Because of its prominence as the language of formal instruction, English has become
a significant mode of communication among Indian children [3]. However, the afore-
mentioned reading miscues can significantly degrade ASR efficacy [4–6]. Therefore, ASR
systems should continue to expand in order to more effectively process children’s speech
from a non-native population. The key application field is the artificial assessment of L2
speaking proficiency, where ASR difficulties are exacerbated by the speakers with low
levels of speaking ability, particularly for children. One of the similar applications available
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now for detecting and correcting pronunciation errors is “SPIRE-fluent”, a self-learning
application for teaching oral fluency to L2 English learners [7]. However, the targeted
users are class IX and above, job-seeking graduates, etc. ASR technology developed by
“SOAPBOX” labs is being used to assist kids by transcribing their native accent as they read
a story. This transcription is then compared to the text of the reading passage. The reliability
of the student’s reading attempt is then shown by the fluency algorithm [8].

This encourages us to focus the research on non-native children, where most of the
children’s speech corpora are costly and restricted in terms of accessibility. On the other
hand, a considerable quantity of Chinese speaking English data (e.g., SpeechOcean [9])
are publicly available. Moreover, a good proportion of the datasets for Indian L2 speakers
are limited. As a result, the proposed work involved the collection of speech corpora
of different voice tasks from children and made publicly available. Speed perturbation-
based data augmentation is being investigated to deal with the lack of training data from
Indian children speaking English. To better address the aforementioned gaps, the current
state-of-the-art ASR can act as a forerunner for non-native children’s speech.

This article’s details are as follows: Section 2 provides a brief overview of the existing
non-native children speech recognition using several state-of-the-art models. Section 3
describes the details of the collected children’s speech database, which is followed by the
proposed state-of-the-art models, including the mathematical intuition of the discriminative
models in Section 4. The experimental procedure that addresses the corpus setup and
artificial data creation used in the study is presented in Section 5, and the experimental
evaluations for different styles of children’s speech are reported in Section 6. Finally,
Section 7 outlines the conclusion and the future expansion of the proposed work.

2. Related Work

Children’s automatic speech recognition is a subject of great interest these days, as they
are more comfortable interacting with digital personal assistants, such as Amazon Alexa,
Microsoft Cortana, and Google Home. Children will advantage the most from technologies,
such as automated reading assessment [10] and an interactive reading tutor [11], assisting
them to learn both their first and second languages with minimal support from instructors.
Another application is accent classification from native and non-native UK children’s
speech, using reliable cues extracted from five–year-old pre-school children’s speech [12].
Another use in children’s speech is the classification of para-linguistic speech cues for adults
and children using a phoneme-based model [13,14]. Since 2020, Interspeech has launched a
challenge [15] to improve research on non-native children’s speech recognition technology,
which is still failing due to immature vocal tracts, disfluencies [16], ungrammatical syntactic
structure due to their L2 proficiency [17,18], use of out-of-vocabulary words (OOV) [19],
and often due to a lack of publicly accessible data.

Many efforts are underway towards enhancing the efficiency of non-native children’s
speech recognition, including data augmentation, the robust extraction of feature tech-
niques, transfer learning, multi-task learning, and so on. Children aged 11 to 15 years
old across Arab countries, China, France, and Germany obtained a word error rate (WER)
of 13.4% employing bidirectional long short-term memory (BiLSTM)–recurrent neural
network (RNN) models with read speech, picture narration, and spontaneous speech [20].
An investigation on transfer learning with Italian, German, English, and Swedish children
aged between 9 and 10 years using a deep neural network (DNN) model achieved a WER
of 14.2% for Italians speaking English and 15% for German children speaking English [18].
Additionally, prosody and spectrogram-based data augmentation are employed on the
Trentino Language Testing (TLT) school non-native Italian children’s speech corpus, aged 9–
16 years, on read speech incorporating factored time-delay neural networks (TDNN-F) and
a convolution neural network (CNN) along with BiLSTM and vocal-tract-length normaliza-
tion (VTLN) and attained a WER of 18.71% [21]. Consequently, the Mel-frequency cepstral
coefficient (MFCC) and i-vectors are extracted and then speed and spectrogram perturbed
to boost the effectiveness of the factored time-delay neural networks and convolution
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neural network (CNN-TDNN-F), resulting in a relative improvement (RI) of 17.76% over
the same TLT corpus [22]. Furthermore, using spectrogram augmentation with a TDNN-F
and LSTM on the TLT Italian children speech corpus [23], an RI of 17.87% is achieved
compared to [21] and a 10.7% RI compared to [22]. Moreover, all available children’s speech
corpora, such as OGI kids, MyST, CU, and CMU kids, ages 5 to 16, augmented the data
with speed perturbation, room impulse response (RIR), babble noise, and non-speech noise,
were incorporated on the CNN-TDNN-F model to achieve a WER of 16.59% using the
minimum Bayes-risk (MBR) decoding technique [24]. Finally, the CNN-TDNN-F and Esp-
Net models were used to investigate with pitch, speed, tempo, volume, and reverberation
perturbations on a corpus of Mandarin children’s speech-language therapy (SLT) with read
and conversational speech for 4–16 year old children, yielding a character error rate (CER)
of 16.48% [25].

Neural networks struggle with data scarcity due to the large number of parameters
more frequently than conventional methods, especially in low-data scenarios. As a result,
the proposed work is significant for children aged 7–12 years and employs feature-space
discriminatively trained models on various methods of speeding up data augmentation.

3. Children Speech Corpora

A collection of non-native children’s speech was developed because there was no
publicly available corpus of non-native children’s speech suitable for the planned analysis
at the time of authoring. As a result, data collection is required and the procedure for it
will be discussed further below.

3.1. Participants

A total of 20 children with a gender composition of 11 females and 9 males in concrete-
operational stage [26] with an age group between 7 and 12 years is considered for data
collection. All the children are non-native English speakers and are bilingual, i.e., they
speak Telugu, an Indian regional language, alongside English. At school, all the students
speak English with age-appropriate proficiency. All the children and the parents gave their
approval for participation in the research.

3.2. Data Collection

In order to assess children’s pronunciation and communication skills, the sentence
repeating task and the picture narration task were devised in data collection. As it is
targeted for primary and lower middle class students around the ages of 7–12 years, simple
sentences and pictures were used. In “read speech” task, children repeat the sentences
which were framed as a part of daily routine (e.g.,: I will wake up early in the morning and
pray to God) to measure the phonetic ability. To evaluate working memory and attention,
spoken digits from 1 to 15 were included but without repetitions or mistakes. To make the
recording setting child friendly, few most well-known rhymes were also added, such as
“rain rain go away, come again on other day”. Each sentence lasts for 2–3 s duration.

In the picture narration task, children are expected to describe the black and white
picture of objects, such as pencil, umbrella, cap, etc., which are available in SurveyLex
cloud [27]. The ability of non-native children to speak English fluently and effectively can
be evaluated using this method of speech and is known as “spontaneous speech”. This
activity has the potential to represent children’s higher-order thought associations, vocab-
ulary, attentiveness, alongside disfluencies, false starts, pause lengths, and other issues.
The length of the utterance varies depending on how well the children can communicate
in English.

3.3. Data Processing

The open source SurveyLex [28] platform was deployed in the device at a distance of
2 feet from the children to record speech. Students are allowed to sit in front of a computer
in a relaxed pace. All the audio files were recorded in .wav format that can use a stereo
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channel at a sampling rate of 44.1 KHz and a bit rate of 16 bits per sample. To analyze
the variability in words and sentences, each survey is taken as many times as the child
can, up to a maximum of 10 times per child. A total of 199.2 min (3.32 h) of data has been
recorded. The audio files of children in English were recorded during class days, because
robotic and computer applications are required to cope relatively well in classroom (i.e.,
real-world) environments which can often be noisy [29]. As a result, the planned corpus is
recorded in this natural setting that involve doors closing, bell ringing, and other children
talking sounds in neighboring rooms. A realistic representation of a minimal practical noise
level in natural scenario is acceptable, which allows us to evaluate recognition accuracy
with greater veracity.

Both read and spontaneous speech data were carefully transcribed, and all raw au-
dio files, as well as transcription, may be found at Non-Native Children Speech Mini
Corpus [30].

4. Proposed System Overview

The collected children’s speech is a stereo channel at a sampling rate of 44.1 KHz, which
is down-sampled to 16KHz rate with single channel using Sox [31]. Initially, the proposed
model is trained with re-sampled children speech and further experimented using speed
perturbation-based data augmentation in order to handle the data scarcity as demonstrated
in Figure 1. The most popular front-end feature extraction, MFCC, has been employed with
frame length of 25 ms and an overlap of 10 ms after successful adaption of cepstral mean
and variance normalization (CMVN).

Feature 
Extraction

Speed 
Perturbation

Decoder

Language
 Model

Lexicon
Dictionary

Acoustic Models

Discriminative Models

Word Hypothesis

Mono

Tri 1

Tri 2

Tri 3

MMI bMMI fMMI fbMMI

Non-Native
Children 
Speech

Figure 1. Proposed discriminatively trained non-native children speech recognition using speed
perturbation-based audio augmentation.

The work is usually composed of two parts: acoustic modeling (AM) and language
modeling (LM), with one focusing on mapping a set of acoustic feature vectors to suitable
phonetics and the other subsequently transducing a set of phonetic units into proper
sentences. The baseline data without augmentation and the augmented feature vectors are
initially trained using acoustic models, such as context-independent mono-phone model
(mono) and context-dependent triphone models (tri1, tri2) with delta and double-delta
features on top of MFCCs. The linear discriminant analysis with maximum likelihood linear
transformation (LDA-MLLT) (tri3) is being used to further transform the feature dimension,
which are aligned using feature-space maximum likelihood linear regression (fMLLR).
To reduce the significant deviation among word representations in train and test models,
the output of tri3 is fed to discriminative models, such as maximum mutual information
(MMI), boosted MMI (bMMI), feature-space MMI (fMMI), and boosted feature-space MMI
(fbMMI), as shown in Figure 1.

For language modeling, conventional 3-gram language models (LM) [32] in the form
of weighted finite-state transducers (WFST) [33] are commonly used, whereas Speech
Technology and Research Laboratory (SRILM) is an open-source language modeling toolkit
with remarkable features that is used to rescore the acoustic model outputs. Furthermore,
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test data are used to evaluate the performance of the proposed model, and the decoder
results are depicted in terms of word error rate (WER).

4.1. Acoustic Models

For decades in ASR engines, Mel-frequency cepstral coefficients (MFCC) have been the
most extensively employed acoustic feature vectors. A dense representation of the data is
created by extracting MFCC feature vectors from raw data with a frame size of 25 ms. There
has been a lot of research on extracting features using MFCC due to its ability to simplify
the speech amplitude spectrum in a cosine form on a non-linear Mel scale. The primary
goal of speech recognition is to find the best possible sequence of words from raw audio
input using a language model. Acoustic observations are indicated as X, and a sequence of
words is represented by Wr, in order to form an acoustic model as shown in Equation (1)

W̃r = argmax
W

P(X|Wr)P(Wr), (1)

where W̃r is the word hypothesis, P(X|Wr) is the acoustic model, and P(Wr) is the lan-
guage model.

A Gaussian mixture model (GMM) may be used to estimate the distribution of phone
features. The hidden Markov model (HMM) may be used to model the transition between
phones and associated observations. The HMM model is comprised of hidden states and
observables, and the Baum–Welch method [34] can build the HMM model provided all
the training set. The Viterbi algorithm is used to determine the most probable sequence of
hidden states.

Finally, two important metrics were used to determine optimal system performance [35]:
the word error rate (WER), which is equal to the number of substitutions (S), insertions
(I), and deletions (D) divided by total number of words in the actual utterance (N) and is
given in Equation (2)

%WER =
S + D + I

N
× 100 (2)

and the percentage relative improvement (%RI) is predicated on the division of absolute
increment corresponding to new values (N) by their original values (O) as shown in
Equation (3)

%RI =
(N −O)

O
× 100 (3)

4.2. Discriminative Models

The ultimate goal of discriminative modeling is to enhance the quality of ASR by
properly training the statistical parameters of HMM. Although there are several others,
MMI is one of the most extensively used discriminative techniques. Despite the fact that
several researchers have reported significant improvements in native adult and child speech
recognition using discriminative models [36–38], persistent improvements in non-native
child speech recognition using discriminative models are still elusive. The key contribution
of this article is the use of feature-space MMI and boosted feature-space MMI, which
reliably outperform MMI and boosted MMI and are likely to be effective methods for
discriminative training.

4.2.1. Maximum Mutual Information (MMI)

MMI aims at maximizing the posterior distribution, or likelihood of data, for certain
right-word patterns while lowering the total likelihood of data for all possible word se-
quences in the lexicon. In a nutshell, the objective function of MMI is developed by finding
the correct word hypothesis more likely whilst making the incorrect word hypothesis less
likely [39,40]. The MMI objective function is achieved by optimizing mutual information on
a sequence of observations X, which requires setting the parameter to λ, while the correct
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word transcription Wr is corresponding to HMM of the rth utterance is derived as shown in
Equation (4),

zMMI(λ) =
R

∑
r=1

log
P(Xr, Wr)

P(Xr)P(Wr)

=
R

∑
r=1

[
log

P(Xr, Wr)

P(Xr)
− log P(Wr)

]
(4)

=
R

∑
r=1

[
log

Pλ(Xr|Wr)kP(Wr)

∑Ŵ Pλ(Xr|Ŵ)kP(Ŵ)
− log P(Wr)

]
,

where P(Wr) is the probability of all possible word sequences in the language model and k
is a scalable fudge factor in correcting the word estimations.

MMI can be further simplified as shown in Equation (5) by setting P(Ŵ) independent
of model λ which significantly improves the posterior probability that is possible simply by
increasing the likelihood of making a prediction that is identical to hypothesis (numerator
lattice) and minimizing the likelihood of acquiring wrong words Ŵ (denominator lattice).
Figure 2 illustrates an example of generated lattice for a possible word hypothesis.

0 1140:IT 2139:IS 32:A 4247:UMBRELLA
5187:PROTECT

9264:WE

11

189:PROTECTS

13

140:IT
6

249:US

10187:PROTECT

12

249:US

14272:WILL

7

103:FROM

8193:RAIN

249:US

103:FROM

15187:PROTECT

16

189:PROTECTS

249:US

249:US

Figure 2. An example word lattice of spontaneous speech utterance: “It is a umbrella. It protects us
from rain”.

zMMI(λ) = argmax
λ

R

∑
r=1

[
log

Pλ(Xr|Wr)P(Wr)

∑Ŵ Pλ(Xr|Ŵ)P(Ŵ)

]
(5)

4.2.2. Boosted Maximum Mutual Information (bMMI)

In reality, MMI has a number of issues, including difficulty in maximizing the objective
function, greater computational cost for maximization, and poor adaptation to unknown
data. So, the language model is altered by the inclusion of a boosting parameter. This
boosting factor, b = 0.05, is believed to enhance the possibility of wrong words (Ŵ), which
leads to more confusion [41]. There seems to be a small exponential change in bMMI when
compared to MMI, as shown in Equation (6).

zbMMI(λ) = argmax
λ

R

∑
r=1

[
log

Pλ(Xr|Wr)P(Wr)

∑Ŵ Pλ(Xr|Ŵ)P(Ŵ)exp(−bA(Wr, Ŵ))

]
(6)

where A(Wr, Ŵ) is the accuracy of word sequence Ŵ with respect to Wr; also, each arc in
the lattice is generated by subtracting ’b’ times the accuracy in log-likelihood.

4.2.3. Feature-Space Maximum Mutual Information (fMMI)

The objective function of feature-space discriminative training is similar to MMI,
with the exception that feature transformation is optimized using a very high-dimensional
feature vector ( fτ), along with global matrix G, also known as Gaussian posterior. These
transformed feature vectors ( fτ) are reflected back into the original feature space by adding
it to original features aτ by a linear transformation technique with T : a −→ b given as
bτ = aτ + G fτ .
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The feature vector transformations are calculated using gradient descent [42] instead
of the Baum–Welch technique [34] to maximize the feature-space MMI objective function,
as indicated in Equation (7)

Gij := Gij + αij
∂

∂Gij
zMMI(λ) (7)

where αij is the learning rate, and objective function of fMMI Equation (8) is obtained from
Equation (7) as,

zfMMI(λ) =
∂zMMI(λ)

∂Gij
=

T

∑
τ=1

∂zMMI(λ)

∂bτi
fτ j (8)

4.2.4. Boosted Feature-Space Maximum Mutual Information (fbMMI)

The training procedure of boosted feature-space MMI (fbMMI) is analogous to fMMI
training as already addressed in the above section. Moreover, in fbMMI, the feature
transformation is maximized in reference to the bMMI objective function as shown in
Equation (9). The learning procedure of the model and statistics acquisition in fbMMI
are equivalent to those in fMMI. The significant difference is that while implementing the
forward–backward algorithm on the lattices, it is necessary to estimate the raw phone
accuracy for each arc in addition to the acoustic and linguistic scores. The objective function
of boosted feature-space MMI is given as

zfbMMI(λ) =
∂zbMMI(λ)

∂Gij
=

T

∑
τ=1

∂zbMMI(λ)

∂bτi
fτ j (9)

5. Experimental Setup

Children’s read speech, spontaneous speech, and a combination of both read and
spontaneous speech have been used in the experimental setup of a non-native speech
recognition system. For this purpose, discriminatively trained models are developed using
the Kaldi toolkit [43]. The following is a more detailed description of children’s speech
corpora and speed perturbation-based audio augmentation.

5.1. Data Interpretation

As shown in Table 1, the collected speech corpus is categorized into three parts to
evaluate the performance of ASR, given different styles of children’s speech. Children’s
reading abilities are critical for enhancing comprehension and understanding. Furthermore,
non-native children who are acquiring a second language such as English are known to
exhibit a variety of reading miscues. Lexical disfluency, hesitations, intra-word switching
(combining two languages within a single word), word repetitions, and the adoption of
some native language sounds and phonology are among them. Because certain miscues
are not addressed in the standard children’s database so far, hence ASR’s struggle to
recognize non-native children’s speech. These sub-word transcriptions, as shown in Table 2,
are especially beneficial for detecting pronunciation errors and hesitations in non-native
children’s speech [44].

The datasets in this study are intended to solve the aforementioned problems of chil-
dren’s ASR. Therefore, it includes both read and spontaneous speech, with an orthogonal
split (i.e., no identical speaker) of 70% for training data and 30% for test data, respectively.
The train set of read speech corpus consists of 1.82 h of data from 15 children. The number
of utterances is 1585, with total and unique word count of 18,154 and 155, respectively.
The 0.65 h of test data consists of 5 speakers with 588 utterances in which total words are
6769 and unique words are 123. Four distinct images are used to collect the spontaneous
speech in children, resulting in 0.67 h of training data which includes 569 utterances with
6906 total words and 131 unique words. There are 156 utterances in the 0.18 h of test data,
including 1896 total words and 82 unique words in spontaneous speech. As one can see,
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spontaneous speech has a high word count despite the fact that the number of utterances is
limited. Finally, as presented in Table 1, combined speech is composed of both read and
spontaneous speech from children, with an orthogonal split of 2.65 h of training data and
0.67 h of test data. The train set contains 2274 utterances with a total of 26,443 words and
256 unique words, whereas the test set included 624 utterances with a total of 7286 words
and 183 unique words.

Table 1. Details of non-native children speech corpora.

Baseline Utterances Total Words Unique
Words

Duration
(hours)

Read Speech Train 1585 18,154 155 1.82
Test 588 6769 123 0.65

Spontaneous Speech Train 569 6906 131 0.67
Test 156 1896 82 0.18

Combined Speech Train 2274 26,443 256 2.65
Test 624 7286 183 0.67

Table 2. Examples of disfluency in non-native children speech corpus.

Type of Disfluency Example

Word Repetitions this is a umbrella it is it is useful when it rains

Word Fragments there was a sa- sad dog he did not have any friend

Intra-Word Switching everyone in my schooluu likes icecream

Hesitations on his way home he hmm he crossed a river and saw another dog

Ungrammatical Words this is a pencil we will use it when when we should write
our home works

5.2. Speed Perturbation

Due to limited available training data, children’s ASR systems do not perform well
with non-native accents. To tackle the problem of data scarcity, the suggested approach
collects high-quality children’s speech and augments it with speed perturbation. The math-
ematical intuition behind speed perturbation, which resamples the original data in time
domain via Sox, is as follows.

If children’s speech is represented in time domain as S(t), then warping the duration
of an audio signal by a factor of β alters the children’s speaking rate to y(t) = S(βt).
The spectral domain representation of S(βt) is β−1Ŝ(β−1w). If β <1, the length of the
speech signal is scaled back while signal energy raises to higher frequencies, and vice versa.

The experiment is conducted with various folds (1, 3, 5, 7) that stretch or squeeze the
duration of speech utterance without influencing the linguistic content of the children’s
speech, as shown in Figure 3. The standard Kaldi routine [45] is used to adjust the speed of
children’s speech in the proposed work. The baseline data before speed perturbation are
interpreted as the Fold-1. By adjusting the speed of the original training data to 90% and
110%, two extra copies of the identical training data were created. This results in a 3-fold
training set.

In addition to the standard recipes, 5-fold and 7-fold training sets were developed.
With a 5-fold speed perturbation, the speed is changed to 80%, 90%, 110%, and 120% of the
original rate, augmenting the training data five times. Similarly, 7-fold speed perturbation
data were created by modifying the speed to 80%, 85%, 90%, 95%, 110%, and 115% of the
original rate, which is labeled as such in Table 3.
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Figure 3. Speed perturbation-based data augmentation.

Table 3. Audio augmented data of children training set with different speed perturbation factors.
Different number of hours (#Hrs) and the respective utterances (#Tokens) for training are used.

Datasets Fold Perturb. Factors #Hrs #Tokens

Read Speech

1 Baseline 1.82 1.58 K
3 0.9, 1.0, 1.1 5.51 4.75 K
5 0.8, 0.9, 1.0, 1.1, 1.2 9.32 7.92 K
7 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.15 13.46 11.1 K

Spontaneous Speech

1 Baseline 0.67 0.56 K
3 0.9, 1.0, 1.1 2.03 1.7 K
5 0.8, 0.9, 1.0, 1.1, 1.2 3.43 2.84 K
7 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.15 4.95 3.98 K

Combined Speech

1 Baseline 2.65 2.27 K
3 0.9, 1.0, 1.1 8 6.82 K
5 0.8, 0.9, 1.0, 1.1, 1.2 13.53 11.37 K
7 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.15 19.53 15.9 K

6. Experimental Results and Discussion

Considering different styles of children’s speech, several investigations have been car-
ried out by adjusting the speed perturbation factors and examined ASR performance in all
the aspects. Initially, acoustic models are being used to train baseline and speed-perturbed
data, followed by discriminative models, such as the MMI, boosted MMI, feature-space
MMI, and boosted feature-space MMI. This section is a detailed description of the perfor-
mance evaluation of non-native children’s speech recognition in different speech styles.

6.1. Performance Analysis of Proposed Models on Read Speech Task

The GMM-HMM acoustic model is deployed, and it is evaluated using 0.65 h with
588 utterances of baseline children’s read speech data. As shown in Table 4, the initially
proposed models are experimented without introducing any speed perturbation factors
which are referred to as the baseline results. To conduct monophone (mono) training,
500 total Gaussians were considered, with 1.25 boosting silence. Following, triphone (Tri1)
training with 500 tied states (senones) and 2000 cluster leaves and triphone (Tri2) modeling
with 600 senones and 2500 leaves is performed. A minimum WER of 2.22% is achieved
by the MFCC features when combined with the delta and double-delta features. Further,
using 700 tied states and 3000 cluster leaves, a linear discriminant analysis with maximum
likelihood linear transformation (LDA-MLLT) (tri3) is applied to the features, which is
subsequently modeled using discriminative approaches, yielding 2.13% of the WER with
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the boosted feature-space MMI, and a relative improvement of 4% is observed in the
discriminative training. These baseline results are compared with the 3-fold, 5-fold, and
7-fold speed-perturbated data, as shown in Figure 4a. The percentage error in the MMI,
bMMI, fMMI, and fbMMI decreases significantly as the number of folds accumulates, as
depicted in Figure 4b. When compared to the MMI and bMMI, the recognition performance
of the fMMI and fbMMI is enhanced at a 7-fold augment, with an RI of 11.06% and 3.7%,
respectively.

Table 4. Experimental results of acoustic and discriminative models in %WER for original and
synthetic data with different styles of children’s speech.

Type of
Speech Fold

Acoustic Models Discriminative Models

Mono Tri1 Tri2 Tri3 MMI bMMI fMMI fbMMI

Read
Speech

1 2.87 2.30 2.22 2.66 2.39 2.42 2.26 2.13
3 2.60 2.67 2.22 2.25 2.11 2.20 2.07 2.07
5 2.93 2.35 2.07 2.33 2.28 2.26 2.06 2.05
7 2.90 2.16 2.06 2.42 2.16 2.33 2.01 2.05

Spontaneous
Speech

1 19.51 15.82 16.17 17.25 17.25 17.35 17.14 17.09
3 22.73 18.67 16.09 17.09 16.98 16.98 16.72 16.56
5 21.78 16.77 16.51 15.98 16.35 16.24 15.98 15.56
7 21.89 16.24 15.55 15.82 16.03 16.09 15.77 15.51

Combined
Speech

1 3.43 2.85 2.96 3.03 2.84 2.83 2.90 2.81
3 3.46 2.99 2.68 2.72 2.85 2.84 2.79 2.72
5 3.69 2.83 2.64 2.92 2.59 2.61 2.58 2.57
7 3.72 2.85 2.90 2.79 2.61 2.73 2.57 2.48

Figure 4. Read speech: (a) word error rate (%) for baseline (fold-1) and synthetic (fold-3, 5, 7) data on
discriminative techniques and (b) (%) relative WER improvement on fMMI, fbMMI for baseline and
7-fold speed-perturbated data.

6.2. Performance Analysis of Proposed Models on Spontaneous Speech Task

The GMM-HMM acoustic model uses the same composition of Gaussians, tied states,
and cluster leaves where Tri1 and Tri2 have the least WER compared to the fMMI and
fbMMI, because the models are trained with relatively minimal data in the spontaneous
speech task without speed perturbation. Because of their L2 [46] proficiency, children tend
to include long pauses, repetition of words, and speech crossovers in spontaneous speech
tasks, which indeed results in a performance drop-off in ASR when compared to reading
speech proficiency. Long pauses can be diminished using speed-based data augmentation,
and the recognition performance of feature discriminative techniques can be optimized.

After the augmentation, 0.67 h of baseline training data is 7-fold perturbated to 4.95 h,
resulting in a decrease in the WER from 17.14% to 15.77% in the fMMI and 17.09% to 15.51%
in the fbMMI, respectively, as shown in Figure 5a. A relative improvement of 7.99% and
9.24% in the fMMI and fbMMI, respectively, is achieved in spontaneous speech, as depicted
in Figure 5b.
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Figure 5. Spontaneous speech: (a) word error rate (%) for baseline (fold-1) and synthetic (fold-3, 5,
7) data on discriminative techniques and (b) (%) relative WER improvement on fMMI, fbMMI for
baseline and 7-fold speed-perturbated data.

6.3. Performance Analysis of Proposed Models on Combined Speech Task

With regard to speed perturbation-based augmentation, there is indeed a significant
variation in the performance of the ASR on the read speech and spontaneous speech of
non-native children, as shown in the preceding sections. However, both the read and
spontaneous speech datasets are merged and explored with the proposed models in order
to make the ASR a generic model for any type of speech.

With a 7-fold data augmentation, 2.65 h of training data is increased to approximately
20 h in combined speech. Alongside, the suggested models are evaluated on 0.67 h of
orthogonal data without augmentation, and the best WER in the fbMMI is 2.81%. All the
discriminative models performed similarly in this type of speech, as seen in Figure 6a.
With a 5-fold speed perturbation, the MMI and bMMI models perform better than the
7-fold one; however, with the 5-fold and 7-fold augmentation, the fMMI and fbMMI models
perform similarly. As shown in Figure 6b, the fMMI and fbMMI obtained a performance
improvement of 11.37% and 11.74%, respectively, with the 7-fold speed perturbation, as
presented in Table 5.

6.4. Comparative Analysis of Earlier State of the Art on Non-Native Children Speech Recognition

As reported in Table 6, the majority of non-native children’s speech recognition re-
search has centered on languages such as Italian, German, Chinese, Swedish, and others,
but ASR for Indian children who speak Telugu as their first language and English as a
second has yet to be examined. In comparison to previous state-of-the-art models, this
paper is a forerunner in addressing the issues faced by L2 learners while using ASR systems
and has therefore developed a discriminatively trained non-native children’s ASR.

Figure 6. Combined speech: (a) word error rate (%) for baseline (fold-1) and synthetic (fold-3, 5,
7) data on discriminative techniques and (b) (%) relative WER improvement on fMMI, fbMMI for
baseline and 7-fold speed-perturbated data.
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Table 5. Comparison of baseline and speed perturbation on different types of children’s speech.

Type of Speech Fold #Hrs WER (%) Rel. Improvement (%)
fMMI fbMMI fMMI fbMMI

Read
Speech

1 1.82 2.26 2.13 11.06 3.77 13.46 2.01 2.05

Spontaneous
Speech

1 0.67 17.14 17.09 7.99 9.247 4.95 15.77 15.51

Combined
Speech

1 2.65 2.90 2.81 11.37 11.747 19.53 2.57 2.48

Table 6. Comparative analysis of earlier state-of-the-art results.

Year/
Author

Augmentation
Type

Dataset
Type

Front-End
Approach

State-of-the-Art
Model Performance

2017
[20] No augmentation

English read, picture narration, and
spontaneous speech (11–15 years)
from native Arabic, Chinese,
French, German, and many
other children speaking English

MFCC BiLSTM-RNN WER of 13.4%
is obtained

2018
[18] No augmentation

Italian, German, English, and
Swedish children aged
9–10 years

MFCC DNN

Non-native adaption
was used in transfer
learning and results in
14.2% WER for
Italian and 15% for
German speaking English

2020
[21]

Prosody-based augmentation,
spectrogram augmentation

TLT non-native corpus—
English read speech
from native Italian children
(9–16 years)

MFCC TDNN+BiLSTM
+VTLN

WER of 18.71%
with spectrogram
augmentation

2020
[22]

Speed perturbation,
spectrogram perturbation

TLT non-native corpus—
English read speech
from native Italian children
(9–16 years)

MFCC+
i vectors,
CMVN,
VTLN

TDNN-F,
CNN-TDNN-F

WER is 17.59%
with semi-supervised
learning

2020
[23] Spectrogram augmentation

TLT non-native English,
German, and Italian children
corpus—spontaneous speech
(9–16 years)

MFCC TDNN-F+LSTM
WER is 15.7% by
combining all systems
independent of grade

2020
[24]

Speed perturbation,
room impulse response
(RIR),
babble noise,
non-speech noise

OGI, MyST, CU, CMU
(5–16 years)
read and spontaneous
speech

MFCC GMM-HMM
CNN+TDNN-F

WER is 16.59 with
min. Bayes-risk
decoding

2020
[25]

Pitch, speed, volume,
tempo, reverberation
perturbations

SLT Mandarin children
read and conversational
speech (4–16 years)

MFCC CNN-TDNN-F,
EspNet

CER is 16.48% by
combining all types of
perturbations

2021
[47]

Data augmentation,
time-scale modification

Clean adult’s speech
WSJCAM0 (train data)
Noisy children’s speech
PF-STAR (test data)

MFCC DNN-HMM

WER is 14.88% by
all types of data
augmentation in
combined system

Proposed
work

Speed perturbation-
3Way, 5Way, and 7Way

7–12 years of English read and
spontaneous speech from
native Indian (Telugu) children

MFCC
CMVN

GMM-HMM
MMI, bMMI,
fMMI, fbMMI

WER for different
styles of speech
2.01% (read),
15.51% (spontaneous),
2.48% (combined)

7. Conclusions

In this paper, a corpus of non-native children who are acquiring a second language
such as English is being collected for a children’s speech recognition system and analyzed
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in a limited-data scenario. The speed perturbation-based data augmentation is induced
with various folds (1, 3, 5, and 7) on the original data to handle the data scarcity. Through a
comprehensive set of feature discriminative training experiments, the combined use of read
speech and spontaneous speech has demonstrated the promising performance of non-native
children’s English speech ASR. The results revealed that the system training-pooled 7-fold
speed perturbation-based data augmentation outperformed the baseline models (1-fold)
with relative improvements of 11.37% and 11.74% with the fMMI and fbMMI, respectively.
The performance of the non-native children’s ASR may be significantly improved in the
near future by developing more advanced DNN-HMM or end-to-end ASR systems and
also other resource-poor ASR applications.
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